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Abstract A geometric proof is given in terms of Laguerre geometry of the theorem of
Bagchi, Brouwer and Wilbrink, which states that if a generalized quadrangle of order s > 1
has an antiregular point then all of its points are antiregular.
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1 Introduction

In design theory, in particular the study of incidence structures, characterizations of the clas-
sical examples play a basic role in the development of classification results as well as the
linkage of various incidence geometries. In the case of generalized quadrangles, some of
these results provide short and elegant proofs of classical theorems in circle geometries [9].

In the special case of a generalized quadrangle of order s, one of the oldest combinatorial
characterization results is that of W(s), namely, that a generalized quadrangle of order s > 1
is isomorphic to W(s) if and only if all of its points are regular [2]. Recall that W(s) consists
of the points of PG(3, s) and the totally isotropic lines with respect to a symplectic polarity
(see for example [4,5]). As is well-known, the dual of W(s) is Q(4, s), the points and lines of
the parabolic quadric in PG(4, s). Furthermore, Q(4, s) is self dual if and only if s is even.
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When s is odd, all points of Q(4, s) are antiregular. Whether the converse is true, namely, a
generalized quadrangle of (odd) order s > 1 is isomorphic to Q(4, s) if all of its points are
antiregular, is an open problem (see for example [10, Problem A.2.4]).

In this direction, there is the following characterization result by Mazzocca [6] and Payne
and Thas [7]: Let S be a generalized quadrangle of order s > 1, having an antiregular point
x . Then S is isomorphic to Q(4, s) if and only if there is a point y collinear with x, y �= x , for
which the associated affine plane is Desarguesian. In [7] the relation between antiregularity
of a generalized quadrangle and Laguerre geometry is given a thorough treatment and the
linkage to the classical example is thus provided by the classical Laguerre plane.

In view of the above result it is of interest to study generalized quadrangles with an an-
tiregular point. Remarkably, in their study on the dimensions of the binary codes of certain
generalized quadrangles, Bagchi et al. [1] have proven that for such a generalized quad-
rangle all of its points are antiregular [1, Theorem 3.8]. Since the proof of the result is
in terms of codes, the question has been raised as to whether a geometric proof can be
given [10, Problem A.2.9]. Accordingly, we recall the basic results we need from the the-
ory of generalized quadrangles in Sect. 2, review the relevant results in [1] and provide
elementary proofs for non-experts in Sect. 3, recall the results of [7] and study further the
circle geometry of Laguerre in some details in Sect. 4, and give a proof of the theorem
of Bagchi, Brouwer and Wilbrink cited above in terms of the properties of these circles in
Sect. 5.

2 Generalized quadrangles and antiregularity

In this section, we study the concept of antiregularity in a generalized quadrangle. First we
recall the definitions [8].

Definition 2.1 A finite generalized quadrangle (GQ) of order (s, t), s, t ∈ N, is an incidence
structure S = (P, B, I) in which P and B are nonempty sets of objects called points and
lines, respectively, and for which I is a symmetric point-line incidence relation satisfying the
following axioms:

G Q1 Each point is incident with 1 + t lines and two distinct points are incident with at
most one line.

G Q2 Each line is incident with 1+ s points and two distinct lines are incident with at most
one point.

G Q3 If y is a point and L is a line not incident with y, then there is a unique pair (z, M) ∈
P × B for which y I M I z I L .

The GQ S is said to have order (s, t); if s = t, S is said to have order s. There is a
natural point-line duality for GQ and we assume without further notice the dual theorems
and definitions.

Given a GQ S = (P, B, I), consider the graph � = (P, E), where {y, z} ∈ E (y �= z and
y, z ∈ P) if and only if there exists a line L in B such that both y and z are incident with L .
Write y ∼ z and say y and z are connected (or y is connected to z) if {y, z} ∈ E , and y � z
if y and z are not connected (in which case we also refer to y and z as non-connected points).
For y ∈ P , let y⊥ = {y} ∪ {z ∈ P|z ∼ y}.
Definition 2.2 Given a GQ S = (P, B, I), two distinct points y, z form an antiregular pair
if y � z and |x⊥ ∩ y⊥ ∩ z⊥| ≤ 2 for all x ∈ P\{y, z}. A point z is antiregular if y and z
form an antiregular pair for all y ∈ P\z⊥.
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Let S = (P, B, I) be a GQ of order s, s ≥ 3. We recall the following facts [8].

