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Abstract In this paper a stochastic process involving two-sided jumps and a con-
tinuous downward drift is studied. In the context of ruin theory, the model can be
interpreted as the surplus process of a business enterprise which is subject to constant
expense rate over time along with random gains and losses. On the other hand, such
a stochastic process can also be viewed as a queueing system with instantaneous
work removals (or negative customers). The key quantity of our interest pertaining
to the above model is (a variant of) the Gerber–Shiu expected discounted penalty
function (Gerber and Shiu in N. Am. Actuar. J. 2(1):48–72, 1998) from ruin theory
context. With the distributions of the jump sizes and their inter-arrival times left arbi-
trary, the general structure of the Gerber–Shiu function is studied via an underlying
ladder height structure and the use of defective renewal equations. The components
involved in the defective renewal equations are explicitly identified when the upward
jumps follow a combination of exponentials. Applications of the Gerber–Shiu func-
tion are illustrated in finding (i) the Laplace transforms of the time of ruin, the time
of recovery and the duration of first negative surplus in the ruin context; (ii) the joint
Laplace transform of the busy period and the subsequent idle period in the queue-
ing context; and (iii) the expected total discounted reward for a continuous payment
stream payable during idle periods in a queue.
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1 Introduction and preliminaries

Stochastic processes involving two-sided jumps have received a great deal of at-
tention in recent years. Various first passage times, two-sided exit problems, over-
shoots/undershoots and some other related quantities have been studied under
different model assumptions. In particular, in a compound Poisson process with lin-
ear deterministic decrease between jumps, some one-sided and two-sided exit prob-
lems were considered by [44] when the upward and/or downward jumps belong to
certain classes of phase-type distributions. In the class of jump-diffusion models
where the jumps form a compound Poisson process, Kou and Wang [34], Asmussen
et al. [5] and Cai [17] studied models with double exponential jumps, phase-type
two-sided jumps and mixed-exponential two-sided jumps, respectively. In addition,
Breuer [14] studied a Markov additive process with positive jumps of phase-type,
while Breuer [16] derived a quintuple law for a Markov additive process with phase-
type two-sided jumps. Furthermore, for an Ornstein–Uhlenbeck process driven by a
Lévy process, various models with two-sided jumps have been studied, for example
by [11, 33, 43].

In the context of risk processes with two-sided jumps, various ruin-related quan-
tities have been studied mostly in the form of the Gerber–Shiu expected discounted
penalty function (or its variant) proposed by [31]. While downward jumps are in-
terpreted as random losses suffered by the company (typically claims in insurance
context), upward jumps can be regarded as random gains earned by the company
(for instance lump sum premium income in insurance context). Any continuous drift
represents deterministic income rate if positive and deterministic expense rate if neg-
ative. With regards to some recent literature, Jacobsen [32] studied the joint Laplace
transform of the time of ruin and the deficit at ruin for a class of Markov additive risk
processes where the downward jumps have rational Laplace transform, while Xing
et al. [51] considered the special case of a perturbed compound Poisson risk model
with phase-type downward jumps. Cai et al. [18] evaluated the Geber–Shiu function
(in which the penalty function only depends on the deficit at ruin) in the compound
Poisson risk model with two-sided exponential jumps, and applied it to the pricing of
a perpetual American put option. Until most recently Breuer [15] considered a gen-
eralization of the Gerber–Shiu function where the penalty function further involves
the minimum surplus level before ruin in a Markov additive risk process with phase-
type two-sided jumps. The particular case of the compound Poisson risk model in the
absence of the drift term has also been studied extensively by various authors. For
example, ruin probability results can be found in [10, 41, 48]. More generally, Labbé
and Sendova [36] extended the study by showing that the Gerber–Shiu function sat-
isfies a defective renewal equation and providing detailed analysis when the upward
jumps follow an Erlang(n) distribution, whereas Albrecher et al. [2] considered the
Gerber–Shiu function (where the penalty depends on the deficit only) by making as-
sumptions on either upward or downward jumps. We also refer interested readers
to [7–9] for the study of risk models in which the two-sided jumps follow discrete
distributions.

In queueing theory, stochastic processes with two-sided jumps can be interpreted
as queueing systems with ordinary customer (or workload) arrivals and instantaneous
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work removal causing the upward and downward jumps, respectively. The ideas of in-
stantaneous work removals first came from [27, 28] in which the arrival of a ‘negative
customer’ reduces the number of customers in the queue (if any) by 1. Various vari-
ants of such a removal policy, such as batch removals, have also been proposed. The
policy of individual customer removal was generalized to a random work removal
policy by [12] in which the arrival of a negative customer results in instantaneous
removal of a random amount of workload from the system. The quantities of interest
in the above-mentioned queueing system include, for example, the equilibrium queue
length (number of customers), the equilibrium workload and the Laplace transform
of the busy period. Interested readers are referred to [3] for a comprehensive review
regarding work removals in queueing networks.

In most of the work in the literature regarding stochastic processes with two-sided
jumps, the arrivals of jumps are governed by a Poisson process or more generally
a Markovian arrival process, which means that the times between jump arrivals are
exponentially or phase-type distributed. However, not much work has been done re-
garding processes in which the arrivals of jumps follow a general renewal process.
This motivates us to study models with general inter-arrival times. We remark that no-
table recent work allowing for such relaxation includes Labbé et al. [35] and Zhang
and Yang [52], where the authors studied the Gerber–Shiu function via defective re-
newal equations when the drift is positive. In this paper we study a variant of the
Gerber–Shiu function in ruin theory in cases where the drift is assumed to be nega-
tive. Unlike the aforementioned model with positive drift, in the present model the
system can possibly become empty due to the continuous drift component or a neg-
ative jump, and these cases need to be distinguished. Nonetheless, we shall see that
even if the distributions of the inter-arrival times and the two-sided jumps are left
arbitrary, defective renewal equations can still be exploited to study the Gerber–Shiu
function. Although in most part of the paper terminology in ruin theory context will
be used, queueing applications will also be discussed.

The model of interest in this paper is described as follows. The surplus process
of a business enterprise with initial surplus U(0) = u ≥ 0 is denoted by {U(t)}t≥0,
where

U(t) = u − ct +
N(t)∑

i=1

Yi, t ≥ 0. (1.1)

Here c > 0 is the constant rate of expenses per unit time, {Yi}∞i=1 is the sequence of
jumps with Yi the size of the ith jump, and {N(t)}t≥0 is a counting process defined
via {Vi}∞i=1 with V1 being the time of the first jump and Vi the time between the
(i − 1)th and the ith jumps for i = 2,3, . . . . In addition, {Vi}∞i=1 and {Yi}∞i=1 are
assumed to be mutually independent i.i.d. (independent and identically distributed)
sequences distributed as the generic r.v.’s (random variables) V and Y, respectively.
We further assume that V is a positive continuous r.v. with density k(·) possessing
finite mean, while Y is continuous with density

p(y) = q+p+(y)1{y > 0} + q−p−(−y)1{y < 0},
with 1{·} being the indicator function. In the above expression, p+(·) and p−(·) are
the densities of the generic positive r.v.’s Y+ and Y− denoting upward and downward
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jumps, respectively, and therefore q+ and q− represent the probabilities that Y is
positive and negative, respectively, with q+ + q− = 1. We always assume q− > 0,
since the case q− = 0 has been studied by [20]. We also assume q+ > 0 to avoid
monotonically decreasing sample paths. It is additionally assumed that both Y+ and
Y− have finite mean. The positive security loading condition is given by

E[Y ] = q+E[Y+] − q−E[Y−] > cE[V ], (1.2)

which may or may not be assumed (see Remark 1). If (1.2) holds, then {U(t)}t≥0
would approach infinity in the long run (see e.g. [45], Chap. 1). The time of ruin
pertaining to the risk process {U(t)}t≥0 is given by TU = inf{t ≥ 0 : U(t) ≤ 0}, with
TU = ∞ if U(t) > 0 for all t ≥ 0. Note that U(TU) = 0 if ruin is caused by the
continuous negative drift (called ‘creeping’), whereas U(TU) < 0 if ruin is caused by
downward jumps. Moreover, if U(0) = 0 then ruin occurs immediately by continuity
with TU = 0. We remark that it will become clear that it is necessary to distinguish
between the two causes of ruin due to their different natures. The situation is like an
analog to risk models perturbed by Brownian motion (see for example [25]).

