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Abstract This paper investigates a new class of optimization problems arising from
power systems, known as nonlinear programs with stability constraints (NPSC),
which is an extension of ordinary nonlinear programs. Since the stability constraint is
described generally by eigenvalues or norm of Jacobian matrices of systems, this re-
sults in the semismooth property of NPSC problems. The optimal conditions of both
NPSC and its smoothing problem are studied. A smoothing SQP algorithm is pro-
posed for solving such optimization problem. The global convergence of algorithm
is established. A numerical example from optimal power flow (OPF) is done. The
computational results show efficiency of the new model and algorithm.
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1 Introduction

In this paper, we consider a class of optimization problems

min f (x,u)

s.t. h(x,u) = 0,

g(x,u) ≤ 0,

φ(x,u) ≥ δ > 0,

(1.1)

where δ > 0 is a small constant vector; x ∈ Rn stands for the state variable; u ∈ Rm

represents a control variable; f : Rn+m → R, h(x,u) = (h1(x,u),h2(x,u), . . . ,

hn(x,u))T : Rn+m → Rn, g(x,u) = (g1(x,u), g2(x,u), . . . , gl(x,u))T : Rn+m →
Rl are twice continuously differentiable; φ(x,u) : Rn+m → Rns is locally Lipschitz,
possibly semismooth (see [17] for the semismooth concept). Here the last inequality
constraint describes the stability property of dynamic systems. We call (1.1) Nonlin-
ear Programs with Stability Constraints (NPSC) throughout this paper.

Problem (1.1) has a strong background and arises from power systems. The OPF
is a fundamental tool of power systems for planning and operation. The classical OPF
is an ordinary nonlinear programming problem, which has been studied widely, and
many solution methods have been proposed and implemented over the years [6, 7,
19–21, 23]. On the other hand, it is well-known that power systems are described
by differential and algebraic equations (DAEs), and they belong to dynamic systems.
One of the concerned issues for such systems is the static stability at the equilibrium
point (see [13]), which is the ability to recover the normal operation under some small
disturbances. We note that classical OPF models consider little about system stability.
This indicates that the solution of classical OPF cannot ensure the stable operation,
especially for the current market mechanism where it requires the system operation
under economic, stable and secure properties. Hence, it is necessary to extend the
OPF models and algorithms with stability consideration. This is our motivation for
this paper.

Both static and transient stability of power systems without considering optimal
operation, have been studied extensively in the literature (see [2, 3, 10, 13, 14, 24]).
In this paper, we are interested in static stability (also called small signal stability),
which is not related to the dynamic operation of the system. Whereas it is associated
with eigenvalues or singular values of Jacobian of function h in (1.1) (see [13, 18]).
Recently, the study of OPF with static stability receives many attention in power sys-
tem analysis. For example, Canizares and his research group have made a series of
investigations (see [1, 12] and references therein). Their main research topic focuses
on calculating technology with respect to bifurcation analysis of power systems, such
as the saddle-node bifurcation, the Hopf bifurcation, and the limit-induced bifurca-
tion. We also note that in the existing study of OPF with stability constraints, the
stability requirement implements are mainly from physical properties of systems, or
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via multi-layer optimization models (see [25] and its comments), which may not ad-
dress the stability exactly or may result in some calculation difficulty. Moreover, the
research of general static stability, i.e., considering negative real part of eigenvalues
of Jacobian matrices, has little progress since the eigenvalue function is complicated.
According to the system requirement and the research progress, we will set up a new
mathematical model to describe the steady stability of power systems, as well as some
effective algorithms for solving such model.

Some stability models and solution methods of dynamic systems with respect to
nonlinear equations are studied in our previous work [11]. In this paper, the semi-
smooth methodology is used for solving stability equilibrium solutions in power sys-
tems. In this paper, along with the line of stability constraints, we develop the sta-
bility solution of nonlinear equations to optimization problem, which has the form
of (1.1). Due to the nonsmooth property of stability constraints, we then study (1.1)
on correlative contents, such as optimal conditions, nonsmooth property and smooth-
ing approach. Furthermore, we consider its solution method by using the smoothing
technology in [22] and a smoothing SQP algorithm is presented for solving (1.1).
The global convergence of the algorithm is investigated. An example arising from
the OPF with stability constraints is applied to test the model and the algorithm. The
numerical results show the efficiency of this study. The main contribution of this pa-
per is twofold. First, it presents a uniform mathematical model to describe a class of
practical optimization problems. The model enjoys nice semismooth characteristic.
Second, related issues such as optimal conditions, computational method, and con-
vergence of the method, are investigated, which are necessary and usable from the
viewpoint of practical implementations.

The paper is organized as follow: In Sect. 2, we present a stability constraint model
associated with some typical stability problems in dynamic systems. Section 3 dis-
cusses the optimal conditions of the NPSC problem, as well as its smoothing one.
In Sect. 4, a smoothing SQP method is addressed. Section 5 investigates the conver-
gence of the algorithm. Numerical example is done in Sect. 6. Section 7 gives some
final conclusions.

2 Typical stability constraints in dynamic systems

This section presents some typical models of stability constraints for dynamic sys-
tems. Here we just describe the models. The detailed contents are introduced in our
previous work [11].

2.1 Stability constraints

A nonlinear dynamic system can be described by

ẋ = F(x,u), (2.1)

where F(x,u) = (f1(x,u), . . . , fn(x,u))T : Rn × Rm → Rn is a twice continuously
differentiable function, and x and u are called state and control variables, respectively.
Such a system arises from various engineering problems. In this paper, we are not
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interested in the dynamic operation of (2.1), but concerned with steady-state stability
analysis. In other words, the system (2.1) provides just a background of stability
analysis.

We call x an equilibrium point of the system (2.1) if it satisfies

F(x,u) = 0

with given control variable u. In addition, combining with the stability requirement
of dynamic systems, we define a so-called stability equilibrium operation of (2.1) in
our research [11] as {

F(x,u) = 0,

φ(x,u) ≥ δ > 0,
(2.2)

where δ > 0 is a given constant vector of Rm1 . Here φ(x,u) ∈ Rm1 is called a stability
function. Such function has a property that if there exists j such that φj (x) = 0, then
the correspondent state of system is unstable.

