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We study the accretion process in the region of the Preston-Poisson space-time describing a

Schwarzschild black hole perturbed by an asymptotically uniform magnetic field and axisymmetric

tidal structures. We find that the accretion disk shrinks and the marginally stable orbit shifts toward

the black hole with the perturbation. The radiation intensity of the accretion disk increases, while the

radius where radiation is maximal remains unchanged. The spectrum is blue-shifted. Finally, the

conversion efficiency of accreting mass into radiation is decreased by both the magnetic and the tidal

perturbations.

DOI: 10.1103/PhysRevD.84.024018 PACS numbers: 04.70.Bw

I. INTRODUCTION

As observational data on the astrophysical properties of
the accretion disks around black holes and other compact
objects is accumulated, the study of the accretion mecha-
nism driven by these objects has become an important
research topic. The first and simplest theoretical model of
the accretion disks was constructed by imposing strong
simplifications on the dynamics and geometrical proper-
ties of the disk [1,2]. In this so-called steady-state thin
accretion disk model, a geometrically thin but optically
thick disk was considered in a hydrodynamic approxima-
tion by neglecting any magnetic fields in the environment
of the black hole and the disk. In their early analysis,
Novikov and Thorne [2] modeled accreting matter as a
rotating fluid. This hydrodynamic approximation also
holds in the presence of a magnetic field as long as the
deviation from geodesics of the photon trajectories is less
than the Larmor radius (which in turn is small compared
to the Schwarzschild radius). However, the discovery
of the Blandford-Znajek mechanism—describing how
rotational energy can be extracted from a black hole via
magnetic field lines emanating from its event horizon—
indicated that magnetic fields can have a considerable
effect both on the evolution of the Kerr black holes and
on the accretion processes feeding the black hole with
mass energy [3]. Later on, magnetosphere models were
introduced for both static and rotating black holes, which
allowed the study of both the effects of the flux lines
connecting the black hole to the accretion disks [4,5],
and magnetohydrodynamic flows in geometrically thick
disks [6,7]. Accretion disk instabilities were also recently
discussed in Ref. [8]. The black hole spin evolution

due to accretion, in connection with radiation efficiency
when both jets and magnetic fields are present, was
investigated in Ref. [9]. Another approach for studying
magnetosphere models of Schwarzschild black holes with
nonmagnetized accretion disks consists in solving the
Grad-Shafranov equation, derived from the Einstein-
Maxwell equations. A stationary axisymmetric force-
free magnetosphere in a Schwarzschild geometry was
studied in Ref. [10]. In this model, the black hole is
connected by the magnetic field lines to a thin Keplerian
disk. A uniform magnetic field at the event horizon was
found to be a reasonable assumption in the nonrotating
limit. It also turned out that a uniform radial magnetic field
is still an excellent approximation for slowly rotating
Keplerian disks.
A static and spherically symmetric black hole immersed

in an asymptotically uniform magnetic field was presented
by Preston and Poisson [11]. An accretion disk in this
geometry will have slightly modified properties compared
to the vacuum case, due to the weak magnetic field of this
space-time. This is what we propose to study in this
paper.
The Preston-Poisson metric was derived based on the

light-cone gauge introduced in Ref. [11] for perturbed
Schwarzschild black holes. This gauge preserves three
convenient properties of the Eddington-Finkelstein coor-
dinates of the Schwarzschild metric. Namely, (i) the
advanced-time coordinate v is constant on incoming light
cones that converge toward the center, (ii) the polar and
azimuthal angles are constant on the null generators
of each light-cone, (iii) the radial coordinate is an
affine-parameter distance along each generator. In the
unperturbed scenario there is a fourth property, (iv) the
radial coordinate r is an areal radius or curvature coordi-
nate [12], defined by the condition that the area of the
2-spheres with constant r is 4�r2 as in flat space. This

*zkovacs@hku.hk
†gergely@physx.u-szeged.hu
‡vasuth@rmki.kfki.hu

PHYSICAL REVIEW D 84, 024018 (2011)

1550-7998=2011=84(2)=024018(11) 024018-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.024018


fourth property is, however, not obeyed in a generic
perturbed scenario.

As an application of the formalism, Preston and Poisson
have derived the perturbations of the Schwarzschild metric
arising from the immersion of the black hole into an
asymptotically uniform magnetic field. By carefully per-
forming the integration, on top of the modifications in-
duced by the magnetic field, they derive an additional tidal
perturbation due to distant structures. Thus, the Preston-
Poisson perturbative solution represents a magnetized
black-hole space-time in which the tidal gravity is not
directly tied to the magnetic field. In this sense, it is a
generalization of the exact, two-parameter Schwarzschild-
Melvin metric family, where all perturbations are of
magnetic origin [13].