In cases where q− = 0, downward jumps are absent in the process (1.1). Such a
model is appropriate for companies incurring expenses at a fixed rate while gains
(i.e. positive jumps) occur randomly in both time and amount. According to [6], for
example, these include pharmaceutical and petroleum companies, where each gain
can be regarded as the net present value of future income resulting from an invention
or discovery. Furthermore, Seal [47, p. 116] explained that such a process might also
be suitable for annuity or pension funds, where the insurance company pays annuities
and earns a portion of the reserves when a policyholder dies. More generally, with
negative jumps possible, (1.1) further allows for the modeling of any unexpected
random losses. These losses are evident in many business operations, and they can
be, for example, corrections of previous overstatement of gains, losses resulting from
defaults of contracts by counter-parties, and costs associated with a lawsuit against
the company. In particular, lawsuit may arise for a pharmaceutical company when
there are safety issues about its drugs, whereas petroleum companies could possibly
face a lawsuit due to oil spills.

The Gerber–Shiu function proposed by [31] not only unified but also generalized
the study of various ruin-related quantities. In the present model, the Gerber–Shiu
function for ruin occurring upon downward jumps is given by

mδ,U,−(u)

= E
[
e−δTU w

(
U

(
T −

U

)
,
∣∣U(TU)

∣∣)1
{
TU < ∞,U(TU ) < 0

}|U(0) = u
]
, u ≥ 0,

(1.3)

where w(· , ·) is the so-called penalty function satisfying some mild integrability con-
ditions, and δ ≥ 0 can either be viewed as a force of interest or a Laplace transform
argument. Here the r.v.’s U(T −

U ) and |U(TU)|, respectively, represent the surplus just
prior to ruin and the deficit at ruin which are both defined at (the neighborhood of)
the time of ruin. The Laplace transform of the time of ruin due to jumps can be re-
trieved from (1.3) by letting w(· , ·) ≡ 1. In contrast, for ruin occurring by continuity,
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Fig. 1 (a) Ruin of U(t) due to jumps. (b) Ruin of U(t) due to continuity

we follow the ideas in [20] to define a Gerber–Shiu type function as follows. We first
define the r.v.’s

T ∗
U =

N(TU )+1∑

i=1

Vi (1.4)

and

∣∣U
(
T ∗−

U

)∣∣ =
∣∣∣∣∣u +

N(TU )∑

i=1

(Yi − cVi) − cVN(TU )+1

∣∣∣∣∣ =
∣∣∣∣∣u +

N(TU )∑

i=1

Yi − cT ∗
U

∣∣∣∣∣. (1.5)

Clearly, T ∗
U is the time of the first jump after the time of ruin TU , while |U(T ∗−

U )| is
the absolute value of the amount of shortfall immediately before the first jump after
ruin. Then we define the Gerber–Shiu type function for ruin occurring by continuity
as

mδ,U,0(u) = E
[
e−δT ∗

U w∗
(∣∣U

(
T ∗−

U

)∣∣)1
{
TU < ∞,U(TU ) = 0

}|U(0) = u
]
, u ≥ 0,

(1.6)
where w∗(·) satisfies some mild integrable conditions. Note that in contrast to the
usual Gerber–Shiu function (1.3), the quantities T ∗

U and |U(T ∗−
U )| are now defined

after the time of ruin. Moreover, if U(TU) = 0, then TU = T ∗
U − |U(T ∗−

U )|/c. There-
fore if we let w∗(y) = e(δ/c)y , then mδ,U,0(u) reduces to the Laplace transform of the
time of ruin by continuity. Typical sample paths for ruin by jumps and by continuity
are given in Fig. 1.

In a GI/G/1 queue or in the theory of storage process like the dam theory, the
amount of workload in the queue or the amount of water in the dam is generally
non-negative. However, it is clear that the process {U(t)}t≥0 can still be applied to
analyze the above queue, as long as 0 ≤ t ≤ TU . Here an arrival of an upward (down-
ward) jump Y+ (Y−) represents the random amount of workload a positive (negative)
customer brings into (removes from) the system, while the constant negative drift
represents the continuous removal of workload by the server. The so-called busy pe-
riod of such a queue corresponds to the time of ruin TU in the present model. See, for
example, [13, 44] for more detailed descriptions of related models.
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Remark 1 As far as the Gerber–Shiu functions (1.3) and (1.6) are concerned, we
only need to assume the positive security loading condition (1.2) when δ = 0; i.e.
we do not require (1.2) to hold if δ > 0. The reason is that either (1.2) or δ = 0 is
sufficient to ensure the strict inequality in (2.25) which in turn guarantees that the
Markov renewal equation (2.22) has a unique solution (see end of Sect. 2). Note that
in queueing systems it is usually assumed that the traffic intensity is less than 1, which
is actually the condition (1.2) with the inequality sign reversed. The above comments
mean that all the results in this paper relevant to the queueing context (see Sects. 4.2
and 4.3) hold true as long as δ > 0.

Central to the analysis of the Gerber–Shiu functions (1.3) and (1.6) is the auxiliary
process {Z(t)}t≥0 defined as follows. We assume that at time 0 the process {Z(t)}t≥0
is subject to a positive jump distributed as Y+, after which it behaves like an indepen-
dent copy of {U(t)}t≥0. Mathematically, if the initial level of {Z(t)}t≥0 is Z(0−) = z,
then

{
Z(t)|Z(

0−) = z
}
t≥0

d= {
U(t)|U(0) = z + Y+

}
t≥0. (1.7)

The time of ruin, surplus prior to ruin and deficit at ruin are similarly defined
as TZ = inf{t ≥ 0 : Z(t) ≤ 0}, Z(T −

Z ) and |Z(TZ)|, respectively. Parallel to the

r.v.’s defined by (1.4) and (1.5) for {U(t)}t≥0, we also define (T ∗
Z |Z(0−) = z)

d=
(T ∗

U |U(0) = z + Y+) and (|Z(T ∗−
Z )||Z(0−) = z)

d= (|U(T ∗−
U )||U(0) = z + Y+) per-

taining to {Z(t)}t≥0. Of course, if Z(TZ) = 0 then TZ = T ∗
Z − |Z(T ∗−

Z )|/c. Analo-
gous to (1.3) and (1.6), the Gerber–Shiu functions of {Z(t)}t≥0 for ruin by downward
jumps and by continuity are, respectively, given by

mδ,Z,−(z) = E
[
e−δTZw

(
Z

(
T −

Z

)
,
∣∣Z(TZ)

∣∣)1
{
TZ < ∞,Z(TZ) < 0

}|Z(
0−) = z

]

(1.8)

= E
[
mδ,U,−(z + Y+)

]
, z ≥ 0, (1.9)

and

mδ,Z,0(z) = E
[
e−δT ∗

Z w∗
(∣∣Z

(
T ∗−

Z

)∣∣)1
{
TZ < ∞,Z(TZ) = 0

}|Z(
0−) = z

]
(1.10)

= E
[
mδ,U,0(z + Y+)

]
, z ≥ 0. (1.11)

For the remainder of the paper several operators will be used and they are intro-
duced as follows. First, the Dickson–Hipp operator Ts (see [23]) is defined as, for any
integrable function f (·) on (0,∞) and any complex number s with Re(s) ≥ 0,

Tsf (y) =
∫ ∞

y

e−s(x−y)f (x) dx =
∫ ∞

0
e−sxf (x + y)dx , y ≥ 0.

A useful property of the Dickson–Hipp operator is given by Li and Garrido [38,
Sect. 3, Property 2] as, for any complex numbers s1 �= s2,

Ts1 Ts2f (y) = Ts2 Ts1f (y) = Ts1f (y) − Ts2f (y)

s2 − s1
, y ≥ 0. (1.12)
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Secondly, the Laplace transform of a function f (·) is a special case of the Dickson–
Hipp operator and will be denoted by

f̃ (s) =
∫ ∞

0
e−sxf (x) dx = Tsf (0).

Finally, the convolution operator ‘∗’ is defined such that for any functions f1(·) and
f2(·) on (0,∞),

(f1 ∗ f2)(y) =
∫ y

0
f1(y − x)f2(x) dx =

∫ y

0
f2(y − x)f1(x) dx

= (f2 ∗ f1)(y), y ≥ 0.

As a direct consequence of (1.12), the Laplace transform of the Dickson–Hipp oper-
ator of a convolution is given by, for s �= r ,

∫ ∞

0
e−sx Tr (f1 ∗ f2)(x) dx = Ts Tr (f1 ∗ f2)(0) = Ts(f1 ∗ f2)(0) − Tr (f1 ∗ f2)(0)

r − s

= f̃1(s)f̃2(s) − f̃1(r)f̃2(r)

r − s
, (1.13)

since the Laplace transform of a convolution is the product of individual Laplace
transforms.