Let u be a variable. We then set up an optimal operation with some optimal ob-
jective. The optimal operation is called optimal power flow (OPF) in power systems.
Furthermore, if we combine it with the stability requirement, this will formulate the
optimal problem of stability constraints (1.1).

Problem (1.1) is an extension of classical OPF in power systems. The key issue
is the way to set the stability constraints. Generally, there are three typical stability
problems associated with dynamic system (2.1), which will result in voltage collapse
and system oscillation in power systems (see [13]).

Definition 2.1 Consider the dynamic system (2.1) with given u. Let λ(A) be the
eigenvalue of matrix A, and ∇F(x,u) is the derivative of F with respect to the vari-
able x.

(i) If x satisfies

F(x,u) = 0, Re
(
λ(∇F(x,u))

)
< 0, (2.3)

then we call x a Static Stable Equilibrium Point of (2.1).
(ii) If x ∈ CS , where

CS = {
x ∈ Rn | F(x,u) = 0, det(∇F(x,u)) = 0

}
, (2.4)

then we call x a Saddle-Node Bifurcation Point of (2.1).
(iii) If x ∈ CH with

CH = {
x ∈ Rn | F(x,u) = 0, Re

(
λ(∇F(x,u))

) = 0
}
, (2.5)

then we call x a Hopf Bifurcation Point of (2.1), i.e., ∇F(x,u) has a pair of
conjugate eigenvalues passing the imaginary axis.

The stable equilibrium models of power systems are required to satisfy (2.3), or to
avoid the point of (2.4) and (2.5). On the other hand, from the viewpoint of numer-
ical calculations, the proposed models should be solved by some typical numerical
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methods, such as Newton-type methods. To this end, we construct stability functions
satisfying some semismooth property. For example, the Saddle-Node Bifurcation can
be avoided by setting det(∇F(x)) �= 0. Then we set the stability function as

φ(x,u) ≡ min
1≤i≤n

λi(∇F(x,u)T ∇F(x,u)) > 0.

Based on the stable and semismooth requirements, by using mathematical analy-
sis, three semismooth stability constraints with respect to Definition 2.1 and m1 = 1
can be set up (see [11] for the detailed analysis). Here m1 = 1 means that for each
stable model, we just consider one stability requirement.

In the following analysis of this section, the control variable u is assumed to be
constant.

• (i) Static Stability Constraint:

φI
1 (x,u) = − max

1≤i≤n
λi(∇F(x,u) + ∇F(x,u)T ) ≥ δ,

φII
1 (x,u) = 1 − ‖C(∇F(x,u))‖1 ≥ δ.

(2.6)

• (ii) Avoiding Saddle-node Bifurcation:

φ2(x,u) = min
1≤i≤n

λi(∇F(x,u)T ∇F(x,u))

= − max
1≤i≤n

λi(−∇F(x,u)T ∇F(x,u)) ≥ δ. (2.7)

• (iii) Avoiding Hope Bifurcation:

φ3(x,u) = 1 + max
{−‖C(∇F(x,u))‖1,−‖C−1(∇F(x,u))‖1

} ≥ δ. (2.8)

Here C(A) = (A − σI)−1(A + σI) is the Cayley transformation of matrix A.

We use φ(x,u) to express the functions φi(x,u) (i = 1,2,3). In addition, we
introduce a slack variable y ∈ R to transfer the inequality constraint to equality one.
Then the stability inequality constraint φ(x,u) ≥ δ can be transformed equivalently
to an equality constraint:

�(x,u, y) = −φ(x,u) + |y| + δ = 0, (2.9)

where |y| expresses the absolute value of y, and is semismooth [5].

2.2 Smoothing function of maximal eigenvalue function

We note that the functions defined in (2.9) are related to the so-called maximum
function as follow:

φ̂(x) ≡ max{x1, . . . , xn}.
Since φ̂(x) is semismooth, we will consider its smoothing version as

φ̂s(ε, x) =
{

ε ln(
∑n

i=1 exi/ε), if ε �= 0,

max1≤i≤n{xi}, if ε = 0.
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Here ε > 0 is called a smoothing parameter. Such smoothing function is also called an
exponential penalty function and has some interesting characteristics (see Lemma 2.1
in [4] and Lemma 7 in [16]).

Lemma 2.1 φ̂s(ε, x) has the following properties: for any ε > 0.

(i) φ̂s(ε, x) is increasing with respect to ε, i.e., for any ε1 > ε2 > 0, it holds
φ̂s(ε1, x) ≥ φ̂s(ε2, x). Further, we have

0 ≤ φ̂s(ε, x) − φ̂(x) ≤ ε lnn. (2.10)

(ii) φ̂s(ε, x) is continuously differentiable and

∇φ̂s(ε, x) =
n∑

i=1

ai(ε, x)ei, (2.11)

⎧⎨
⎩

dφ̂s (ε,x)
dε

= ln
∑n

i=1 exi/ε − 1
ε

∑m
i=1 ai(ε, x)xi,

limε→0+ dφ̂s (ε,x)
dε

= ln |I (x)|, ln |I (x)| ≤ dfs(ε,x)
dε

≤ lnn

(2.12)

with fixed x, where

ai(ε, x) = exi/ε∑m
i=1 exi/ε

, I (x) = {i | φ̂(x) = xi}, (2.13)

and ei is the unit vector with its i-th component to be 1.
(iii) For any fixed x ∈ Rn,

dist
(∇xφ̂s(ε, x), ∂φ̂(x)

) = o(ε). (2.14)

On the other hand, the formulas (2.6)–(2.8) indicate that stability functions are
related to the maximal eigenvalue of matrix. We then introduce the so-called spec-
tral function (denoted by (f ◦ λ)), which is a composition of symmetric function
f : �n → � and eigenvalue function λ(·) of symmetric matrices, see [4] for detailed
discussion. Here the symmetric function f means f (x) = f (Px) with any permuta-
tion matrix P . The spectral function has the following properties [17].