The magnetic field generates a quadrupolar deformation
of the event horizon. Despite the penetration of the
magnetic field lines below the horizon, its area stays un-
changed. This is a combined consequence of the Hawking-
Hartle formula [14], according to which the change of the
area during the quasistatic perturbation is determined by
the flux of energy Trr crossing the horizon; and of the
particular form of Trr for this specific black hole, which
vanishes on the horizon (at least to B2 order, where B is the
strength of the magnetic field).

In Ref. [15], Konoplya has rewritten the Preston-Poisson
metric into a diagonal form by a suitable redefinition of the
radial variable and a replacement of the null coordinate by
a temporal variable. For the latter, a tortoise-type trans-
formation was employed. Then he has analyzed the motion
of particles around such black holes. He has studied equa-
torial orbits and found that the tidal perturbations from
surrounding sources have significant influence on the mo-
tion of test particles. The time delay and the bending angle
characterizing massless particles together with the binding
energy of massive particles have increased, while the
radius of the innermost stable circular orbit is decreased
due to the presence of tidal forces.

Our aim here is to study the accretion processes
onto Preston-Poisson black holes, which incorporate both
magnetic and tidal perturbations of the Schwarzschild
black hole. In Sec. II, we present a short summary
of the accretion process in the absence of the magnetic
fields.

In Sec. III, we briefly review the Preston-Poisson metric
both in its original light-cone gauge form, and in the
coordinates presented in Ref. [15], employing also the
analysis of the curvature invariants from Appendix A.
We establish the radial range over which this geometry
describes a perturbed Schwarzschild black hole.

We analyze the geodesic motion in the equatorial plane
in terms of an effective potential in Sec. IV.

Here, we also present the numerical study of the
modifications induced by the magnetic field and tidal
perturbations in the disk radiation, temperature profile,
spectrum, luminosity and energy conversion efficiency

for the Preston-Poisson black hole. For this, we employ
the explicit form of the energy-momentum tensor given in
Appendix B.
Finally, Sec. V contains the Concluding Remarks.

II. THE ACCRETION PROCESS

In the steady-state accretion disk model, physical
quantities describing matter fields are averaged over the
characteristic time scale �t, total azimuthal angle 2� and
accretion disk height H (defined by its maximum half
thickness).
The matter in the accretion disk is modeled by an

anisotropic fluid, where the density �0 of the rest mass
(the specific heat is neglected), the energy flow vector qa

and stress tensor tab are defined in the averaged rest-frame
of the orbiting plasma with 4-velocity ua. The invariant
algebraic decomposition of the stress-energy tensor is

Tab ¼ �0u
aub þ 2uðaqbÞ þ tab;

where uaqa ¼ 0 ¼ uatab.
In this hydrodynamic approximation, Page and Thorne

[16] have derived the law of rest mass conservation, stating
that the time-averaged rate of rest mass accretion is inde-
pendent of the radius: _M0 � dM0=dt ¼ �2�r�ur ¼
const. (Here, t and r are the time and radial coordinates
and� is the averaged surface density.) The integral form of
the conservation laws of angular momentum and energy
was also derived by averaging the continuity equation
and the total divergence of the density-flux 4-vectors
Ja ¼ Tab’b (angular momentum density-flux) and
Ea ¼ �Tabtb (energy density-flux), respectively. Here
’a ¼ @=@’ and ta ¼ @=@t are the Killing vectors of
the axially symmetric geometry and ’ is the azimuthal
coordinate.
From the integral form of the conservation laws of

energy and angular-momentum and the energy-angular
momentum relation ~E;r ¼ �~L;r, Page and Thorne have

expressed the time-averaged vertical component F (the
photon flux) of the energy flow vector qa as

FðrÞ ¼ _M0

4�
ffiffiffiffiffiffiffi�g

p ��;r

ð ~E��~LÞ2
Z r

rms

ð ~E��~LÞ ~L;rdr: (1)

Here, ~E, ~L, and � ¼ d’=dt are the specific energy, spe-
cific angular-momentum, and angular velocity of the orbit-
ing plasma particles with respect to the coordinate time t.
The above formula is valid under the assumption that the
torque of the infalling matter on the disk vanishes at the
inner edge of the disk (since the accreting matter reaching
the marginally stable orbit rms falls freely into the hole and
cannot exert any considerable torque).
Supposing that the electron-scattering opacity is

negligible and the accretion disk is optically thick, the
disk surface radiates a black body spectrum. Then the
surface temperature TðrÞ of the disk is given by FðrÞ ¼
�T4ðrÞ, with the Stefan-Boltzmann constant �. The disk

KOVÁCS, GERGELY, AND VASÚTH PHYSICAL REVIEW D 84, 024018 (2011)

024018-2



luminosity Lð!Þ is calculated as function of T (which
is in turn expressed in terms of the thermal photon
flux) as

L ð!Þ ¼ 4!3

�
cos�

Z 1

rms

rdr

expð!=TÞ � 1
; (2)

where � is the inclination angle of the disk with
respect to the line of sight. For simplicity, we assume
cos� ¼ 1.