The rest of the paper is organized as follows. In Sect. 2 the structural properties of
the Gerber–Shiu functions are studied via the use of both scalar and matrix defective
renewal equations, when the distributions of V , Y+ and Y− are all left arbitrary. The
case where the upward jump Y+ is assumed to be distributed as a combination of
exponentials is studied in Sect. 3, in which the components involved in the defective
renewal equations are explicitly identified. In Sect. 4 we illustrate some applications
of the Gerber–Shiu functions, which include (i) the Laplace transforms of the time of
ruin, the time of recovery and the duration of first negative surplus in the ruin context;
(ii) the joint Laplace transform of the busy period and the subsequent idle period in
the queueing context; and (iii) the expected total discounted reward for a continuous
payment stream payable during idle periods in a queue. Section 5 ends the paper with
some concluding remarks. Due to the large number of different but similar notations
used for the Gerber–Shiu functions and related quantities, Table 1 in the Appendix
provides a summary of these functions as well as their relationships.

2 Structural properties using defective renewal equations

2.1 Defective renewal equations satisfied by mδ,U,0(u) and mδ,U,−(u)

For the process {U(t)}t≥0, we first analyze mδ,U,0(u) by conditioning on the time
and the amount of the first jump. With an initial surplus of U(0) = u, suppose a jump
arrives at some time t < u/c, then there are two possibilities as follows.
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1. If the jump is known to be an upward jump (with probability q+), then {U(t)}t≥0

essentially reverts to {Z(t)}t≥0 with initial level Z(0−) = u − ct .
2. If the jump is a downward jump (with probability q−), then the size y of the

jump should be less than u − ct (otherwise ruin occurs by the jump rather than by
continuity), after which the process {U(t)}t≥0 restarts itself at level u − ct − y.

On the other hand, if a jump arrives at some time t > u/c, then ruin occurs by conti-
nuity with T ∗−

U = t and |U(T ∗−
U )| = ct − u. Combining the above observations, we

obtain

mδ,U,0(u) =
∫ u

c

0
e−δt

[
q+mδ,Z,0(u − ct)

+ q−
∫ u−ct

0
mδ,U,0(u − ct − y)p−(y) dy

]
k(t) dt

+
∫ ∞

u
c

e−δtw∗(ct − u)k(t) dt. (2.1)

By defining

b(x) = 1

c
k

(
x

c

)
, x > 0,

to be the density of cV , one can rewrite (2.1) using the convolution operator as

mδ,U,0(u) = q−
([

e− δ
c
•b(•)

] ∗ p− ∗ mδ,U,0
)
(u)

+ q+
([

e− δ
c
•b(•)

] ∗ mδ,Z,0
)
(u) + αδ,w∗(u). (2.2)

Here the notation ‘•’ is used to specify the argument being convolved in the convo-
lution, and αδ,w∗(u) is defined as

αδ,w∗(u) =
∫ ∞

u

e− δ
c
xb(x)w∗(x − u)dx, u ≥ 0. (2.3)

If we define the proper Esscher-transformed density

lδ(x) = e− δ
c
xb(x)

b̃( δ
c
)

, x > 0, (2.4)

then (2.2) can be re-expressed as

mδ,U,0(u) = q−b̃

(
δ

c

)
(fδ ∗mδ,U,0)(u)+q+b̃

(
δ

c

)
(lδ ∗mδ,Z,0)(u)+αδ,w∗(u), (2.5)

where

fδ(y) = (lδ ∗ p−)(y), y > 0, (2.6)
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is a proper density. Since 0 < q−b̃(δ/c) ≤ q− < 1, one asserts that (2.5) is a defective
renewal equation satisfied by mδ,U,0(·). From, for example, [46, Sect. 3.5], (2.5) has
the solution

mδ,U,0(u) = 1

1 − q−b̃( δ
c
)
(gδ ∗ γδ,0)(u) + γδ,0(u), u ≥ 0, (2.7)

where

γδ,0(u) = q+b̃

(
δ

c

)
(lδ ∗ mδ,Z,0)(u) + αδ,w∗(u), u ≥ 0, (2.8)

and gδ(y) = −G
′
δ(y) is the compound geometric density associated with the com-

pound geometric tail

Gδ(y) =
[

1 − q−b̃

(
δ

c

)] ∞∑

n=1

[
q−b̃

(
δ

c

)]n

F
∗n

δ (y), y ≥ 0,

with F ∗n
δ (y) = 1 − F

∗n

δ (y) = ∫ y

0 f ∗n
δ (x) dx being the c.d.f. (cumulative distribution

function) corresponding to the n-fold convolution of the density fδ(·) with itself.
Note that Gδ(0) = q−b̃(δ/c), and

g̃δ(s) = [1 − q−b̃( δ
c
)]q−b̃( δ

c
)f̃δ(s)

1 − q−b̃( δ
c
)f̃δ(s)

. (2.9)

It is instructive to note that the solution (2.7) depends on mδ,Z,0(·) via the term
γδ,0(·) defined by (2.8). This can be made more transparent by expressing (2.7) as

mδ,U,0(u) = q+b̃

(
δ

c

)[
1

1 − q−b̃( δ
c
)
(gδ ∗ lδ ∗mδ,Z,0)(u)+(lδ ∗mδ,Z,0)(u)

]
+ϑδ,0(u),

(2.10)
where

ϑδ,0(u) = 1

1 − q−b̃( δ
c
)
(gδ ∗ αδ,w∗)(u) + αδ,w∗(u), u ≥ 0, (2.11)

is independent of mδ,Z,0(·).
As for mδ,U,−(u), using similar arguments in obtaining (2.1), we arrive at

mδ,U,−(u) =
∫ u

c

0
e−δt

[
q+mδ,Z,−(u − ct)

+ q−
∫ u−ct

0
mδ,U,−(u − ct − y)p−(y) dy

]
k(t) dt

+
∫ u

c

0
e−δt

[
q−

∫ ∞

u−ct

w
(
u − ct, y − (u − ct)

)
p−(y) dy

]
k(t) dt.

(2.12)
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Like (2.5), equation (2.12) is equivalent to the defective renewal equation

mδ,U,−(u) = q−b̃

(
δ

c

)
(fδ ∗ mδ,U,−)(u)

+ q+b̃

(
δ

c

)
(lδ ∗ mδ,Z,−)(u) + αδ,w(u), u ≥ 0, (2.13)

where

αδ,w(u) =
∫ u

0
e− δ

c
xb(x)q−ω−(u − x)dx, u ≥ 0, (2.14)

and

ω−(u) =
∫ ∞

u

w(u, y − u)p−(y) dy, u ≥ 0.

The defective renewal equation (2.13) has solution

mδ,U,−(u) = q+b̃

(
δ

c

)[
1

1 − q−b̃( δ
c
)
(gδ ∗ lδ ∗ mδ,Z,−)(u) + (lδ ∗ mδ,Z,−)(u)

]

+ ϑδ,−(u), (2.15)

where

ϑδ,−(u) = 1

1 − q−b̃( δ
c
)
(gδ ∗ αδ,w)(u) + αδ,w(u), u ≥ 0.