Lemma 2.2 A spectral function (f ◦ λ) satisfies the following properties:

(i) it is semismooth if and only if f is semismooth. If f is ρ-order semismooth
(0 < ρ≤ 1), the spectral function (f ◦ λ) is min{1, ρ}-order semismooth.;

(ii) it is LC1 if and only if f is LC1;
(iii) it is SC1 if and only if f is SC1.
(iv) (f ◦ λ) is differentiable at a matrix X ∈ Sn if and only if f is differentiable at

point λ(X). The gradient of (f ◦ λ) at X is given by

∇(f ◦ λ)(X) = UT
(
diag(∇f (λ(X)))

)
U, ∀U ∈ O(X). (2.15)
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More generally, the gradient of (f ◦ λ) has the following formula

∇(f ◦ λ)(X) = V T
(
diag(∇f (μ))

)
V, (2.16)

for any orthogonal matrix V ∈ On and μ ∈ �n satisfying X = V T (diagμ)V .
Here Sn and On denote the real n × n symmetric matrix set and orthogonal
matrix set respectively, and O(X) = {P ∈ On | PXP T = diag(λ(X))}.

As an example, we choose the following special spectral function:

(φ̂ ◦ λ)(X) = max
1≤i≤n

λi(X), Rn×n → R. (2.17)

Here X belongs to the set of symmetric matrices. Then from Lemma 2.2 we have that
(φ̂ ◦λ)(X) is semismooth, so does the correspondent functions of stability constraints
proposed in (2.6)–(2.8).

In order to design solution algorithm for NPSC problem, we use the smoothing
way of maximum function and denote the smoothing function of (φ̂ ◦ λ)(X) as (φ̂s ◦
λ)(ε,X), which has the following version for ε > 0

(φ̂s ◦ λ)(ε,X) = ε ln

(
n∑

i=1

eλi(X)/ε

)
. (2.18)

Combining with Lemma 2.1, we have the following conclusions with respect to
the spectral function and its smoothing one (see Proposition 2.2 in [4]).

Lemma 2.3 Let X be symmetric matrix. For any ε > 0, it holds

0 ≤ (φ̂s ◦ λ)(ε,X) − (φ̂ ◦ λ)(X) ≤ ε lnn, (2.19)

lim
ε→0

∇(φ̂s ◦ λ)(ε,X) ∈ ∂(φ̂ ◦ λ)(X). (2.20)

2.3 Smoothing technology for stability constraints

In the reminder part of this section, we focus on the smoothing version of three sta-
bility functions φI

1 (x),φII
1 (x),φ2(x),φ3(x).

Denote the smoothing functions of stability functions in a uniform form as
φs(ε, x). Then we obtain a smoothing system of (2.9) as

�s(ε, x,u, y) = −φs(ε, x,u) + χ(ε, y) + δ = 0, (2.21)

where χ(ε, y) is the smoothing function of |y| via the smoothing version of maximum
function:

χ(ε, y) = ε ln(ey/ε + e−y/ε).

From above Lemmas 2.1–2.3, we can obtain the uniform approximate property of
�s(ε, x,u, y) and �(x,u, y) as follows.
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Proposition 2.1 Let �s(ε, x,u, y) be the smoothing function of �(x,u, y) with re-
spect to three stability functions. Then the following conclusions hold for the smooth-
ing parameter ε > 0.

(i) Approximation property:

|�s(ε, x,u, y) − �(x,u, y)| = O(ε). (2.22)

(ii) The derivative of �s(ε, x,u, y) with respective to (x, y):

∇�s(ε, x,u, y) = −
(∇xφs(ε, x,u)

0

)
+

(
0

ey/ε−e−y/ε

ey/ε+e−y/ε

)
. (2.23)

(iii) Property of Jacobian:

lim
ε→0

dist
(∇�s(ε, x,u, y), ∂�(x,u, y)

) = 0. (2.24)

Here ∂�(x,u, y) expresses the generalized Jacobian of �(x,u, y) in the sense
of Clarke derivative [5]. The symbol dist indicates the distance of a point to the
set.

Proof As an example, we prove the proposition by the static stability constraint func-
tion φI

1 (x,u). For such case, we have the stability function and their smoothing one
as: {

φI
1 (x,u) = −max1≤i≤n λi(∇F(x,u) + ∇F(x,u)T ),

φs(ε, x,u) = −ε ln
(∑n

i=1 eλi(∇F(x,u)+∇F(x,u)T )/ε
)
.

(i) From Lemma 2.1 and Lemma 2.3 we have

{−ε lnn ≤ φs(ε, x,u) − φI
1 (x,u) ≤ 0,

0 ≤ χ(ε, y) − |y| ≤ ε ln 2.

Then it follows

0 ≤ �s(ε, x,u, y) − �(x,u, y) ≤ ε(lnn + ln 2),

which shows the result of (2.22).
(ii) This is a direct derivative calculation of function.
(iii) We obtain the result from (2.20) in Lemma 2.3 and (2.14) in Lemma 2.1 for

functions φI
1 (x,u) and |y|, respectively.

For other stability constraint functions, the proposition can be proved by the same
method. The difference with 1-norm ‖ · ‖1 in the stability constraint is where two-
times smoothing process of maximum function is needed.

We complete the proof. �
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3 Optimal conditions of NPSC problems

3.1 Optimal conditions for semismooth NPSC problems

We analyze the optimal conditions of (1.1) with φ defined in (2.6)–(2.8) and ns = 1 in
this section. It is obvious that (1.1) is equivalent to the following problem by adding
a slack variable y ∈ R:

min
(x,u,y)∈Rn+1

f (x,u)

s.t. h(x,u) = 0,

g(x,u) ≤ 0,

�(x,u, y) ≡ −φ(x,u) + |y| + δ = 0.