Another important characteristic of the mass accretion
process is the efficiency with which the central object
converts rest mass into outgoing radiation. The efficiency
is defined as the ratio of two rates evaluated at infinity: the
rate of the radiated energy of photons escaping from the
disk surface to infinity over the rate at which mass-energy
is transported to the black hole [2,16]. If all emitted pho-
tons escape to infinity, the efficiency is given in terms of
the specific energy measured at the marginally stable orbit
rms as

� ¼ 1� ~Ems: (3)

For Schwarzschild black holes the efficiency � is about
6%, irrespective of whether photon capture by the black-
hole is taken into account or not. However, for rapidly
rotating black holes, the efficiency � is found to be 42.3%,
decreasing slightly to 40% with photon capture by the
black-hole included [17].

III. PERTURBED SCHWARZSCHILD BLACK
HOLE REGION OF THE PRESTON-POISSON

SPACE-TIME

In this section, we review the Preston-Poisson metric,
both in the original light-cone gauge coordinates employed
in [11] and in the coordinates introduced in Ref. [15]. The
latter is essential in studying the accretion processes in the
remaining part of the paper. Then we analyze the equatorial
geometry and we establish the radial range where the
interpretation of a perturbed Schwarzschild black hole
holds.

The Preston-Poisson metric represents a perturbed
Schwarzschild black hole with perturbations caused by
(i) an asymptotically uniform magnetic field B and
(ii) independent tidal effects, described by a parameter
K. The perturbations are such that the perturbed space-
time is stationary and axially symmetric. In lowest order,
the rotational Killing vector of the space-time can be used
to define the asymptotically uniform magnetic field [18],
through the 4-potential [11]

Aa ¼ ð0; 0; 0; B=2Þ: (4)

The metric given in the light-cone gauge [in the
Eddington-Finkelstein type coordinates ðv; r; �;�Þ] is

gvv¼�f�1

9
B2rð3r�8MÞ�

�
1

9
B2ð3r2�14Mrþ18M2Þ

�Kðr�2MÞ2
�
ð3cos2��1Þ;

gvr¼1;

gv�¼
�
2

3
B2ðr�3MÞ�2Kðr�2MÞ

�
r2 sin�cos�;

g��¼ r2�
�
1

3
B2r2�B2M2�Kðr2�2M2Þ

�
r2sin2�;

g’’¼ r2sin2��
�
1

3
B2r2þB2M2þKðr2�2M2Þ

�
r2sin4�;

(5)

where f ¼ 1� 2M=r andM is the mass of the correspond-
ing Schwarzschild black hole. This form of the metric is
accurate up to ðB2; KÞ order. [These are Eqs. (3.43)–(3.47)
of Ref. [11] with the change of notation E ! K. They are
also given as Eqs. (3)–(6) of Ref. [15], however the last
term of the respective Eq. (3) should be corrected as
�Kðr� 2MÞ2, while the last term of Eq. (4) should be
corrected as �2Kðr� 2MÞ.]
The area of spheres with radius r is modified by the

magnetic field as

Ar¼const ¼ 2�
Z �

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��g’’ � g2�’

q
d�

¼ 4�r2
�
1� 2

9
B2r2

�
; (6)

thus r fails to be a curvature coordinate.
In the perturbed space-time, @=@t ¼ ð1; 0; 0; 0Þ remains

a Killing vector. Because of Hawking’s strong rigidity
theorem, the event horizon is given by the condition that
@=@t becomes null on it, i.e. @=@t � @=@t � gtt ¼ 0. Under
the magnetic perturbation, the event horizon acquires a
quadrupolar deformation:

rHð�Þ ¼ 2M

�
1þ 2

3
M2B2sin2�

�
; (7)

but quite remarkably its area is unchanged (to linear order
in the perturbations) as compared to the Schwarzschild
black hole:

AH ¼ 16�M2: (8)

The quadrupolar deformation of the horizon and the mag-
netic field topology are illustrated on Fig. 1.
By introducing a temporal variable with a tortoiselike

transformation and passing to a new radial coordinate �r as

v ¼ tþ �rþ 2M ln

�������� �r

2M
� 1

��������; (9)
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r ¼ �r

�
1þ 1

3
B2 �r½Mþ ð �r� 3MÞcos2��

� 1

3
K �rð�r� 2MÞð3cos2�� 1Þ

�
; (10)