2.2 A matrix defective renewal equation

From (2.10) and (2.15), one observes that the quantities mδ,U,0(·) and mδ,U,−(·) are
expressed in terms of mδ,Z,0(·) and mδ,Z,−(·), respectively. This subsection aims at
exploiting additional structure via a matrix form of defective renewal equation. To
begin the analysis, we note that the representation (1.10) means that mδ,Z,0(z) is
the expectation of a discounted penalty, which can be equivalently represented as an
expectation of the penalty with respect to a ‘discounted density’. Mathematically, we
have

mδ,Z,0(z) =
∫ ∞

0
w∗(y)hδ,Z,0(y|z) dy, z ≥ 0, (2.16)

where hδ,Z,0(y|z) is the discounted density of |Z(T ∗−
Z )| at y (discounted with respect

to T ∗
Z at rate δ) for ruin by continuity, given an initial level of Z(0−) = z. Interested

readers are referred, for example, to [30] for the notion of discounted densities.
Similarly, the representation (1.8) implies

mδ,Z,−(z) =
∫ ∞

0

∫ ∞

0
w(x,y)hδ,Z,−(x, y|z) dx dy, z ≥ 0, (2.17)

where hδ,Z,−(x, y|z) is the discounted joint density of (Z(T −
Z ), |Z(TZ)|) at (x, y)

(discounted with respect to TZ at rate δ) for ruin upon downward jumps, given an
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Fig. 2 Conditioning on first drop of Z(t)

initial level of Z(0−) = z. By further defining the discounted density of |Z(TZ)| such
that

hδ,Z,−(y|z) =
∫ ∞

0
hδ,Z,−(x, y|z) dx, y > 0, (2.18)

one observes that if the penalty function takes on the simpler form w(x,y) ≡ w2(y),
then the special case of mδ,Z,−(z), namely mδ,Z,−,2(z), admits the representation

mδ,Z,−,2(z) =
∫ ∞

0
w2(y)hδ,Z,−(y|z) dy, z ≥ 0. (2.19)

To analyze the quantity mδ,Z,0(z) for ruin by continuity pertaining to the process
{Z(t)}t≥0, we condition on the first ‘drop’ below the initial level Z(0−) = z, which
can be due to continuity or a downward jump. It is important to note that the amount
y of such a drop is governed by the discounted densities hδ,Z,0(y|0) and hδ,Z,−(y|0).
The possibilities are described as follows, which are also depicted in Fig. 2.

1. If the first drop is caused by a downward jump, then the amount of drop y should
be less than z (otherwise ruin occurs by the jump), after which the process reverts
to {U(t)}t≥0 with initial level U(0) = z − y.

2. If the first drop of amount y is caused by continuity, then there are three separate
cases.



12 Queueing Syst (2011) 69:1–28

(a) The drop y is less than z, and if the subsequent jump is an upward one (with
probability q+), then {Z(t)}t≥0 restarts itself with initial level Z(0−) = z − y.

(b) The drop y is less than z, and if the subsequent jump is a downward one (with
probability q−), then the jump x should be less than z − y (otherwise ruin
occurs by the jump), after which the process reverts to {U(t)}t≥0 with starting
level z − y − x.

(c) The drop y is at least z, and the shortfall |Z(T ∗−
Z )| equals y − z.

We then arrive at

mδ,Z,0(z) =
∫ z

0
hδ,Z,−(y|0)mδ,U,0(z − y)dy +

∫ z

0
hδ,Z,0(y|0)q+mδ,Z,0(z − y)dy

+
∫ z

0
hδ,Z,0(y|0)

[
q−

∫ z−y

0
mδ,U,0(z − y − x)p−(x) dx

]
dy

+
∫ ∞

z

hδ,Z,0(y|0)w∗(y − z) dy

= (
hδ,Z,−(•|0) ∗ mδ,U,0

)
(z) + q+

(
hδ,Z,0(•|0) ∗ mδ,Z,0

)
(z)

+ q−
(
hδ,Z,0(•|0) ∗ p− ∗ mδ,U,0

)
(z) +

∫ ∞

z

hδ,Z,0(y|0)w∗(y − z) dy.

(2.20)

Similarly, for the quantity mδ,Z,−(z) representing ruin by downward jumps, the
same arguments lead to

mδ,Z,−(z) =
∫ z

0
hδ,Z,0(y|0)q+mδ,Z,−(z − y)dy

+
∫ z

0
hδ,Z,0(y|0)

[
q−

∫ z−y

0
mδ,U,−(z − y − x)p−(x) dx

]
dy

+
∫ z

0
hδ,Z,0(y|0)

[
q−

∫ ∞

z−y

w
(
z − y, x − (z − y)

)
p−(x) dx

]
dy

+
∫ z

0
hδ,Z,−(y|0)mδ,U,−(z − y)dy

+
∫ ∞

z

∫ ∞

0
hδ,Z,−(x, y|0)w(x + z, y − z) dx dy

= q+
(
hδ,Z,0(•|0) ∗ mδ,Z,−

)
(z) + q−

(
hδ,Z,0(•|0) ∗ p− ∗ mδ,U,−

)
(z)

+ q−
(
hδ,Z,0(•|0) ∗ ω−

)
(z) + (

hδ,Z,−(•|0) ∗ mδ,U,−
)
(z)

+
∫ ∞

z

∫ ∞

0
hδ,Z,−(x, y|0)w(x + z, y − z) dx dy. (2.21)

Combining the system consisting of (2.5), (2.13), (2.20) and (2.21), one can write

mδ(u) = (rδ ∗ mδ)(u) + �δ(u), u ≥ 0, (2.22)
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where

mδ(u) =
(

mδ,U,0(u) mδ,U,−(u)

mδ,Z,0(u) mδ,Z,−(u)

)
, (2.23)

rδ(u) =
(

q−b̃( δ
c
)fδ(u) q+b̃( δ

c
)lδ(u)

q−(hδ,Z,0(•|0) ∗ p−)(u) + hδ,Z,−(u|0) q+hδ,Z,0(u|0)

)
,

and

�δ(u) =
(

αδ,w∗ (u) αδ,w(u)
∫ ∞
u

hδ,Z,0(y|0)w∗(y − u)dy q−(hδ,Z,0(•|0) ∗ ω−)(u) + ∫ ∞
u

∫ ∞
0 hδ,Z,−(x, y|0)w(x + u,y − u)dx dy

)
.

Here the convolution operator has been extended to matrix quantities; i.e. for
i, j = 1,2, the (i, j)th element of (rδ ∗ mδ)(u) is given by [(rδ ∗ mδ)(u)]ij =∑2

k=1

∫ u

0 [rδ(u − y)]ik[mδ(y)]kj dy. Equation (2.22) is commonly known as a
Markov renewal equation. For its solution, see, for example, [22, Sect. 3a], and [4,
Sect. VII 4].

We would like to check whether the matrix
∫ ∞

0 rδ(y) dy is strictly sub-stochastic.
First we note that with 1 a two-dimensional column vector of ones,

∫ ∞

0
rδ(y) dy 1 =

(
b̃( δ

c
)

∫ ∞
0 hδ,Z,0(y|0) dy + ∫ ∞

0 hδ,Z,−(y|0) dy

)
. (2.24)

The representations (1.10) and (2.16) (at z = 0) with w∗(·) ≡ 1 mean that

∫ ∞

0
hδ,Z,0(y|0) dy = E

[
e−δT ∗

Z 1
{
TZ < ∞,Z(TZ) = 0

}|Z(
0−) = 0

]

≤ E
[
e−δTZ 1

{
TZ < ∞,Z(TZ) = 0

}|Z(
0−) = 0

]
,

since TZ = T ∗
Z − |Z(T ∗−

Z )|/c ≤ T ∗
Z when Z(TZ) = 0. Similarly, (1.8) and (2.17)

(at z = 0) under w(·, ·) ≡ 1 along with (2.18) imply that

∫ ∞

0
hδ,Z,−(y|0) dy = E

[
e−δTZ 1

{
TZ < ∞,Z(TZ) < 0

}|Z(
0−) = 0

]
.

Combining the above two expressions leads to

∫ ∞

0
hδ,Z,0(y|0) dy +

∫ ∞

0
hδ,Z,−(y|0) dy ≤ E

[
e−δTZ 1{TZ < ∞}|Z(

0−) = 0
]
< 1,

(2.25)
where the last strict inequality holds when either δ > 0 or the positive security
loading condition (1.2) holds. To see this, when δ > 0, one has that
E[e−δTZ 1{TZ < ∞}|Z(0−) = 0] ≤ 1, and the equality holds if and only if TZ is a
point mass at 0, which is not the case. On the other hand, if δ = 0 and (1.2) holds, then
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E[e−δTZ 1{TZ < ∞}|Z(0−) = 0] = Pr{TZ < ∞|Z(0−) = 0} equals the ruin probabil-
ity of the process {U(t)|U(0) = Y+}t≥0, which is clearly no larger than the ruin
probability of the process {U(t)|U(0) = Y }t≥0 via sample paths arguments. The lat-
ter ruin probability is in turn less than 1 under (1.2) by observing that the increments
of the process form an i.i.d. sequence distributed as Y − cV (see e.g. [45, Chap. 1]).

With (2.25), one asserts that
∫ ∞

0 rδ(y) dy is strictly sub-stochastic since the first
entry in (2.24) is b̃(δ/c) ≤ 1. Therefore, the Markov renewal equation (2.22) can be
viewed as a matrix form of a defective renewal equation. It arises in the context of
ruin theory in various (semi-)Markovian risk models (see [1, 21]). In addition, the
solution is known to be unique as well (see, for example, [42]). Interested readers are
also referred, for example, to [40, 42, 50] for two-sided bounds and asymptotics for
the solution of a matrix defective renewal equation.