(3.1)

Here the typical stability problems are discussed in Sect. 2, i.e., the stability functions
φ(x,u) are defined in (2.6)–(2.8) as φI

1 (x,u), φII
1 (x,u), φ2(x,u), φ3(x,u).

According to the optimal condition of nonsmooth optimization [5], we introduce
the concept of generalized stationary points of (3.1).

Definition 3.1 A point (x∗, u∗) ∈ Rn+1 is said to be a generalized stationary point
of (3.1) if there exists a KKT multiplier vector (λh,λg,λφ) ∈ Rn+l+1 such that the
following generalized Karush-Kuhn-Tucker (GKKT) conditions hold:

0 ∈
(∇f (x∗, u∗)

0

)
+

(
h′(x∗, u∗)T

0

)
λh +

(
g′(x∗, u∗)T

0

)
λg +

(
∂φ(x∗, u∗)T

α

)
λ�,

h(x∗, u∗) = 0,

0 ≤ −g(x∗, u∗) ⊥ λg ≥ 0,

�(x∗, u∗, y∗) ≡ −φ(x∗, u∗) + |y∗| + δ = 0,

(3.2)

where α ∈ [−1,1].

For convenience, we may assume that in the inequality constraints of (3.1), the
first l1 (l1 ≤ l) inequality constraints are active and the rest are inactive at (x∗, u∗).
Denote

G(x,u) ≡ (h1(x,u), . . . , hn(x,u), g1(x,u), . . . , gl1(x,u))T ,

Ḡ(x,u, y) ≡
(

G(x,u)

�(x,u, y)

)
.

If each element of the generalized Jacobian of Ḡ(x,u, y) has full row rank, then
we say that the Generalized Linear Independent Constraint Qualification (GLICQ)
condition of (3.1) is satisfied. For the addressed problem, the following conclusion
gives a sufficient condition of constrained qualification.
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Proposition 3.1 Suppose that G′(x,u) has full row rank at (x∗, u∗) and y∗ �= 0.
Then the GLICQ holds for NPSC problem (3.1).

Proof The active constraints of (3.1) can be written as

Ḡ(x,u, y) =
(

G(x,u)

−φ(x,u) + |y| + δ

)
.

It is obvious that for each element of generalized Jacobian V ∈ ∂Ḡ(x,u, y) with
Vφ ∈ ∂φ(x,u) it has the following form

V =
(

G′(x,u) 0
−Vφ α

)
. (3.3)

On the other hand, the generalized derivative of |y| is

∂|y| =

⎧⎪⎨
⎪⎩

1, if y > 0,

[−1,1], if y = 0,

−1, if y < 0.

By the condition of proposition y∗ �= 0, it holds

α =
{

1, if y∗ > 0,

−1, if y∗ < 0,

which combines with the expression of V to obtain that V is full row rank. We com-
plete the proof. �

Above proposition relies on the assumption y∗ �= 0. We note that on the one hand,
the GLICQ condition is a sufficient condition of constraint qualification of nonlinear
programming. This means that for case y∗ = 0, the constrained qualification condi-
tion of NPSC may hold. On the other hand, for given δ > 0, if it happens y∗ = 0
at an optimal solution (i.e., the stability constraint is active), we can choose δ1 < δ

in (3.1). Then we may obtain an optimal solution with y∗ �= 0, which satisfies the
assumption of the proposition. The constrained qualification condition of NPSC is a
valuable problem.

3.2 Optimal conditions for smoothing problems

According to the smoothing functions of the stability functions, we have nonlinear
program with the smoothed stability equilibrium operation in the constraint set of
(3.1) as:

min
(x,u,y)∈Rn+m+1

f (x,u)

s.t. h(x,u) = 0,

g(x,u) ≤ 0,

�s(ε, x,u, y) ≡ −φs(ε, x,u) + χ(ε, y) + δ = 0.

(3.4)
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Obviously, if (x,u, y) is a feasible point (local solution, global solution) of (3.1),
it is a feasible point (local solution, global solution) of (3.4) with ε = 0.

We now write the KKT condition of the smoothing nonlinear program (3.4). For
ε �= 0, it holds

0 =
(∇f (x,u)

0

)
+

(
h′(x,u)T

0

)
λh +

(
g′(x,u)T

0

)
λg +

(
φ′

s(ε, x,u)T

χ ′(ε, y)

)
λ�s ,

h(x,u) = 0,

0 ≤ −g(x,u) ⊥ λg ≥ 0,

�s(ε, x,u, y) = 0.

(3.5)

Here Jacobian of φ′
s(ε, x,u) with respect to (x,u) can be obtained from the smooth-

ing function of φs . The derivative of χ(ε, y) with respect to y is

χ ′(ε, y) = ey/ε − e−y/ε

ey/ε + e−y/ε
. (3.6)

4 A smoothing SQP algorithm

We now present a smoothing SQP method for solving problem (3.4). For more dis-
cussion on smoothing SQP methods, see [9, 15].

Let d = (dx, du, dy). For given (x,u, y) ∈ Rn+m+1 and r > 0, ε > 0. Similar to
reference [8], we define a modified quadratic program QP(x,u, y, ε, r) subproblem
of (3.4) by

min
d∈Rn+m+1,ξ∈Rl

∇f (x,u)T
(

dx

du

)
+ 1

2
dT Wd + r

l∑
i=1

ξi

s.t. h′(x,u)

(
dx

du

)
+ h(x,u) = 0,

g′(x,u)

(
dx

du

)
+ g(x,u) ≤ ξ,

�′
s(ε, x,u, y)d + �s(ε, x,u, y) = 0,

ξ ≥ 0,

(4.1)

where W ∈ R(n+m+1)×(n+m+1) is a symmetric positive definite matrix, and r > 0
is a penalty parameter. Here we add one variable ξ to ensure the feasibility of the
inequality constraint. In addition, we can see that the feasibility of equality constraints
in (4.1) is satisfied if the matrix

V1 =
(

h′(x,u) 0
−φ′

s(x,u) χ ′(ε, y)

)

has full row rank.
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It is not difficult to write the KKT system of (4.1) as

(∇f (x,u)

0

)
+ Wd +

(
h′(x,u)T

0

)
λh +

(
g′(x,u)T

0

)
λg +

(
φ′

s(ε, x,u)T

χ ′(ε, y)

)
λ�s = 0,

r = λg + λξ ,

h′(x,u)

(
dx

du

)
+ h(x,u) = 0,

0 ≤ −
[
g′(x,u)

(
dx

du

)
+ g(x,u) − ξ

]
⊥ λg ≥ 0,

−φ′
s(ε, x,u)

(
dx

du

)
+ χ ′(ε, y)dy + �s(ε, x,u, y) = 0,

0 ≤ ξ ⊥ λξ ≥ 0.