Konoplya has rewritten the Preston-Poisson metric in a
diagonal form [15],

gtt¼�
�
1�2M

�r

�
þ1

3
Kð4M�3�rÞð2M� �rÞð3cos2��1Þ

�1

3
B2½3ð2M� �rÞcos2��2M�ð2M� �rÞ;

g�r �r¼
�
1�2M

�r

��1�K
�r2ð4M�3�rÞð3cos2��1Þ

3ð2M� �rÞ
þB2 �r

2½3ð2M� �rÞcos2��2M�
3ð2M� �rÞ ;

g��¼ �r2þ1

3
K �r2½2ð3cos�2�1Þð2M� �rÞ �r�3ð2M2� �r2Þ

�sin�2��1

3
B2 �r2f2½ð3M� �rÞcos�2�M��r

�ð3M2� �r2Þsin�2g;
g’’¼ �r2 sin�2þ1

3
K �r2½2ð3cos�2�1Þð2M� �rÞ�r

þ3ð2M2� �r2Þsin�2�sin�2�1

3
B2 �r2f2½ð3M� �rÞ

�cos�2�M� �rþð3M2þ �r2Þsin�2gsin�2: (11)

The diagonal form of the metric allows for a simpler
description of the motion of particles and the accretion
process. We find, however, that these new coordinates do
not preserve all the convenient properties of the Eddington-
Finkelstein coordinates, namely, the radial coordinate �r

fails to coincide with an affine-parameter distance along
the generators of incoming light cones.
The transformation to the coordinates ft; �r; �; �g is

�-dependent; for the equatorial plane simplifies to

r�¼�=2 ¼ �r

�
1þ 1

3
B2 �rMþ 1

3
K �rð �r� 2MÞ

�
; (12)

while the metric in the equatorial plane reduces to

gtt ¼ �
�
1� 2M

�r

�
þ 1

3
Kð�8M2 þ 10M �r� 3�r2Þ

þ 2

3
B2Mð2M� �rÞ;

g �r �r ¼
�
1� 2M

�r

��1 þ K
�r2ð4M� 3�rÞ
3ð2M� �rÞ � B2 2M �r2

3ð2M� �rÞ ;

g�� ¼ �r2 þ 1

3
K �r2ð�6M2 � 4M �rþ 5�r2Þ

þ 1

3
B2 �r2ð3M2 þ 2M �r� �r2Þ;

g’’ ¼ �r2 þ 1

3
K �r2ð6M2 � 4M �r� �r2Þ

þ 1

3
B2 �r2ð�3M2 þ 2M �r� �r2Þ: (13)

These are Eqs. (10)–(13) of Konoplya, however, the last
term in the first line of Eq. (13) of [15] is corrected asþ�r2.
We find, remarkably, that the coordinate �r is a curvature

coordinate,

A�r¼const ¼ 4� �r2: (14)

With the above form of gtt, the horizon is described by its
unperturbed value

�r H ¼ 2M; (15)

a result we have checked either by direct computation, or
by inserting the expression of the event horizon (7) into the
inverse of the coordinate transformation (10). The area of
the event horizon computed in these coordinates confirms
Eq. (8).
Nevertheless, the metric at the horizon is in fact per-

turbed, as can be seen by an explicit computation of the
curvature invariants, given in Appendix A. As the
Kretschmann scalar RabcdR

abcd and the Euler scalar
�R�

abcdR
abcd show an explicit �-dependence, we conclude

that the horizon acquires the quadrupolar deformation.
A glance at Eq. (11) shows that the interpretation of the

Preston-Poisson metric as a perturbed black hole with-
stands only while the parameters �B ¼ B2 �r2 and �K ¼
K �r2 stay small. Thus, we may interpret the metric (11) as a
perturbed Schwarzschild black hole only for �r in the range

2M & �r & r1; (16)

with

r1�minð�1=2
K K�1=2;�1=2

B B�1Þ�minðK�1=2;B�1Þ: (17)

3 2 1 0 1 2 3

3

2

1

0

1

2

3

r

M

z

M

FIG. 1. The quadrupolar deformation of the horizon and the
structure of the magnetic field. (For illustrational purposes, a
large value of the magnetic field B ¼ 10�0:2M�1 was chosen,
yielding �B ¼ 1:6, which is outside the perturbative regime.)
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(The condition that the parameters �B and �K should stay
small in order the perturbative treatment to hold will
determine for any pair B, K the value of r1.)

In the range (16), the metric perturbations of the black
hole due to the tidal force and the magnetic field remain
small.

In the study of thin accretion disks, it is convenient to
introduce the coordinate z ¼ �r cos� � �rð�� �=2Þ instead
of the polar angle �. Therefore, the geometry describing
the space-time region where the disk is located is charac-
terized by the metric components gtt, g�r �r, g’’, and

gzz ¼ g��
�r2

; (18)

given in Eq. (13) to zeroth order in z. We note that the
backreaction of the disk on the static Preston-Poisson
geometry is neglected.