It is instructive to note that the matrix defective renewal equation (2.22) and
hence its solution are characterized by the discounted densities hδ,Z,0(·|0) and
hδ,Z,−(· , ·|0). In principle, once these densities are determined, a full characterization
of mδ(u) is obtained. The densities hδ,Z,0(·|0) and hδ,Z,−(· , ·|0) are usually deter-
mined via mδ,Z,0(0) and mδ,Z,−(0), respectively (due to the relationships (2.16) and
(2.17)) upon additional distributional assumptions on V , Y+ and/or Y− along with
the use of (1.11) and (1.9) (all at z = 0). This will be illustrated in the next section.

3 Example: distributional assumption on upward jumps

In this entire section we assume that the generic r.v. Y+ representing the upward
jumps follows a combination of exponentials;

p+(y) =
m∑

j=1

Ajβj e
−βj y, y > 0, (3.1)

where
∑m

j=1 Aj = 1 and βj > 0 for j = 1,2, . . . ,m. The class of combinations of
exponentials is known to be dense in the set of distributions on R

+. Interested readers
are referred to [24] for the fitting of this class of distributions.

3.1 Determination of hδ,Z,0(y|0)

Under the distributional assumption (3.1), using (1.11) followed by applications of
(2.10) and the Dickson–Hipp operator leads to

mδ,Z,0(z) =
∫ ∞

z

mδ,U,0(x)p+(x − z) dx

=
∫ ∞

z

{
q+b̃

(
δ

c

)[
1

1 − q−b̃( δ
c
)
(gδ ∗ lδ ∗ mδ,Z,0)(x) + (lδ ∗ mδ,Z,0)(x)

]

+ ϑδ,0(x)

} m∑

j=1

Ajβj e
−βj (x−z) dx
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= q+b̃

(
δ

c

) m∑

j=1

Ajβj

[
1

1 − q−b̃( δ
c
)

Tβj
(gδ ∗ lδ ∗ mδ,Z,0)(z)

+ Tβj
(lδ ∗ mδ,Z,0)(z)

]
+ ηδ,0(z), (3.2)

where

ηδ,0(z) =
m∑

j=1

Ajβj Tβj
ϑδ,0(z), z ≥ 0. (3.3)

Taking Laplace transforms on both sides of (3.2) and using (1.13) yields

m̃δ,Z,0(s)

= q+b̃

(
δ

c

)

×
m∑

j=1

Ajβj

[
1

1 − q−b̃( δ
c
)

g̃δ(s)̃lδ(s)m̃δ,Z,0(s) − g̃δ(βj )̃lδ(βj )m̃δ,Z,0(βj )

βj − s

+ l̃δ(s)m̃δ,Z,0(s) − l̃δ(βj )m̃δ,Z,0(βj )

βj − s

]
+ η̃δ,0(s).

Upon rearrangements, the above equation reduces to

{
1 − q+b̃

(
δ

c

)
l̃δ(s)

m∑

j=1

Ajβj

βj − s

[
1

1 − q−b̃( δ
c
)
g̃δ(s) + 1

]}
m̃δ,Z,0(s)

= −q+b̃

(
δ

c

) m∑

j=1

Ajβj

βj − s
l̃δ(βj )m̃δ,Z,0(βj )

[
1

1 − q−b̃( δ
c
)
g̃δ(βj ) + 1

]
+ η̃δ,0(s)

= −
(

m∏

j=1

1

βj − s

)
Qδ,0(s) + η̃δ,0(s), (3.4)

where

Qδ,0(s) = q+b̃

(
δ

c

) m∑

j=1

Ajβj l̃δ(βj )m̃δ,Z,0(βj )

×
[

1

1 − q−b̃( δ
c
)
g̃δ(βj ) + 1

] m∏

k=1,k �=j

(βk − s)

is a polynomial in s of degree m − 1 expressed in terms of the unknown constants
m̃δ,Z,0(βj ).
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In order to proceed, we further analyze the equation (in ξ )

1 − q+b̃

(
δ

c

)
l̃δ(ξ)

m∑

j=1

Ajβj

βj − ξ

[
1

1 − q−b̃( δ
c
)
g̃δ(ξ) + 1

]
= 0, (3.5)

in connection to the left-hand side of (3.4). Using (2.4), (2.6) and (2.9), we have

1

1 − q−b̃( δ
c
)
g̃δ(ξ) + 1 = q−b̃( δ

c
)f̃δ(ξ)

1 − q−b̃( δ
c
)f̃δ(ξ)

+ 1 = 1

1 − q−b̃(ξ + δ
c
)p̃−(ξ)

. (3.6)

Therefore, (3.5) is equivalent to

1 − q+b̃

(
ξ + δ

c

) m∑

j=1

Ajβj

βj − ξ

[
1

1 − q−b̃(ξ + δ
c
)p̃−(ξ)

]
= 0

⇔ q+b̃

(
ξ + δ

c

) m∑

j=1

Ajβj

βj − ξ
= 1 − q−b̃

(
ξ + δ

c

)
p̃−(ξ)

⇔ b̃

(
ξ + δ

c

)[
q+

m∑

j=1

Ajβj

βj − ξ
+ q−p̃−(ξ)

]
= 1

⇔ E
[
e−δV −ξ(cV −Y)

] = 1, (3.7)

since

b̃

(
ξ + δ

c

)[
q+

m∑

j=1

Ajβj

βj − ξ
+ q−p̃−(ξ)

]
= E

[
e−(ξ+ δ

c
)cV

]
p̃(−ξ)

= E
[
e−δV −ξ(cV −Y)

]
.

Here p̃(·) is the double-sided Laplace transform of the r.v. Y since Y can be positive
or negative. Define χ1(ξ) = [1 − q−b̃(ξ + δ/c)p̃−(ξ)]∏m

k=1(βk − ξ) and χ2(ξ) =
q+b̃(ξ + δ/c)

∑m
j=1 Ajβj

∏m
k=1,k �=j (βk − ξ). Also define the contour on the complex

plane which consists of the semi-circle of radius r running anti-clockwise from −ir

to ir plus part of the imaginary axis from −ir to ir . For δ > 0, one can show that
|χ1| > |χ2| on the contour for r sufficiently large. By Rouché ’s Theorem, the number
of roots of χ1(ξ) = χ2(ξ) on the right-half of the complex plane must be the same
as that of χ1(ξ) = 0. Since χ1(ξ) = χ2(ξ) is equivalent to (3.7), one concludes that
(3.5) has m roots with positive real parts when δ > 0, which are denoted by {ρi}mi=1
and assumed to be distinct. The case for δ = 0 is similar, but the only difference is
that one of these roots becomes 0 (see, for example, [39, Theorem 1]).

It is instructive to note that (3.4) is structurally identical to (4.4) in [20]. Thus, us-
ing the roots {ρi}mi=1, one could obtain an expression for Qδ,0(s) via Lagrange inter-
polating polynomials. Consequently, omitting the details, the Initial Value Theorem
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for Laplace transforms can be applied to m̃δ,Z,0(s) to obtain

mδ,Z,0(0) =
m∑

i=1

[ ∏m
k=1(βk − ρi)∏m

k=1,k �=i (ρk − ρi)

]
η̃δ,0(ρi) + ηδ,0(0). (3.8)

Note that the quantity ηδ,0(z) defined by (3.3) depends on the function ϑδ,0(·).
By taking Laplace transforms on both sides of (2.11) along with the use of (3.6), we
arrive at

ϑ̃δ,0(s) =
[

1

1 − q−b̃( δ
c
)
g̃δ(s) + 1

]
α̃δ,w∗(s) = α̃δ,w∗(s)

1 − q−b̃(s + δ
c
)p̃−(s)

.

Using the above expression, ηδ,0(0) and η̃δ,0(ρi) can be rewritten, respectively, as

ηδ,0(0) =
m∑

j=1

Ajβj ϑ̃δ,0(βj ) =
m∑

j=1

Ajβj α̃δ,w∗(βj )

1 − q−b̃(βj + δ
c
)p̃−(βj )

, (3.9)

and

η̃δ,0(ρi) =
m∑

j=1

Ajβj Tρi
Tβj

ϑδ,0(0)

=
m∑

j=1

Ajβj

βj − ρi

[
ϑ̃δ,0(ρi) − ϑ̃δ,0(βj )

]

=
m∑

j=1

Ajβj

βj − ρi

[
α̃δ,w∗(ρi)

1 − q−b̃(ρi + δ
c
)p̃−(ρi)

− α̃δ,w∗(βj )

1 − q−b̃(βj + δ
c
)p̃−(βj )

]
.