(4.2)

Define a merit function by a penalty function as:

(rg,rh,r�,ε)(x,u, y) = f (x,u) + rg
l∑

i=1

max{gi(x,u),0} + rh
n∑

i=1

|hi(x,u)|

+ r�|�s(ε, x,u, y)|, (4.3)

where rg , rh and r� are positive numbers.
Now we state the SQP method for solving (1.1) by a smoothing method. We handle

ε as the smoothing parameter and adjust it in every iteration.

Algorithm 4.1 Smoothing SQP Algorithm.

Step 0. (Initialization)
Let r−1 > 0, δ1 > 0, δ2 > 0, βε ∈ (0,1), σ ∈ (0,1), τ ∈ (0,1); Choose w0 =
(x0, u0, y0) ∈ Rn+m+1, and ε0 > 0; and a symmetric positive definite matrix
W0 ∈ R(n+m+1)×(n+m+1). Set k := 0.

Step 1. (Search direction)
Solve the QP subproblem (4.1) with wk = (xk, uk, yk), ε = εk , W = Wk ,
r = rk−1. Let (dk, ξk) be a solution of the QP, and λk = (λh,λg,λ�,λξ ) be
its corresponding KKT multiplier.

Step 2. (Termination check)
If a stopping rule is satisfied, terminate. Otherwise, go to Step 3.

Step 3. (Penalty update)
Let

r̃k =
{

rk−1, if rk−1 ≥ max1≤i≤m+n+1{|λk
i |},

δ1 + max1≤i≤n+l+2{|λk
i |}, otherwise.

(4.4)
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Define r
g
k = rk−1, and rh

k = r�
k = r̃k and

rk =
{

r̃k, if
∑l

i=1 ξk
i = 0,

r̃k + δ2, otherwise.
(4.5)

Step 4. (Line Search)
Let tk = (τ )ik , where ik is the smallest nonnegative integer such that i = ik
satisfies

(r
g
k ,rh

k ,r�
k ,εk)

(wk + (τ )idk) − (r
g
k ,rh

k ,r�
k ,εk)

(wk) ≤ −σ(τ)i(dk)T Wkd
k.

(4.6)
Step 5. (Update Smoothing Parameter)

Let

wk+1 = wk + tkd
k, (4.7)

εk+1 =
{

βεεk, if ‖dk‖ ≤ εk,

εk, otherwise.
(4.8)

Choose a symmetric positive definite matrix Wk+1 ∈ R(m+n+1)×(m+n+1). Set
k := k + 1 and go to Step 1.

Remark 4.1 At Step 2 in Algorithm 4.1, we do not specify a stopping rule. Generally,
we stop the iteration when dk and εk are sufficiently small. For example, the stopping
rule is chosen

‖dk‖ + εk ≤ τ̂ ,

where τ̂ is a given small constant.

The search direction obtained from the subproblem (4.1) in Step 1 of Algo-
rithm 4.1 has the following descent property.

Proposition 4.1 For any ε > 0, we have

(i) (rg,rh,r�,ε)(x,u, y) is directionally differentiable at w = (x,u, y). Further-
more, if (d, ξ) is a solution of QP subproblem (4.1), rg = r and rh = r� ≥
max1≤i≤n+l+2 |λi | with λ = (λh,λg,λ�,λξ ) to be the corresponding multiplier
of (4.1), then

′
(rg,rh,r�,ε)

(x,u, y;d) ≤ ∇f (x,u)T d̄ + λT
g g′(x,u)d̄ + λT

h h′(x,u)d̄

+ λT
��′

s(x,u, y)d, (4.9)

where d̄ = (
dx
du

)
. Moreover, we have

′
(rg,rh,r�,ε)

(x,u, y;d) ≤ −dT Wd. (4.10)
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(ii) Suppose that W ∈ R(n+m+1)×(n+m+1) is symmetric positive definite. If (d, ξ) is a
solution of (4.1) with d �= 0, then d is a descent direction of the penalty function
(rg,rh,r�,ε)(w) for rg = r, and rh = r� satisfying the condition in (i).

Proof (i) The directionally differentiable conclusion is obtained from the property of
the maximal function and the absolute function. In addition, we calculate the direc-
tional derivative of  as

′
(rg,rh,r�,ε)

(x,u, y;d)

= ∇f (x,u)T d̄

+ rg

[ ∑
i:gi<0

0 +
∑

i:gi=0

max{g′
i (x, u)d̄,0} +

∑
i:gi>0

g′
i (x, u)d̄

]

+ rh

[ ∑
j :hj >0

h′
j (x,u)d̄ +

∑
j :hj =0

|h′
j (x,u)d̄| +

∑
j :hj <0

−h′
j (x,u)d̄

]

+ r�κ�, (4.11)

where

κφ =

⎧⎪⎨
⎪⎩

�′
s(ε,w)d, if �s(ε,w) > 0,

|�′
s(ε,w)d|, if �s(ε,w) = 0,

−�′
s(ε,w)d, if �s(ε,w) < 0.

In order to prove the inequality (4.9), the KKT system (4.2) of the subproblem is
used repeatedly.