IV. MODIFICATIONS IN THE ACCRETION
INDUCED BY THE MAGNETIC FIELD

AND TIDAL PARAMETER

To simplify our notation from now on we suppress the
overbar from the Konoplya radial variable.

A. Orbital motion in the equatorial plane

Here, we analyze the radial dependence of the angular
velocity�, specific energy ~E and specific angular momen-
tum ~L of particles moving in circular and equatorial orbits.
The axially symmetric geometry is described by the metric
(13) and (18). In this approximation, the off-diagonal
components of the metric vanish and the geodesic equa-
tions for particles orbiting in the equatorial plane of the
black hole can be written as

g2tt

�
dt

d	

�
2 ¼ ~E2; g2’’

�
d’

d	

�
2 ¼ ~L2;

ðgttgrrÞ2
�
dr

d	

�
2 þ V2

effðrÞ ¼ ~E2;

(19)

where 	 is the affine parameter, and the effective potential
VeffðrÞ is given by

V2
effðrÞ � gtt

�
1þ ~L2

r2

�
: (20)

From the conditions Veff ¼ ~E2 and Veff;r ¼ 0, which
define the circular orbits around the central object, we
obtain1

� ¼ d’

dt
¼ u’

ut
¼

ffiffiffiffiffiffiffiffiffiffiffiffi�gtt;r
g’’;r

s
; (21)

~E ¼ �ut ¼ � gttffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � g’’�

2
q ; (22)

~L ¼ u’ ¼ g’’�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gtt � g’’�

2
q : (23)

Substituting Eq. (23) into Veff we obtain Veff ¼ ~E2.
Inserting Eq. (23) into Veff;r ¼ 0 the explicit expression

(21) for the angular velocity is recovered. The condition
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FIG. 2 (color online). The effective potential for a perturbed Schwarzschild black hole of a total mass M and specific angular
momentum ~L ¼ 4M. The solid line is the effective potential for a Schwarzschild black hole with the same total mass (B ¼ 0 and
K ¼ 0). On the left plot B is set to 10�4M�1 and the parameter h is running, while on the right h ¼ 10�4M�2 is fixed and different
values of B are taken.

1From the normalization uaua ¼ �1 we get ut ¼
ð�gtt ��2g’’Þ�1=2, which can be inserted into the expressions
~E ¼ �ut ¼ gttu

t and ~L ¼ �u� ¼ g’’u
� ¼ �gt’u

t. These
give Eqs. (22) and (23).
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Veff;rr ¼ 0 gives the marginally stable orbit (innermost

stable circular orbit) rms.
As a first step, we consider the radial dependence

of the effective potential (20) of the perturbed
Schwarzschild black hole and compare it with the

nonperturbed case. In the left plot of Fig. 2, we present
the radial profile of the potential with different values of
the tidal parameter K in a magnetic field with fixed field
strength of B ¼ 10�4M�1. The parameter K is given as
K ¼ B2=2þ h, with h running between 10�4M�2 and
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FIG. 3 (color online). The angular velocity �, specific energy ~E, and specific angular momentum ~L of particles orbiting around a
perturbed Schwarzschild black hole of total mass M. The solid line is the effective potential for a Schwarzschild black hole with the
same total mass (B ¼ 0 and K ¼ 0). On the left plot, B is set to 10�4M�1 and the parameter h is running, while on the right h ¼
10�4M�2 is fixed and different values of B are taken.
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4� 10�4M�2. Because of the presence of the asymptoti-
cally uniform magnetic field, the perturbed Schwarzschild
potential fails to be asymptotically flat; it actually diverges
for r ! 1.

Increasing the parameter K (or h), we also increase
the steepness with which the potential tends to spatial
infinity as we are receding from the central object. We
have also checked that the divergent behavior of the po-
tential appears also if only one of the perturbations is
present.

On the right plot of Fig. 2, we have fixed K and set
the magnetic field strength B to 10�4M�1, 3� 10�3M�1,
6� 10�3M�1 and 10�2M�1, respectively. The variation of
B modifies the steepness of how Veff diverges for r ! 1.
With increasing field strength the effective potential di-
verges faster in the spatial infinity.

In Fig. 3, we present the radial dependence of the
angular frequency, specific energy and specific angular
momentum of the orbiting particle. All of these radial
profiles indicate the perturbative presence of the asymp-
totically uniform magnetic field. Close to the black hole,
the rotational velocity � resembles the unperturbed
Schwarzschild value. For higher radii, however, each radial
profile of� has a less steep falloff compared to the one for
a standard accretion disk in the nonperturbed system.
Moreover, at certain radii � is starting to increase. This
unphysical model feature is explained in the following
subsection. The radial profiles of ~E and ~L are also un-
bounded as r ! 1.