(3.10)

Since the Laplace transform of (2.3) can be expressed as

α̃δ,w∗(s) =
∫ ∞

0
e−sx

∫ ∞

0
e− δ

c
(y+x)b(y + x)w∗(y) dy dx

=
∫ ∞

0
e− δ

c
yw∗(y)Ts+ δ

c
b(y) dy,

substitution of (3.9) and (3.10) into (3.8) yields

hδ,Z,0(y|0) = e− δ
c
y

{
m∑

i=1

[ ∏m
k=1(βk − ρi)∏m

k=1,k �=i (ρk − ρi)

]

×
m∑

j=1

Ajβj

βj − ρi

[ Tρi+ δ
c
b(y)

1 − q−b̃(ρi + δ
c
)p̃−(ρi)
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−
Tβj + δ

c
b(y)

1 − q−b̃(βj + δ
c
)p̃−(βj )

]

+
m∑

j=1

Ajβj Tβj + δ
c
b(y)

1 − q−b̃(βj + δ
c
)p̃−(βj )

}
, y > 0, (3.11)

owing to the representation (2.16) at z = 0. Using the identity (see, for example, [19])

m∑

i=1

∏m
k=1,k �=j (βk − ρi)∏m
k=1,k �=i (ρk − ρi)

= 1, (3.12)

(3.11) reduces to

hδ,Z,0(y|0) = e− δ
c
y

m∑

i=1

[ ∏m
k=1(βk − ρi)∏m

k=1,k �=i (ρk − ρi)

]

×
m∑

j=1

Ajβj

βj − ρi

[ Tρi+ δ
c
b(y)

1 − q−b̃(ρi + δ
c
)p̃−(ρi)

]
, y > 0, (3.13)

which is simply a linear combination of terms of the form e−(δ/c)y Tρi+δ/cb(y).

3.2 Determination of hδ,Z,−(x, y|0)

The determination of hδ,Z,−(x, y|0) follows in an identical manner as in Sect. 3.1
and hence the details are omitted. Analogous to (3.8), one has

mδ,Z,−(0) =
m∑

i=1

[ ∏m
k=1(βk − ρi)∏m

k=1,k �=i (ρk − ρi)

]
η̃δ,−(ρi) + ηδ,−(0), (3.14)

where

ηδ,−(0) =
m∑

j=1

Ajβj α̃δ,w(βj )

1 − q−b̃(βj + δ
c
)p̃−(βj )

, (3.15)

and

η̃δ,−(ρi) =
m∑

j=1

Ajβj

βj − ρi

[
α̃δ,w(ρi)

1 − q−b̃(ρi + δ
c
)p̃−(ρi)

− α̃δ,w(βj )

1 − q−b̃(βj + δ
c
)p̃−(βj )

]
,

(3.16)
with αδ,w(·) given by (2.14). Thus,

α̃δ,w(s) =
∫ ∞

0
e−sv

∫ v

0
e− δ

c
(v−x)b(v − x)

[
q−

∫ ∞

0
w(x,y)p−(x + y)dy

]
dx dv

= q−
∫ ∞

0

∫ ∞

0
w(x,y)p−(x + y)

[∫ ∞

x

e−sve− δ
c
(v−x)b(v − x)dv

]
dx dy
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= q−
∫ ∞

0

∫ ∞

0
w(x,y)p−(x + y)e−sx b̃

(
s + δ

c

)
dx dy. (3.17)

Because of (2.17) at z = 0, combining (3.14)–(3.17) along with the use of (3.12) leads
to

hδ,Z,−(x, y|0) = q−p−(x + y)

m∑

i=1

[ ∏m
k=1(βk − ρi)∏m

k=1,k �=i (ρk − ρi)

]

×
m∑

j=1

Ajβj

βj − ρi

[
e−ρix b̃(ρi + δ

c
)

1 − q−b̃(ρi + δ
c
)p̃−(ρi)

]
, x, y > 0.

Hence, (2.18) at z = 0 gives

hδ,Z,−(y|0) = q−
m∑

i=1

[ ∏m
k=1(βk − ρi)∏m

k=1,k �=i (ρk − ρi)

]

×
m∑

j=1

Ajβj

βj − ρi

[
b̃(ρi + δ

c
)Tρi

p−(y)

1 − q−b̃(ρi + δ
c
)p̃−(ρi)

]
, y > 0, (3.18)

which is a linear combination of Tρi
p−(y).

Remark 2 Although throughout we assume q− > 0, the discounted densities given
by (3.13) and (3.18) hold true even q− = 0. When q− = 0, (3.13) agrees with equa-
tion (4.12) of [20] (which can also be simplified using (3.12)), whereas (3.18) be-
comes 0 which is expected because ruin can only occur by continuity in the absence
of downward jumps.

4 Applications of the Gerber–Shiu functions

4.1 Laplace transforms of time of ruin, time of recovery and duration
of first negative surplus

In the ruin theory context, [26, 29] commented that the probability of ruin is ex-
tremely small for certain businesses. If ruin occurs, the business can usually obtain
funds to survive negative surplus for some time. This naturally leads to the study of
quantities such as the time of recovery and the duration of first negative surplus. We
shall separate the study of the present model with negative drift and its reflection (i.e.
with positive drift).

To aid our upcoming analysis, we define the reflection of the process {U(t)}t≥0,
namely {X(t)}t≥0, such that

X(t) = x + ct −
N∗(t)∑

i=1

Y ∗
i , t ≥ 0, (4.1)
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where X(0) = x ≥ 0 is the initial level, and {Y ∗
i }∞i=1 and {N∗(t)}t≥0 are mutually

independent copies of {Yi}∞i=1 and {N(t)}t≥0, respectively. The time of ruin for the
process {X(t)}t≥0 is TX = inf{t ≥ 0 : X(t) < 0}, and ruin can only occur by jumps
(but not by continuity). In the case of ruin, the deficit at ruin is given by |X(TX)|. The
Gerber–Shiu function for which the penalty function depends on the deficit only is
defined by

mδ,X(x) = E
[
e−δTXwX

(∣∣X(TX)
∣∣)1{TX < ∞}|X(0) = x

]
, x ≥ 0, (4.2)

with wX(·) satisfying some mild integrable conditions. The Laplace transform of TX

can be retrieved from mδ,X(x) by letting wX(·) ≡ 1, and is denoted by

Lδ,X(x) = E
[
e−δTX 1{TX < ∞}|X(0) = x

]
, x ≥ 0. (4.3)

We remark that mδ,X(x) is a special case of the usual Gerber–Shiu function studied
by [35], and will be regarded as a known quantity for the rest of the paper.

4.1.1 Present model with negative drift

Formally, in cases of ruin, the time of recovery pertaining to the surplus process
{U(t)}t≥0 is defined by T R

U = inf{t > TU : U(t) > 0}; i.e. T R
U is the first time the

surplus becomes positive after ruin. The duration of first negative surplus is then
given by T R

U − TU . Furthermore, the condition (1.2) is assumed to hold in order to
ensure recovery occurs almost surely given ruin occurs. We are then interested in the
quantities

LR
δ1,δ2,U,0(u) = E

[
e−δ1TU −δ2(T

R
U −TU )1

{
TU < ∞,U(TU ) = 0

}|U(0) = u
]
, u ≥ 0,

(4.4)
and

LR
δ1,δ2,U,−(u) = E

[
e−δ1TU −δ2(T

R
U −TU )1

{
TU < ∞,U(TU ) < 0

}|U(0) = u
]
, u ≥ 0,

(4.5)
for ruin occurring by continuity and by downward jumps, respectively. The above two
functions obviously contain the marginal Laplace transforms of the time of ruin TU ,
the time of recovery T R

U and the duration of first negative surplus T R
U − TU , as well

as their joint Laplace transform, as special cases by suitable choices of δ1 and δ2.
It is instructive to note that under the current assumption of (1.2), we have TX < ∞

almost surely. If δ > 0, it is known from [35] that Lδ,X(x) is the tail of a compound
geometric distribution. In contrast, if δ = 0, it is clear that L0,X(x) = 1.