First, we consider the equality parts h(x,u) and �s(ε,w). By direct calculation
and the KKT condition (4.2), it holds from (4.2) that

rh

[ ∑
j :hj >0

h′
j (x,u)d̄ +

∑
j :hj =0

|h′
j (x,u)d̄| +

∑
j :hj <0

−h′
j (x,u)d̄

]

= rh

[ ∑
j :hj >0

(−hj (x,u)) +
∑

j :hj =0

| − hj (x,u)| +
∑

j :hj <0

hj (x,u)

]

= −rh‖h(x,u)‖1. (4.12)

On the other hand, from the KKT system (4.2) again and the condition of rh we have

(λh)
T h′(x,u)d̄ = −(λh)

T h(x,u) ≥ −
∑

1≤j≤n

|(λh)j ||hj (x,u)| ≥ −rh‖h(x,u)‖1,

which combines with (4.12) to yield

rh

[ ∑
j :hj >0

h′
j (x,u)d̄ +

∑
j :hj =0

|h′
j (x,u)d̄| +

∑
j :hj <0

−h′
j (x,u)d̄

]
≤ λT

h h′(x,u)d̄.

(4.13)
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By using a similar way we can prove that

r�κ� ≤ λ��′
S(ω,w)d. (4.14)

Second, we consider the inequality part. From (4.11), to prove the conclusion (4.9)
suffices to prove the follows:

rg
(
max{gi(x,u),0})′

(x,u; d̄) ≤ (λg)ig
′
i (x, u)d̄ (i = 1,2, . . . , l). (4.15)

We consider two cases for proving (4.15). Note that from the second relationship
in the KKT condition (4.2) it implies

rg ≥ (λg)i (i = 1, . . . , l). (4.16)

Case I: ξi = 0.
If gi(x,u) > 0, then from the KKT condition (4.2) we derive that(

max{gi(x,u),0})′
(x,u; d̄) = g′

i (x, u)d̄ ≤ −gi(x,u) + ξi < 0.

This implies (4.15) from (4.16).
If gi(x,u) = 0, then it holds(

max{gi(x,u),0})′
(x,u; d̄) = max{g′

i (x, u)d̄,0} = 0.

From the complementarity condition in (4.2) we have

(λg)ig
′
i (x, u)d̄ = (λg)i(gi(x,u) + ξi) = 0.

So (4.15) holds.
If gi(x,u) < 0, on the one hand, the complementarity condition shows that

(λg)ig
′
i (x, u)d̄ = −(λg)i(gi(x,u) − ξi) ≥ 0.

On the other hand, it has

rg
(
max{gi(x,u),0})′

(x,u; d̄) = 0.

This also implies (4.15).
Case II: ξi > 0.
For this case, we have rg = (λg)i since λξ = 0 and the second expression in (4.2).
If gi(x,u) > 0, the conclusion (4.15) is straightforward.
If gi(x,u) = 0, the complementarity condition in (4.2) implies the follows

rg
(
max{gi(x,u),0})′

(x,u; d̄) = rg max{g′
i (x, u)d̄,0}

= max{(λg)ig
′(x,u)d̄,0} = max{(λg)iξi ,0}

= (λg)iξi = (λg)ig
′
i (x, u)d̄.

This also proves (4.15).
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If gi(x,u) < 0, the complementarity condition implies that

rg
(
max{gi(x,u),0})′

(x,u; d̄) = 0 ≤ (λg)i(−gi(x,u) + ξi) = (λg)ig
′(x,u)d̄.

This proves (4.15).
Hence, for all cases, the result (4.15) holds. Combining with (4.11), (4.13)–(4.14)

and (4.15) the inequality (4.9) is proved.
The conclusion (4.10) follows from (4.9) and the first equality of (4.2).
(ii) The conclusion is obtained from the conclusion (i), the positive definite matrix

W and d �= 0.
We complete the proof of the proposition. �

Remark 4.2 (i) Proposition 4.1 shows that line search in Step 4 of Algorithm 4.1 is
well-defined for d �= 0, so does the smoothing SQP method when εk > 0 and Wk to
be a symmetric positive definite matrix at each iteration. On the other hand, from
Remark 4.1 the algorithm will stop when ‖d‖ is sufficiently small.

(ii) Assume that rk = r∗ for large k with constant r∗. Then Algorithm 4.1 implies∑l
i=1 ξi = 0. From the KKT system (4.2) of subproblem (4.1), we can derive that

d = 0 to be a KKT point of (3.4).

5 Global convergence

We make the following standard assumptions in order to prove the global convergence
of Algorithm 4.1.

(A1) There exist two positive scalars m and M with m ≤ M such that the symmetric
matrix Wk in Algorithm 4.1 satisfies the following condition

m‖w‖2 ≤ wT Wkw ≤ M‖w‖2 (5.1)

with any vector w = (x,u, y) ∈ Rn+m+1.
(A2) For all large k, it holds rk = r∗ > 0, r

g
k = rk = r∗, rh

k = r�
k = rh∗ .

We have the following global convergence theorem.

Theorem 5.1 Assume that (A1) and (A2) hold. Let {wk} and {εk} be the sequences
generated by the smoothing SQP algorithm.

(i) Assume that {wk} has a limiting point. Then

lim
k→∞ εk = 0. (5.2)

(ii) Let

K = {k | ‖dk‖ ≤ εk}. (5.3)

If {wk}k∈K has an accumulation point w∗ = (x∗, u∗, y∗), then w∗ is a general-
ized stationary point of (3.1).
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Proof (i) It is obvious that {εk} is bounded. Suppose that ε∗ is an accumulation point
of {εk}. If ε∗ > 0, then ‖dk‖ ≤ εk occurs only finitely many times. This means that
after a finite number of iterations, εk remains unchanged, i.e., for some k0 and all
k ≥ k0, εk = εk0 . In this case, our smoothing method reduces to the smooth mod-
ified SQP method proposed in [9] for a smooth nonlinear optimization, see Ap-
pendix in [9]. Then Theorem A.1 in [9] indicates that dk → 0, which implies that
‖dk‖ ≤ εk0 for sufficiently large k. This contradicts with the above conclusion. There-
fore, limk→∞ εk = 0.