B. Photon flux and disk temperature

By inserting Eqs. (21)–(23) into Eq. (1) and evaluating
the integral, we obtain the flux over the entire disk surface.
This enables us to derive the temperature profile and

spectrum of the disk. As shown in Appendix B, the
components Tr

t Tz
t , T

r
’ and Tz

’ of the energy-momentum

tensor for the magnetic field vanish. Since only these
quantities appear in the integral form of the conservation
laws of energy and angular momentum specified for the
steady-state equatorial approximation, the magnetic field
does not contribute to the photon flux radiated by the
accretion disk at all. Therefore, for a Schwarzschild black
hole with magnetic perturbation we can employ the same
flux formula as for vacuum.
In Fig. 4, we plot the flux integral (1) for a black-hole

with mass 2� 106M	 and an accretion rate of
2:5� 10�6M	=yr, with the same sets of values for the
parameters B and K as for the effective potential. An
increase of the parameters B and K results in smaller
radii of both the marginally stable and largest radius
bound orbits, which shifts both the inner and outer edges
of the accretion disc toward the black hole. This can be
seen in the plots of the flux emitted by the disk where the
radial flux profiles shift to lower radii, compared with the
radial distribution of FðrÞ for an accretion disk in
Schwarzschild geometry.
A closer comparison of the flux profile shapes with�ðrÞ

on Fig. 3 shows that for each parameter set, the radius r2
where FðrÞ ¼ 0 holds is precisely where � starts to in-
crease. Going further outward, the flux would turn nega-
tive, indicating that the thin disk model breaks down at
larger distances. Therefore, we should consider our thin
accretion disk only extending between rms and r2, letting
the condition FðrÞ ¼ 0 to determine the outer radius of the
thin disk.
On the graphs, the approximate ranges of the perturbing

parameters are B 2 ð10�4; 10�2ÞM�1 and K2ð10�4;
4�10�4ÞM�2. For these parameters �B2ð10�8;10�4Þ"�2
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FIG. 4 (color online). The time-averaged flux radiated by the accretion disk around a perturbed Schwarzschild black hole of total
mass M ¼ 2� 106M	. The accretion rate is 2:5� 10�6M	=yr. The solid line is the radiated flux for a Schwarzschild black hole with
the same total mass (B ¼ 0 and K ¼ 0). On the left plot, B is set to 10�4M�1 and the parameter h is running, while on the right
h ¼ 10�4M�2 is fixed and different values of B are taken.
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and �K 2 ð10�4; 4� 10�4Þ"�2, where " ¼ M= �r is the
post-Newtonian parameter. Thus, the maximum values of
both parameters �B and �K are of the order 10�4"�2.
As the accretion can be discussed only in the range where
both the magnetic field and tidal effects can be considered
as perturbations of the Schwarzschild black hole, both
parameters �B and �K have the upper limit 10�1.

Therefore, 10�4"�2 & 10�1 and " ¼ M=r * 10�3=2. As
a consequence, the validity of the perturbed black hole
picture holds in the range

2M & �r & 103=2M � 31M: (24)

The estimate of r1 � 31M is in the range of the values for
r2 readable from Fig. 4. We have seen earlier that the

perturbed black hole picture can be extended up to r1
only. Accretion disks are expected to exist only around
central objects. In the regions where the space-time is closer
to a uniformmagnetic field perturbed by a black hole, rather
than vice versa, it is to be expected that accretion disks
should not exist at all. As a first symptom of this, by
increasing the radius, the thin disk approximation should
become increasingly inaccurate. This is the reason why the
radius r2, where the thin disk approximation breaks down,
has to be connected with r1.
We note that r2 is more affected by the change of B or K

than rms. For stronger perturbations, the accretion disk is
therefore located closer to the black hole and its surface
area is reduced. However, the stronger magnetic field or
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FIG. 6 (color online). The disk spectra for a perturbed Schwarzschild black hole of total mass M ¼ 2� 106M	. The accretion
rate is 2:5� 10�6M	=yr. The solid line is the disk spectrum for a Schwarzschild black hole with the same total mass (B ¼ 0 and
K ¼ 0). On the left plot B is set to 10�4M�1 and the parameter h is running, while on the right h ¼ 10�4M�2 is fixed and different
values of B are taken.
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FIG. 5 (color online). The temperature profiles of an accretion disk around a perturbed Schwarzschild black hole of total mass
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h ¼ 10�4M�2 is fixed and different values of B are taken.
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higher value of K increases the maximal intensity of the
radiation without causing any significant shift in the peak
of maximal flux.