Lemma 2.3 The points y, z form an antiregular pair if and only if y � z and |x⊥∩y⊥∩z⊥| =
0 or 2 for all x ∈ P\(y⊥ ∪ z⊥).

Lemma 2.4 If the points y and z form an antiregular pair then s is odd.

Definition 2.5 The set y⊥ ∩ z⊥ for a pair of distinct points (y, z) is called the trace of (y, z)
and is denoted by tr(y, z).

We now describe another characterization of antiregularity using linear algebra [1]. Denote
by F2{P} the vector space over the finite field F2 with basis {{x}|x ∈ P}. There is a canonical
injection

ι : 2P → F2{P}
given by

S �→
∑

x∈S

{x}.

We shall identify S ⊂ P with ι(S) ∈ F2{P}. Let π be the F2-linear map from F2{P} to itself
given by π({x}) = x⊥\{x} for any x ∈ P . We write π(A) as πA for all A ⊂ P and π({x})
as πx for all x ∈ P .

Lemma 2.6 For all A, B ⊂ P, πA + πB = πA+B.

Proof This follows from the fact that A + B = (A ∪ B)\(A ∩ B). 
�
Lemma 2.6 will be used freely below and no explicit mention will be made of it. Using

the map π we describe another characterization of an antiregular pair of points in a GQ of
odd order s.

Theorem 2.7 [1] Let S = (P, B, I) be a GQ of odd order s. Two non-connected points y, z
of S form an antiregular pair if and only if πy + πz = πtr(y,z).

Proof Suppose y, z form an antiregular pair. By Lemma 2.3, for every point x ∈ P\(y⊥ ∪
z⊥), |x⊥ ∩ y⊥ ∩ z⊥| = 0 or 2. Hence every such point x is connected to an even number
of points in tr(y, z). Since s is odd, this is also true for the points y and z. It follows that
πy + πz = πtr(y,z).

Conversely, suppose πy + πz = πtr(y,z). Then for every point x ∈ P\(y⊥ ∪ z⊥), |x⊥ ∩
y⊥ ∩ z⊥| is even. In view of Lemma 2.3, we need only show that |x⊥ ∩ y⊥ ∩ z⊥| = 0 or 2
for every such x . To this end, define Ai = {x ∈ P\(y⊥ ∪ z⊥)||x⊥ ∩ y⊥ ∩ z⊥| = i}. By the
usual counting arguments, we have the equalities:

s+1∑

i=0

i |Ai | = |{(u, v)|u ∈ P\(y⊥ ∪ z⊥), v ∈ tr(y, z), u ∼ v}|=(s+1−2)s(s+1) = s3 − s,

s+1∑

i=0

i(i − 1)|Ai |

= |{(u, vi , v j )|u ∈ P\(y⊥ ∪ z⊥), vi , v j ∈ tr(y, z), vi �= v j , u ∼ vi , u ∼ v j }|
= (s + 1)s(s + 1 − 2)

= s3 − s.
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Subtracting we obtain
∑s+1

i=0 i(i − 2)|Ai | = 0. Since |Ai | = 0 for all odd i , this gives

0 =
∑

4≤i≤s+1, i even

i(i − 2)|Ai |,

which implies that |Ai | = 0 for all i ≥ 3, as we wished. 
�
We shall see in the next section that the following fact has interesting consequences [1].

We give here an elementary proof for non-experts.

Theorem 2.8 [1] Let S = (P, B, I) be a GQ of odd order s, and z ∈ P . The following
conditions are equivalent:

(i) For every y ∈ P\z⊥, πy + πz = πy⊥∩z⊥ .