(ii) By the assumption (A2), it implies that the KKT multiplier sequence {λk}k∈K

is bounded and ξk = 0 for all large enough k. We also obtain that limk→∞,k∈K dk = 0
Without loss of generality, we assume that

lim
k→∞,k∈K

wk = w∗.

It follows from the penalty update rule in Step 3 of the algorithm and the assumption
(A2) that ξk = 0 and rk = r∗ for all sufficiently large k. Moreover, from the update
rule in Step 3 of Algorithm 4.1, it implies that the multiplier {λk} = {(λg,λh,λ�,λξ )}
and {dk}k∈K to be bounded. Passing to the subsequence, we may assume that

lim
k→∞,k∈K

dk = d∗, lim
k→∞,k∈K

Wk = W ∗, lim
k→∞,k∈K

λk = λ∗ = (λ∗
g, λ

∗
h, λ

∗
�).

Then from ε∗ = 0 in (i) and the algorithm, it holds d∗ = 0, d̄∗ = 0 and ξ∗ = 0.
Finally, we have, from Proposition 2.1 and (4.2), that

0 ∈
(∇f (x∗, u∗)

0

)
+

(
h′(x∗, u∗)T

0

)
λ∗

h +
(

g′(x∗, u∗)T

0

)
λ∗

g +
(

∂�(x∗, u∗)T

∂|y∗|
)

λ∗
�,

h(x∗, u∗) = 0,

0 ≤ −g(x∗, u∗) ⊥ λ∗
g ≥ 0,

�(x∗, u∗, y∗) ≡ −φ(x∗, u∗) + |y∗| + δ = 0.

(5.4)

Above expression means that w∗ = (x∗, u∗, y∗) is the generalized stationary point of
(3.1). The theorem is proved. �

In the remainder of this section, we consider that which conditions can satisfy the
assumption (A2). Denote

H(ε,w) =
(

h(x,u)

�s(ε, x,u, y)

)
.

By using a similar proof we can obtain the following conclusion.

Proposition 5.1 Let {(εk,w
k)} be generated by Algorithm 4.1 and (ε∗,w∗) be an

any accumulation point of {(εk,w
k)}. Suppose that

(i) (A1) holds;
(ii) {wk} is bounded;
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(iii) The generalized Jacobian ∂wH(ε∗,w∗) has full row rank with ε∗ ≥ 0;

(iv) For any V ∈ ∂wH(ε∗,w∗), there exists d = (
d̄
dy

)
with d̄ = (

dx
du

)
such that

g′(x,u)d̄ + g(x∗, u∗) < 0, V d + H(ε∗,w∗) = 0.

Then the condition (A2) holds.

Proof The proof process is similar to the one of Theorem A.2 in [9], just to replace
the Jacobian matrix of smooth function by the generalized Jacobian V . Here we omit
the detailed process of the proof. �

6 Numerical example

In this section, we present an example for testing the NPSC model and Algorithm 4.1
proposed in Sect. 4. The WSCC 3-generators with 9-buses is chosen from PST
(Power System Toolbox), see Fig. 1 for the system configuration.

The tested system has three generators, three loads and nine transmission electric-
ity lines. Three loads (Load A-Load C) adopt dynamic model where the active power
and reactive power are set

−P d
i = −P d0

i + Diδ̇i , −Qd
i (Vi) = −Qd0

i + α2V
2
i + α1Vi

with Di = 2.5 and Table 1, where δ̇i means the differential of δi to time t .

Fig. 1 WSCC 3-generators
with 9-buses system

Table 1 Load constants
Load A Load B Load C

Pd0
i

1.18 0.84 1.05

Qd0
i

0.1 0.1 0.1
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Table 2 Wastage coefficients of
generators a b c

PG1 8.20 12.712 30.00

PG2 8.76 12.001 25.00

PG3 6.46 12.290 45.00

In the tested system, the objective is to minimize the total energy wastage of gen-
erating fuel:

W(P) =
ng∑
i=1

Wi(PGi) =
ng∑
i=1

(aiP
2
Gi + biPGi + ci) (6.1)

with wastage coefficients (ai, bi, ci) (i = 1, . . . , ng) given by Table 2.
Let the system consist of ng generators and (nl − ng) load buses. Denote

Q = {1, . . . , nl − ng}, C = {nl − ng + 1, . . . , nl}, N = {nl + 1, . . . , n}

to be the index sets of load buses, generator terminal buses, and generator-inner buses,
respectively. For the tested system of the 3-generators with 9-buses, we have nl =
9, ng = 3, n − nl = 3.

The dynamic description of power systems is DAEs as

⎧⎪⎪⎨
⎪⎪⎩

δ̇ = T2ωg − T1D
−1
l T T

1 [f (δ,V ) − P ],
ω̇ = −M−1

g Dgωg − M−1
g T T

2 [f (δ,V ) − P ],
g(δ,V ) = 0,

(6.2)

where the n-th bus is chosen as the reference bus; δ = (δ1, . . . , δn−1)
T and V =

(V1, . . . , Vn)
T are bus angle and voltage magnitude; ωg = (ωnl+1, . . . ,ωn)

T is the
angle speed of generators; Dl,Dg and Mg are matrices of load-frequency, generator
damp coefficient, and generator inertial coefficient, respectively. Denote

T1 =
(

Inl

0

)
∈ R(n−1)×nl , T2 =

(
0 −1n−ng

Ing−1 −1ng−1

)
∈ R(n−1)×ng

with Ik to be k × k unit matrix and 1k = (1, . . . ,1)T ∈ Rk ; Pi = PGi − Pli is the
injective active power of buses. The functions in (6.2) are defined by

{
f (δ,V ) = (f1(δ,V ), . . . , fn−1(δ,V ))T ,

fi(δ,V ) = Vi

∑n
j=1 Vj (Gij cos δij + Bij sin δij ).