Similar signatures can be recognized in the radial pro-
files of the disk temperature, shown in Fig. 5 for the same
parameter set of B and K (or h).

C. Disk spectrum

The spectrum of the disk is derived from Eq. (2) and
represented with the same values of the perturbations as for
the other plots. The characteristic shape of the spectra on

Fig. 6 shows a uniform increase at low frequencies (on a

logarithmic scale) followed by a sharp decrease at high

frequencies, ending in a cutoff at
1016 Hz. Moreover, we

note that in the presence of perturbations the spectrum is

blue-shifted in comparison with the Schwarzschild case.

The shift of the spectrum toward higher energies indicates

that, besides the accreted mass-energy, some magnetic

field energy is also converted into radiation.
Finally, we give the conversion efficiency � of the ac-

creting mass into radiation in the perturbed system for the
different values of the parameters B and K employed ear-
lier in our analysis. In Table I we give both the marginally
stable orbit, at which the specific energy is evaluated in the
calculation of � given in Eq. (3), and the efficiency for the
indicated values of the parameters. As the perturbation
parameters increase, both rms and the efficiency of energy
generation by accretion decrease.

V. CONCLUDING REMARKS

Astronomical observations of the accretion disks rotating
around black holes can provide both the spatial distribution
(if the disk morphology is resolved) and the spectral energy
distribution of the thermal radiation emitted by the disk.
The radial flux profile and spectrum in the standard thin
disk model can in turn be calculated for various types of
compact central bodies with and without magnetosphere.
Then a convenient way to determine the mass and the spin
of the central black hole is to fit the flux profile and the

spectrum derived from the simple disk model on the ob-
servational data. For static black holes, the analysis of the
deviations of the disk radiation from the Schwarzschild
case could indicate the presence of a magnetic field.
In this paper, we have discussed the mass accretion

process in the region of the Preston-Poisson space-time
representing a Schwarzschild black hole perturbed by a
weak magnetic field (which is however asymptotically
uniform) and a distant tidal structure. For this we have
(a) determined the region where this interpretation holds;
(b) corrected the dynamical equations of test particles valid
in the equatorial plane; and (c) applied the hydrodynamic
approximation for the orbiting plasma.
The study of the perturbations included in the accretion

process showed that (i) the thin disk model can be approxi-
mately applied until the radius where the perturbed
Schwarzschild black hole interpretation holds; (ii) the ac-
cretion disk shrinks and the marginally stable orbit shifts
toward the black holewith the perturbation; (iii) the intensity
of the radiation from the accretion disk increases, while the
radius where the radiation is maximal remains unchanged;
(iv) the spectrum is slightly blue-shifted; and finally (v) the
conversion efficiency of accreting mass into radiation is
decreased by both the magnetic and the tidal perturbations.
We represent the system under discussion on Fig. 7.
Although the topology of magnetospheres around black

holes is likely to bemore complicated than the simplemodel
considered here, the blue-shifted disk spectrum indicating
that some of themagnetic field energy also contributes to the
radiation may be a generic feature, signaling the presence of
a magnetic field. This conjecture is supported by the recent
finding that symbiotic systems of black holes in fast rotation,
accretion disks, jets, and magnetic fields have a very similar
magnetic field topology to the one represented on Fig. 7,
consisting of open field lines only [9].

TABLE I. The marginally stable orbit and the conversion
efficiency � of the magnetically perturbed Schwarzschild black
hole for different parameters B and K (or h).

B½M�1� h½M�2� rms½M� �

0 0 6.00 0.0572

10�4 10�4 5.86 0.0537

2� 10�4 5.75 0.0503

3� 10�4 5.67 0.0469

4� 10�4 5.59 0.0437

2� 10�3 10�4 5.85 0.0532

8� 10�3 5.83 0.0526

10�2 5.81 0.0520
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FIG. 7. The black hole horizon, the thin accretion disk (between
rms ¼ 5:8M and r1 ¼ 31M) and the magnetic field topology (for
B ¼ 10�2M�1).
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APPENDIX A: THE CURVATURE SCALARS
ON THE HORIZON

In this appendix, we give the curvature scalars of the
Preston-Poisson metric (5). Throughout the computations
(except otherwise stated), the coordinates (9) and (10) of
Konoplya are used. The results are valid up to ðB2; KÞ
order. We found that:

(i) The perturbations are such that the Ricci scalar
vanishes to ðB2; KÞ order, R ¼ 0.