(ii) For every y ∈ P\z⊥, there exists Y ⊂ z⊥ such that πy = πY .

Proof (i) ⇒ (ii) Take Y = {z} ∪ (y⊥ ∩ z⊥).
(ii) ⇒ (i) Write y⊥ ∩ z⊥ = {u1, u2, . . . , us+1} and let Lz = {L1, L2, . . . , Ls+1} be the

pencil of lines on z where ui is incident with Li for 1 ≤ i ≤ s + 1. We study the intersection
of Y with each line Li . We first show that either Li\{ui , z} ⊂ Y or (Li\{ui , z}) ∩ Y = ∅.
It suffices to show that there do not exist two points p, q such that p ∈ (Li\{ui , z})\Y and
q ∈ (Li\{ui , z}) ∩ Y . Suppose the contrary. Then p is connected to |Li ∩ Y | points in Y
while q is connected to |Li ∩ Y | − 1 points in Y . Since πy = πY , every point not in y⊥\{y}
connects to an even number of points in Y . In particular, both p and q connect to an even
number of points in Y . This implies that both |Li ∩ Y | and |Li ∩ Y | − 1 are even, which is a
contradiction.

Next we deduce that there are two possibilities for the intersection of Y with each line
Li , namely, Li ∩ Y = Li\{ui } or Li ∩ Y = {ui , z}. In the first case we call Li a line of
type (I), and in the second case we call it a line of type (II). If Li\{ui , z} ⊂ Y , then Li is
of type (I). Indeed, since πy = πY , every point in y⊥\{y} connects to an odd number of
points in Y . In particular, ui is connected to an odd number of points in Y . This means that,
as |(Li\{ui , z}) ∩ Y | = s − 1, which is even, z must be in Y . Now if ui is also in Y , then for
p ∈ Li\{ui , z}, p is connected to an odd number of points in Y . This is a contradiction since
p /∈ y⊥\{y} and we have noted in the paragraph above that in this case the number must be
even. Similar arguments show that if (Li\{ui , z}) ∩ Y = ∅, then Li is a line of type (II).

Finally we show that we can change pairs of lines of type (I) into type (II) without changing
πY . Note that |{u1, u2, . . . , us+1} ∩ Y | is even as y /∈ y⊥\{y}, i.e. there is an even number
of lines of type (II) in Lz . Since s + 1 is even, the number of lines of type (I) is also even,
and so we may assume that all lines are of type (II), i.e. Y = {z, u1, u2, . . . , us+1}. Thus
πY = πz + πy⊥∩z⊥ , which gives (i).

So suppose ui , u j are two distinct points not in Y , i.e. Li , L j are of type (I). We show
that if we convert them into lines of type (II), then πY ∗ = πY , where Y ∗ = (Y\(Li ∪ L j )) ∪
{ui , u j , z}. To this end, let q ∈ P and let n be the number of points in Y connected to q . We
first consider the case where q /∈ (Li ∪ L j ). There are three possibilities: (a) q ∼ ui and
q ∼ u j . Here q is connected to n + 2 points in Y ∗; (b) q is connected to exactly one point
in {ui , u j }. Here q is connected to n + 1 − 1 = n points in Y ∗; (c) q � ui and q � u j .
Here q is connected to n − 2 points in Y ∗. Next we consider the case where q ∈ (Li ∪ L j ).
Again there are three possibilities: (a) q = z. Here q is connected to n − 2(s − 1) + 2
points in Y ∗; (b) q = ui or q = u j . Here q is connected to n − (s − 1) points in Y ∗;
(c) q ∈ (Li ∪ L j )\{ui , u j , z}. Here q is connected to n − (s − 2) + 1 = n − (s − 3) points
in Y ∗.