First, to determine the quantity LR
δ1,δ2,U,0(u) for ruin by continuity, we condition

on (|U(T ∗−
U )|, T ∗

U) and the subsequent jump YN(TU )+1. The time of ruin TU is always
given by TU = T ∗

U − |U(T ∗−
U )|/c. In contrast, we need to distinguish between the

following cases for the variable T R
U − TU .

1. If YN(TU )+1 is an upward jump greater than |U(T ∗−
U )|, then T R

U − TU =
|U(T ∗−

U )|/c.
2. If YN(TU )+1 is an upward jump less than or equal to |U(T ∗−

U )|, then T R
U −TU is dis-

tributed as an independent sum of |U(T ∗−
U )|/c and (TX|X(0) = |U(T ∗−

U )| − Y+).



Queueing Syst (2011) 69:1–28 21

3. If YN(TU )+1 is a downward jump, then T R
U − TU is distributed as an independent

sum of |U(T ∗−
U )|/c and (TX|X(0) = |U(T ∗−

U )| + Y−).

Therefore, similar to [20, Sect. 3.4], one concludes that LR
δ1,δ2,U,0(u) can indeed be

retrieved from mδ1,U,0(u) with the choice of penalty function

w∗(y) = e(
δ1−δ2

c
)y

{
q+

[
P +(y) +

∫ y

0
Lδ2,X(y − v)p+(v) dv

]

+ q−
∫ ∞

0
Lδ2,X(y + v)p−(v) dv

}
, y > 0, (4.6)

where P +(.) is the survival probability associated to the generic r.v. Y+.

Remark 3 If the upward jump Y+ has density (3.1) as in Sect. 3, then following the
ideas as in [35, 37, 49], for δ2 > 0, Lδ2,X(·) is seen to be a linear combination of ex-
ponential terms. Hence, all quantities on the right-hand side of (4.6) can be explicitly
evaluated, and the choice of penalty function w∗(·) is also a linear combination of
exponential terms.

As for the quantity LR
δ1,δ2,U,−(u) for ruin by jumps, by conditioning on the

pair (|U(TU)|, TU ), one observes that T R
U − TU is distributed as an independent

copy of (TX|X(0) = |U(TU)|). Therefore, LR
δ1,δ2,U,−(u) is simply a special case of

mδ1,U,−(u) with the choice of penalty function w(x,y) ≡ Lδ2,X(y).

4.1.2 Insurance risk model with positive drift

From the discussion in Sect. 1, the process {X(t)}t≥0 can serve as an insurance risk
model in which c > 0 is the constant premium income per unit time, whereas Y+
and Y− are now interpreted as positive claim and negative claim (or lump sum gain),
respectively. For such a model, the positive security loading condition is opposite to
the model {U(t)}t≥0 and is given by

E[Y ] = q+E[Y+] − q−E[Y−] < cE[V ]. (4.7)

The above condition is assumed to ensure ruin (i.e. TX < ∞) is not a certain
event for {X(t)}t≥0. Given that ruin occurs, the time of recovery is defined by
T R

X = inf{t > TX : X(t) ≥ 0}, and the duration of first negative surplus is T R
X − TX .

The condition (4.7) guarantees recovery occurs almost surely given TX < ∞. Note
that recovery can possibly occur due to positive drift (resulting in X(T R

X ) = 0) or
negative claims (resulting in X(T R

X ) > 0), respectively, resulting in the quantities

LR
δ1,δ2,X,0(x) = E

[
e−δ1TX−δ2(T

R
X −TX)1

{
TX < ∞,X

(
T R

X

) = 0
}|X(0) = x

]
, x ≥ 0,

(4.8)
and

LR
δ1,δ2,X,+(x) = E

[
e−δ1TX−δ2(T

R
X −TX)1

{
TX < ∞,X

(
T R

X

)
> 0

}|X(0) = x
]
, x ≥ 0.

(4.9)
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Due to the condition (4.7), we have to restrict δ2 > 0 so that the results in
Sects. 2 and 3 are applicable. One sees that LR

δ1,δ2,X,0(x) and LR
δ1,δ2,X,+(x)

are both special cases of mδ1,X(x) with the choices of penalty wX(y) =
E[e−δ2TU 1{U(TU) = 0}|U(0) = y] and wX(y) = E[e−δ2TU 1{U(TU) < 0}|U(0) = y],
respectively, which can in turn be retrieved from mδ2,U,0(y) with w∗(y) = e(δ2/c)y

and mδ2,U,−(y) with w(· , ·) ≡ 1. Here the indicator for the event {TU < ∞} is re-
moved since it occurs almost surely because of condition (4.7). Condition (4.7) also
guarantees that mδ1,X(·) satisfies a defective renewal equation and the results of [35]
apply.

4.2 Joint Laplace transform of the first busy period and subsequent idle period

As mentioned in Sect. 1, in queueing systems or storage processes the amount of
workload is usually non-negative. Therefore, the process {U(t)}t≥0 has to be modi-
fied such that it is bounded below by 0 so as to retrieve the workload process. Denot-
ing the workload process by {UQ(t)}t≥0, we have

UQ(t) = U(t) − min
(
0,U(t)

)
, t ≥ 0. (4.10)

While the first busy period of {UQ(t)}t≥0 coincides with TU , its subsequent
idle period is given by T I

U − TU where T I
U = inf{t > TU : UQ(t) > 0} =

inf{t > TU : YN(t) > 0}. See Fig. 3. In queueing systems, the condition (4.7) is as-
sumed so that the queue must become empty eventually. The joint Laplace transforms
for the pair (TU ,T I

U − TU) with an initial workload of UQ(0) = U(0) = u ≥ 0 are
given by

L
Q
δ1,δ2,U,0(u) = E

[
e−δ1TU −δ2(T

I
U −TU )1

{
U(TU) = 0

}|U(0) = u
]
, u ≥ 0, (4.11)

and

L
Q
δ1,δ2,U,−(u) = E

[
e−δ1TU −δ2(T

I
U −TU )1

{
U(TU) < 0

}|U(0) = u
]
, u ≥ 0, (4.12)

Fig. 3 (a) Risk process. (b) Workload process
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respectively, for termination of busy period by continuous workload removal and by
the arrival of a negative customer. We always assume δ1 > 0 at the expense of the
condition (4.7).

For L
Q
δ1,δ2,U,0(u) which is due to continuity, one always has TU =

T ∗
U − |U(T ∗−

U )|/c. On the other hand, T I
U − TU is distributed as an independent

sum of |U(T ∗−
U )|/c and a compound geometric r.v. with primary probability mass

function qn−q+ for n = 0,1, . . . and secondary density k(·). Therefore, we arrive at

L
Q
δ1,δ2,U,0(u) = E

[
e−δ1T

∗
U e(

δ1−δ2
c

)|U(T ∗−
U )|1

{
U(TU) = 0

}|U(0) = u
] q+

1 − q−k̃(δ2)
,

(4.13)
with the expectation term a special case of mδ1,U,0(u) under the penalty function
w∗(y) = e[(δ1−δ2)/c]y .

By a similar argument, one concludes that

L
Q
δ1,δ2,U,−(u) = E

[
e−δ1TU 1

{
U(TU) < 0

}|U(0) = u
] q+k̃(δ2)

1 − q−k̃(δ2)
, (4.14)

where the expectation term is simply mδ1,U,−(u) with w(· , ·) ≡ 1.

Remark 4 For any subsequent pair of busy period and idle period, the busy period
starts with an upward jump distributed as Y+ and therefore it is sufficient to con-
sider the process {Z(t)|Z(0−) = 0}t≥0. Hence, such joint Laplace transforms for the
termination of busy period by continuous workload removal and by the arrival of a
negative customer are simply

L
Q
δ1,δ2,Z,0 = E

[
L

Q
δ1,δ2,U,0(Y+)

]

= E
[
e−δ1T

∗
Z e(

δ1−δ2
c

)|Z(T ∗−
Z )|1

{
Z(TZ) = 0

}|Z(
0−) = 0

] q+
1 − q−k̃(δ2)

,

(4.15)

and

L
Q
δ1,δ2,Z,− = E

[
L

Q
δ1,δ2,U,−(Y+)

]

= E
[
e−δ1TZ 1

{
Z(TZ) < 0

}|Z(
0−) = 0

] q+k̃(δ2)

1 − q−k̃(δ2)
, (4.16)

respectively, with the expectation terms in the above two equations being the spe-
cial cases of mδ1,Z,0(0) and mδ1,Z,−(0) with the corresponding choices of penalty
functions w∗(y) = e[(δ1−δ2)/c]y and w(· , ·) ≡ 1.