(6.3)

{
g(δ,V ) = (g1(δ,V ), . . . , gnl−ng (δ,V ), gnl+1(δ,V ), . . . , gn(δ,V ))T ,

gi(δ,V ) = Vi

∑n
j=1 Vj (Gij sin δij − Bij cos δij ) − Qd

i (Vi).
(6.4)
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The corresponding function of dynamic system (6.2) is denoted by

F(δ,ωg,V,P ) =
(

T2ωg − T1D
−1
l T T

1 [f (δ,V ) − P ]
−M−1

g Dgωg − M−1
g T T

2 [f (δ,V ) − P ]

)
. (6.5)

Then from g(δ,V ) = 0, the derivative of F(·) with respect to (δ,ωg) is( −T1D
−1
l J F̃ (δ,V ) T2

−M−1
g T T

2 J F̃ (δ,V ) −M−1
g Dg

)
∈ R(2n−nl−1)×(2n−nl−1), (6.6)

which is the function of (δ,V ,PG), and we denote it as ∇F(δ,V,PG) simply. Here
J F̃ (δ,V ) represents the reduce Jacobian of f (·) to variable δ

J F̃ (δ,V ) ≡ ∂f

∂δ
− ∂f

∂V

(
∂g

∂V

)−1
∂g

∂δ
.

Consider the steady stability, i.e., all the eigenvalues of ∇F are on the left half
plane. By the Cayley transformation, i.e., C(A) = (A − σI)−1(A + σI), the stable
constraint is formulated to the follows (see [11])

φ(δ,V ) = 1 − ‖C(∇F(δ,V,PG))‖1 ≥ γ (6.7)

with given constant γ > 0.
Finally, the NPSC model with respect to OPF problems is reformulated as

min
(δ,V ,PG)

W(δ,V,PG)

s.t. G(δ,V,PG) =
(

f (δ,V ) − (PG − Pl)

g(δ,V )

)
= 0,

Hmin ≤ H(δ,V,PG) ≤ Hmax,

φ(δ,V ) = 1 − ‖C(∇F(δ,V,PG))‖1 ≥ γ.

(6.8)

Here G(δ,V,PG) is called power flow equations with respect to active power and
reactive power, and δ̇i = 0 for steady state.

We choose σ = 9 in the Cayley transformation and γ = 10−4 in the stability con-
straint. The smoothing technology proposed in [11] is used to obtain the smoothing
function of ‖C(∇F(δ,V ))‖1 and to form the smoothing optimization problem.

In the numerical example, inequality constraints in (6.8) are set limits of line trans-
fer power Plinemax = 2.8. The inequality limits are with respect to the active and
reactive power of generators, and the voltages and angers of buses. The upper and
lower boundaries of them are set as:

Pgmin = (0.25,0.25,0.25)T , Pgmax = (2.5,2.5,2.5)T ,

Qgmin = (−0.8,−0.8,−0.8)T , Qgmax = (2.5,2.5,2.5)T ,

Vmin = 0.9 ∗ (1,1,1,1,1,1,1,1)T , Vmax = 1.1 ∗ (1,1,1,1,1,1,1,1)T ,
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Table 3 Numerical results for OPF problem

Wmin CEV P ∗
G1 P ∗

G2 P ∗
G3 Iter

Without-SC 138.4477 0.1134 ± 4.7099i 0.9221 1.8852 0.3335 40

γ = 0.003 138.9961 −0.0599 ± 4.9673i 0.4334 0.2500 2.4837 25

γ = 0.0003 138.6684 −0.0528 ± 4.9052i 0.4269 0.5194 2.1973 30

γ = 0.00003 138.6159 −0.0452 ± 5.0449i 0.3941 0.5495 2.1976 28

γ = 0.000003 138.6146 −0.0448 ± 5.0532i 0.3923 0.5504 2.1985 29

δmin = −45 ∗ (1,1,1,1,1,1,1,1)T , δmax = 45 ∗ (1,1,1,1,1,1,1,1)T .

The parameters of Algorithm 4.1 are chosen as follows:

r−1 = 103, δ1 = δ2 = 20, βε = 0.1, σ = 0.5,

τ = 0.8, ε0 = 10−4.

We use the usual stopping rule in SQP algorithm, i.e., ‖dk‖ ≤ 10−4, which is
also the adopted way in reference [9, 15]. It needs to explain that since the initial
smoothing parameter is chosen ε0 = 10−4, from the algorithm it holds εk ≤ 10−4. So
we omit the stopping rule of smoothing parameter ε.

In order to compare the effect of stability constraint, we also consider the ordinary
OPF problem in the example, i.e., without including stability constraint. The com-
puting results are reported in Table 3, where Wmin means the optimal value of the
objective; CEV expresses the Critical Eigenvalue, which is the maximal value of the
real part of eigenvalues; P ∗

Gi is the optimal solution with respect to active power at
the i-th generator; Iter indicates iterative number by using Algorithm 4.1.

From Table 3 we have the following conclusions:

• Without stability constraint in the OPF problem (denoted as Without-SC in Ta-
ble 3), we obtain an unsteady optimal solution. On the other hand, we find a stable
solution by solving NPSC with differently stable constant γ ;

• The larger the stability constant γ , the better the resulting stability of the system
becomes. Here the stability performance is described via the magnitude of negative
real part of the CEV(the Critical Eigenvalue of ∇F ).

7 Conclusions

This paper studies a class of nonlinear programs with stability constraints (NPSC).
The problem has a strong background and is an extension of ordinary nonlinear pro-
gramming problems. The models of stability constraints are discussed in detail in our
research for stability solution of nonlinear equations. In this paper, we combine the
stability constraint into optimization problems, which results in semismooth nonlin-
ear programming problems. Then the optimal conditions and smoothing algorithm
are investigated in this paper. The global convergence is also established. A numer-
ical example arising from power systems is tested. The computational result shows



196 X. Tong et al.

the efficiency of the NPSC model and the algorithm. The further research is to study
large-scale NPSC problems.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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