123



A geometric proof of a theorem on antiregularity of generalized quadrangles

Since s is odd, the parity of n is invariant under the change in types of Li , L j . As a result,
πY ∗ = πY . This completes the proof of the theorem. 
�

3 Antiregularity and dimensions of GQ-related binary codes

In this section we recall the binary codes spanned by the point neighbourhoods of a generalized
quadrangle S = (P, B, I) of odd order s [1]. We shall study their dimensions and the geo-
metrical implications they have on the incidence structure itself. The results are all contained
in [1] but again we shall provide elementary proofs for non-experts. Recall the vector space
F2{P} of Sect. 2. This vector space is provided with the standard symmetric bilinear form
(,) defined by ({x}, {x}) = 1 and ({x}, {y}) = 0 for x, y ∈ P, x �= y. For any U ⊂ F2{P},
define U⊥ = {v ∈ F2{P}|(u, v) = 0 ∀ u ∈ U }.

Consider the code P = π(F2{P}) = 〈πx |x ∈ P〉F2
, and for z ∈ P the subcode Pz =〈

πx |x ∈ z⊥〉
F2

. We first note the following upper bound for the dimension of P .

Lemma 3.1 dim P ≤ (s + 1)(s2 + 1)/2.

Proof It is readily verified that P is a subspace of P⊥. Then dim P ≤ dim P⊥ and so
2 dim P ≤ dim P⊥ + dim P = dim 〈{x}|x ∈ P〉F2

= |P| = (s + 1)(s2 + 1). 
�
Clearly, dim Pz is a lower bound for dim P .

Theorem 3.2 dim Pz = s2 + 1.

Proof By Lemma 2.6, {A ⊆ z⊥|πA = 0} is a vector space. Since dim Pz = |z⊥|− dim{A ⊆
z⊥|πA = 0}, we study the structure of A ⊆ z⊥ which satisfies πA = 0.

Denote by Lz the set of all lines incident with z, and for L ∈ Lz , write L ′ = L\{z}. Let
A ⊆ z⊥ such that πA = 0. We claim that

A =
⋃

L∈T
L ′

for some T ⊆ Lz with |T | even. To see this we first note that πA = 0 if and only if every
point is connected to an even number of points in A. Now consider A∩ L ′ for L ∈ Lz . If there
exist p, q ∈ L ′ such that p ∈ A but q /∈ A, then, since every point in z⊥\L is collinear with
neither p nor q, p is connected to |A∩ L|−1 points in A and q is connected to |A∩ L| points
in A. However, |A ∩ L| − 1 and |A ∩ L| cannot be both even and we have a contradiction.
Hence A ∩ L ′ = ∅ or L ′, i.e. either L ′ ⊆ A or L ′ ∩ A = ∅. Next we check that z /∈ A. Indeed,
if z ∈ A, then for L ∈ Lz , every point in L ′ is connected to either 1 or s points in A which
is a contradiction as s is odd. Finally, since |(z⊥\{z}) ∩ A| is even and s is odd, |T | is even.
This proves the claim.

Conversely we claim that by taking any nonempty subset T ⊆ Lz with |T | even, πA = 0,
where A = ⋃

L∈T L ′. We verify this by checking that every point is connected to an even
number of points of A. If x ∈ P\z⊥, then x is incident with exactly one point in every L in T
and x � z. This implies that x is connected to an even number of points in A. If y ∈ z⊥\A,
then y is not connected to any point in A if y is different from z. Note that z is connected to
all points of A, a set of even cardinality. Finally, if w ∈ A let Lw be the line in T containing
w. Then w is connected to all points in (Lw ∩ A)\{w}, i.e. s − 1 points in A. As s is odd, w

is connected to an even number of points in A. This proves the claim.
In conclusion, dim{A ⊆ z⊥|πA = 0} = |Lz | − 1 = s. Thus dim Pz = |z⊥| − dim{A ⊆

z⊥|πA = 0} = s|Lz | + 1 − s = s(s + 1) + 1 − s = s2 + 1. 
�
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The computation of the dimension of these codes is related to the geometry of the GQ in
the following way. Let z be a point of a GQ of odd order s. We are interested in determining
whether it is an antiregular point. By Theorems 2.7 and 2.8, this is equivalent to asking
whether it is true that for every y ∈ P\z⊥, there exists Y ⊂ z⊥ such that πy = πY . Now the
last statement is equivalent to having P = Pz , which in turn is equivalent to having dim P
= dim Pz . It follows that if z is an antiregular point of S, then dim P = s2 + 1, by Theorem
3.2, and, by the same theorem, this implies that for any other point z′, dim P = dim Pz′ ,
i.e. P = Pz′ . As explained above, this is equivalent to saying that z′ is antiregular. We have
recounted the following theorem of Bagchi, Brouwer and Wilbrink:

Theorem 3.3 [1] If a finite generalized quadrangle of order s has one antiregular point then
all of its points are antiregular.

Proof In the above the result is obtained under the assumption that the order of the GQ is
odd. But this assumption is a consequence of the hypothesis, by Lemma 2.4. 
�

4 Laguerre geometry

We begin by summarizing some of the basic facts in Laguerre geometry and then recall the
canonical correspondence between a finite Laguerre plane of odd order and a generalized
quadrangle with an antiregular point [7].

Definition 4.1 A finite Laguerre plane is a finite incidence structure L = (P, B1 ∪ B2, I)
with P the point set, B1 the line set, B2 the circle set, and I the incidence relation satisfying
the following axioms:

L1 Each point is incident with exactly one element of B1.
L2 Each line and each circle intersect in exactly one point.
L3 Any three pairwise non-collinear points are incident with exactly one circle.
L4 If x and y are non-collinear points and C is a circle incident with x but not y, then there

is a unique circle C ′ incident with y and intersecting C only at x .
L5 There is a point x and a circle C with x not incident with C ; each circle is incident with

at least three points.

Let L = (P, B1 ∪ B2, I) be a Laguerre plane and x ∈ P . The internal structure Lx =
(Px , Bx , Ix ) is defined as follows: Px consists of all points of P not collinear with x, Bx con-
sists of all lines not incident with x and all circles incident with x , and Ix = I∩(Px ×Bx ). It is
readily verified that Lx is an affine plane, and the order of the affine plane is independent of the
choice of x . This order is the order of the Laguerre plane L. For a Laguerre plane of order s,
we have that |P| = s(s + 1), |B1| = s + 1, |B2| = s3, each line is incident with s points,
each circle is incident with s + 1 points, and each point is incident with 1 line and s2 circles.

We next recall the canonical correspondence between finite Laguerre planes of odd
order and the generalized quadrangles with a distinguished antiregular point [7]. Given a
Laguerre plane L = (P, B1 ∪ B2, I) of odd order s, consider the following incidence struc-
ture S = (P∗, B∗, I∗), where the point set P∗ consists of (i) the symbol (∞), (ii) the points of
P , and (iii) the circles in B2; and the line set B∗ consists of (a) the lines in B1 with (∞) added
to each line, and (b) the pencils of mutually tangent circles of L with the point of tangency
added to each pencil. A point x of type (ii) is on a line of type (a) and on each pencil of mutu-
ally tangent circles at x . A point C of type (iii) is on each pencil in (b) containing C . Then it
can be shown that S is a generalized quadrangle of order s and (∞) is an antiregular point.
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Conversely, let S = (P∗, B∗, I∗) be a generalized quadrangle of order s with a fixed
antiregular point x∞. By Lemma 2.4, s is odd. Let L = (P, B1 ∪ B2, I), where the point
set P = x⊥∞\{x∞}, the line set B1 consists of the lines in B∗ incident with x∞ but with x∞
deleted from each line, the circle set B2 consists of the sets tr(y, x∞) where y ∈ P∗\x⊥∞,
and I is the natural incidence. Then it can be shown that L is a Laguerre plane of order s. We
summarize the discussion above in the following lemma:

Lemma 4.2 [7] The following concepts are equivalent:

(i) A Laguerre plane of odd order s.
(ii) A generalized quadrangle of order s with an antiregular point x.

It is also readily seen that the correspondence between the two structures is canonical in
the sense that if we apply the corresponding procedures consecutively we obtain a structure
isomorphic to the one we started with.