4.3 Expected total discounted reward payable during idle periods

In this subsection, we consider the same queueing model {UQ(t)}t≥0 as in Sect. 4.2,
with the assumption of condition (4.7). We are interested in evaluating the expected
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total discounted value for a dollar payable continuously during the idle periods of
the queue, or equivalently, the expected total discounted reward earned by a server at
a rate of 1 whenever there is no work stored in the queue. With an initial workload
of UQ(0) = U(0) = u ≥ 0 and a force of interest of δ > 0, such an expectation is
denoted by DRδ,U (u). Since the first payment stream is payable from time TU to T I

U ,
its expected present value (at time 0), namely DR∗

δ,U (u), is given by

DR∗
δ,U (u) = E

[∫ T I
U

TU

e−δy dy
∣∣U(0) = u

]

= 1

δ

{
E

[
e−δTU |U(0) = u

] − E
[
e−δT I

U |U(0) = u
]}

= 1

δ

{[
L

Q
δ,0,U,0(u) + L

Q
δ,0,U,−(u)

]

− [
L

Q
δ,δ,U,0(u) + L

Q
δ,δ,U,−(u)

]}
, u ≥ 0, (4.17)

where notations defined in (4.11) and (4.12) have been used. It is instructive to note
that the expected total discounted reward DRδ,U (u) consists of the expected present
value DR∗

δ,U (u) plus the expected discounted reward from time T I
U onwards. Since

at time T I
U the process restarts at level 0 with an upward jump distributed as Y+, we

have

DRδ,U (u) = DR∗
δ,U (u) + E

[
e−δT I

U |U(0) = u
]
DR∗

δ,Z

= DR∗
δ,U (u) + [

L
Q
δ,δ,U,0(u) + L

Q
δ,δ,U,−(u)

]
DR∗

δ,Z, u ≥ 0, (4.18)

where (4.11) and (4.12) are used again. In addition, DR∗
δ,Z is the expected present

value (at time T I
U ) of future reward satisfying

DR∗
δ,Z = E

[
DR∗

δ,U (Y+)
] + E

[
L

Q
δ,δ,U,0(Y+) + L

Q
δ,δ,U,−(Y+)

]
DR∗

δ,Z

= 1

δ

[(
L

Q
δ,0,Z,0 + L

Q
δ,0,Z,−

) − (
L

Q
δ,δ,Z,0 + L

Q
δ,δ,Z,−

)]

+ (
L

Q
δ,δ,Z,0 + L

Q
δ,δ,Z,−

)
DR∗

δ,Z

with the use of (4.15)–(4.17). Solving the above equation for DR∗
δ,Z yields

DR∗
δ,Z = 1

δ

(L
Q
δ,0,Z,0 + L

Q
δ,0,Z,−) − (L

Q
δ,δ,Z,0 + L

Q
δ,δ,Z,−)

1 − (L
Q
δ,δ,Z,0 + L

Q
δ,δ,Z,−)

,

leading to a complete characterization of DRδ,U (u) via (4.18).

5 Concluding remark

This paper studies the Gerber–Shiu function in a stochastic model involving two-
sided jumps and a continuous downward drift. With arbitrary distributions of jump
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sizes and inter-arrival times, various general structures are exploited using defective
renewal equations. This is in contrary to most of the traditional analysis, in which
processes with stationary and independent increment or phase-type inter-arrival time
V are used. Although our solutions in Sect. 2 involve convolutions, in cases where
both V and Y− are distributed as, for example, a combination of exponentials, these
convolutions can be explicitly evaluated due to the nice form of (3.13) and (3.18).

We also remark that in the process {U(t)}t≥0 defined by (1.1), the arrivals of
jumps, no matter positive or negative, are assumed to be generated by the same re-
newal process {N(t)}t≥0, and therefore the process {U(t)}t≥0 restarts after a jump.
An alternative model could have been proposed by assuming that the arrivals of up-
ward and downward jumps follow independent renewal processes {N+(t)}t≥0 and
{N−(t)}t≥0, respectively, resulting in

U(t) = u − ct +
N+(t)∑

i=1

Y+,i −
N−(t)∑

i=1

Y−,i , t ≥ 0, (5.1)

where {Y+,i}∞i=1 and {Y−,i}∞i=1 are independent i.i.d. sequences distributed as Y+
and Y−, respectively, both independent of {N+(t)}t≥0 and {N−(t)}t≥0. Of course, if
{N(t)}t≥0 in (1.1) is a Poisson process with rate λ > 0, then (1.1) and (5.1) are equiv-
alent if {N+(t)}t≥0 and {N−(t)}t≥0 are Poisson processes with rates λq+ and λq−,
respectively. In general, the process (5.1) does not restart after a jump, and therefore
the arguments used in this paper are not applicable.
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Appendix

Throughout the paper, a large number of notations are used for various Gerber–Shiu
type functions and their related quantities. This Appendix aims at providing a sum-
mary of their definitions as well as their relationships. As a general rule of thumb:

1. The letter ‘m’ represents Gerber–Shiu functions, whereas ‘L’ denotes (joint)
Laplace transforms of random times.

2. The subscripts ‘U ’, ‘Z’ and ‘X’ are related to the processes (1.1), (1.7) and (4.1),
respectively.

3. The subscripts ‘−’ and ‘0’, respectively, correspond to ‘jumps’ and ‘continuity’
as the cause of ruin.
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Table 1 List of major notations

Notation Definition

mδ,U,−(u) GSF defined by (1.3) for ruin of {U(t)}t≥0 by jumps

mδ,U,0(u) GSF defined by (1.6) for ruin of {U(t)}t≥0 by continuity

mδ,Z,−(z) GSF defined by (1.8) for ruin of {Z(t)}t≥0 by jumps; related to mδ,U,−(·) via
(1.9); can be represented as (2.17)

mδ,Z,0(z) GSF defined by (1.10) for ruin of {Z(t)}t≥0 by continuity; related to mδ,U,0(·)
via (1.11); can be represented as (2.16)

mδ(u) Matrix GSF containing above four elements; defined by (2.23) with solution
uniquely determined by the Markov renewal equation (2.22)

mδ,Z,−,2(z) Special case of mδ,Z,−(z) under w(x,y) ≡ w2(y); can be represented as (2.19)

mδ,X(x) GSF defined by (4.2) for ruin of {X(t)}t≥0; known from [35]

Lδ,X(x) LT of the time of ruin of {X(t)}t≥0 defined by (4.3); special case of mδ,X(x)

under wX(·) ≡ 1

LR
δ1,δ2,U,0(u) Joint LT defined by (4.4) for ruin of {U(t)}t≥0 by jumps; special case of

mδ1,U,0(u) under (4.6)

LR
δ1,δ2,U,−(u) Joint LT defined by (4.5) for ruin of {U(t)}t≥0 by continuity; special case of

mδ1,U,−(u) under w(x,y) ≡ Lδ2,X(y)

LR
δ1,δ2,X,0(x) Joint LT defined by (4.8) for recovery of {X(t)}t≥0 by continuity; special case

of mδ1,X(x) under wX(y) = E[e−δ2TU 1{U(TU ) = 0}|U(0) = y]
LR

δ1,δ2,X,+(x) Joint LT defined by (4.9) for recovery of {X(t)}t≥0 by jumps; special case of
mδ1,X(x) under wX(y) = E[e−δ2TU 1{U(TU ) < 0}|U(0) = y]

L
Q
δ1,δ2,U,0(u) Joint LT defined by (4.11) for termination of busy period of {UQ(t)}t≥0 by

continuous workload removal; with solution (4.13)

L
Q
δ1,δ2,U,−(u) Joint LT defined by (4.12) for termination of busy period of {UQ(t)}t≥0 by

arrival of a negative customer; with solution (4.14)

L
Q
δ1,δ2,Z,0 Given by (4.15) in relation to L

Q
δ1,δ2,U,0(·)

L
Q
δ1,δ2,Z,− Given by (4.16) in relation to L

Q
δ1,δ2,U,−(·)

4. The superscripts (for the L functions) ‘R’ and ‘Q’ denote functions for ‘recovery’
and ‘queues’ (see (4.10)), respectively.

In the following Table, ‘GSF’ and ‘LT’ are abbreviations for ‘Gerber–Shiu function’
and ‘Laplace transform’, respectively.
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