(ii) With the use of light-cone gauge coordinates, the
Kretschmann scalar K ¼ RabcdR

abcd is

K ¼ 48M

r6
½Mþ Kr3ð2–3sin2�Þ�; (A1)

which on the horizon (7) becomes

Kjr¼rH ¼
3

4M4
½1þ16M2K�4M2ðB2þ6KÞsin2��:

(A2)

Since the Ricci scalar vanishes, the contraction
of the Weyl tensor gives the same expression,
CabcdC

abcd ¼ K.
The Kretschmann scalar calculated in the Konoplya
coordinates (9) and (10) is

K ¼ 48M

�r6
fMþ 2MB2 �rð2M� �rÞ

� 2K �rð4M2 � 2M �r� �r2Þ
þ �r½3Kð4M2 � 2M �r� �r2Þ
� 2MB2ð3M� �rÞ�sin2�g; (A3)

which agrees with (A1) after the coordinate trans-
formation (10).

(iii) The contraction of the Weyl tensor with the Killing
vectors ta ¼ ð1; 0; 0; 0Þ and �a ¼ ð0; 0; 0; 1Þ is
Cabcdt

a�btc�d

¼C0303¼ð2M� �rÞsin2�
3�r2

f3Mþ½Kð4M2�4M �r

þ3�r2Þ�2MB2ðM� �rÞ��rþ3M½2KðM2�M �r

� �r2Þ�B2ðM2�M �rþ �r2Þ�sin2�g: (A4)

This quantity vanishes on the horizon. The contrac-
tion of the Killing vectors with the Riemann tensor
gives the same result since R0303 ¼ C0303.

(iv) The second order scalar invariants of the Riemann
tensor are

R�
abcdR

abcd¼�RabcdR
abcd¼0;

�R�
abcdR

abcd

¼� 16M

�r10sin2�
f3Mþ2½2B2Mð7M�4�rÞ�Kð28M2

�16M �r�3�r2Þ��r�3½2B2Mð7M�3�rÞ
�Kð28M2�16M �r�3�r2Þ��rsin2�g; (A5)

where R�
abcd¼ecd

pqRabpq=2,
�Rabcd¼eab

pq�
Rpqcd=2 and �R�

abcd ¼ eab
pqecd

rsRpqrs=4, and

eabcd is the antisymmetric Levi-Civita symbol.
Similar contractions with the Weyl tensor give
identical results.

On the horizon, the Euler scalar becomes

�R�
abcdR

abcd ¼ � 1

64M8sin2�
f3� 4M2½2ðB2 � 8KÞ

þ 3ðB2 þ 8KÞsin2��g: (A6)

In conclusion, as the Kretschmann scalar K and the
scalar �R�

abcdR
abcd exhibit a �-dependence on the horizon,

we conclude that despite the spherical shape of the horizon
in the Konoplya coordinates, it has acquired a quadrupolar
deformation due to the perturbingmagnetic and tidal effects.

APPENDIX B: THE ENERGY-MOMENTUM
TENSOR

Since the coordinate transformation from the
Eddington-Finkelstein type coordinates ðv; r; �; ’Þ to
Konoplya coordinates [15] does not affect the angular
variables � and ’ the form of the vector potential (4)
remains unchanged in the new coordinate system. Then
the nonvanishing mixed components of the energy momen-
tum tensor can be written in Konoplya coordinates as

Tt
t¼ B2

8� �r
ð2Msin2�� �rÞ;

T �r
�r¼� B2

8� �r
ð2M� �r�2ðM� �rÞcos2�Þ;

T �r
�¼�B2

4�
ð2M� �rÞcos�sin�; T�

�r¼
B2

4��r
cos�sin�;

T�
�¼

B2

8� �r
ð2M� �r�2ðM� �rÞcos2�Þ;

T’
’¼� B2

8� �r
ð2Msin2�� �rÞ: (B1)

Transforming these tensor components from the Konoplya

coordinates to the coordinate system xa
0 ¼ ðt; �r; z ¼

�r cos�;’Þ adapted to the equatorial plane, we obtain
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Tt
t¼Tt

t¼ B2

8� �r3
½2Mð�r2�z2Þ� �r3�;

T �r
�r¼T�r

�r¼ B2

8��r3
½�r3�2Mð�r2þz2Þ�;

T �r
z¼Tz

�r¼ B2

4��r2
ð2M� �rÞz; Tz

�r¼T�r
z¼� B2

2� �r2
Mz;

Tz
z¼Tz

z¼ B2

8��r3
½2Mð �r2þz2Þ� �r3�;

T’
’¼T’

’¼ B2

8��r3
½2Mðz2� �r2Þþ �r3�: (B2)

Since the components Tr
t , T

z
t , T

r
’, and Tz

’ vanish identi-

cally, they do not appear in the expressions Ea ¼ �Ta
bt

b

and Ja ¼ Ta
b’

b of the energy and angular momentum flux

4-vectors and, in turn, do not give any contributions to
the integrated laws of energy and angular momentum
conservation.
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