We now prepare some lemmas to be used in the next section where a geometric proof of
Theorem 3.3 is given.

Lemma 4.3 Let L = (P, B1 ∪B2, I) be a Laguerre plane of odd order s ≥ 3. Let C, C ′ ∈ B2

be two circles tangent at x ∈ P . Let y, z ∈ P\{x} be two distinct points on C. Then there
exists a unique circle C ′′ ∈ B2\{C} such that y, z are on C ′′ and C ′′ and C ′ are tangent.

The above lemma, formulated in terms of the generalized quadrangle associated with the
Laguerre plane, is Lemma 2.2.1 of [3]. Hence there is no need to repeat the proof.

Lemma 4.4 Let L = (P, B1 ∪ B2, I) be a Laguerre plane of odd order s ≥ 3. Let C ∈ B2

be a circle with points x0, x1, . . . , xs on C. Let a be a point not on C and collinear with
x0. Let Ct (a, xi ) be the circle on a and tangent to C at xi , 1 ≤ i ≤ s. Then: (i) For every
b ∈ P\{x0, . . . , xs, a}, b is on either 0 or 2 circles in {Ct (a, xi )|1 ≤ i ≤ s}. (ii) Ct (a, xi )

and Ct (a, x j ) have exactly 2 points in common for all i, j , where 1 ≤ i < j ≤ s.

Proof (i) Let b be a point on Ct (a, xi ) for some i ∈ {1, . . . , s} and b �= a. Then by Lemma 4.3,
there exists a unique circle Ct (a, x j ) on b for some j �= i . (ii) This follows from (i). (Alter-
natively, observe that if Ct (a, xi ) and Ct (a, x j ) are tangent at a, then Ct (a, xi ), Ct (a, x j )

and C are three pairwise tangent circles with three points of tangency xi , x j and a.
In the corresponding GQ provided by Lemma 4.2 we then have a triangle, which is
impossible.) 
�

The above lemma, formulated in terms of the generalized quadrangle associated with the
Laguerre plane, is also immediate from Lemma 2.2.1 cited above.

Lemma 4.5 Let L = (P, B1 ∪B2, I) be a Laguerre plane of odd order s ≥ 3. Let C, C ′ ∈ B2

be two distinct circles which are not tangent to each other. Then:

(i) If C and C ′ have no common point, then for any point a which is on neither C nor C ′,
there is an even number of circles containing a and tangent to both C and C ′.
(ii) If C and C ′ have two common points, say x0 and x1, then

(a) for each a which is on neither C nor C ′ and collinear with xi , i = 0 or 1, there is an
odd number of circles containing a and tangent to both C and C ′;
(b) for each a which is on neither C nor C ′ and collinear with neither x0 nor x1, there
is an even number of circles containing a and tangent to both C and C ′.
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Proof (i) Let {x0, x1, . . . , xs} and {y0, y1, . . . , ys} be the sets of points on C and C ′ respec-
tively, where x0 and y0 are collinear with a. Let C = {Ct (a, xi )|1 ≤ i ≤ s}, where Ct (a, xi )

is as in Lemma 4.4. Let n be the number of circles containing a and tangent to both C and C ′.
If n = 0 then we are done. Suppose n > 0, i.e. C ′ is tangent to at least one circle in C. Let k be
the number of circles in C disjoint from C ′. Then there are s − n − k circles in C each having
two points in common with C ′. Let A = {(y, Ct (a, xi ))|yIC ′, yICt (a, xi ), 1 ≤ i ≤ s}. We
show that n is even by counting |A| in two ways. Thus let m be the number of points on C ′
incident with a circle in C. By Lemma 4.4 (i), each of the m points is on exactly two circles
in C. It follows that 2m = n + 2(s − n − k) and so n is even.

(ii) (a) Let {x0, x1, . . . , xs} and {x0, x1, y2, . . . , ys} be the sets of points on C and C ′
respectively, where without loss of generality we may assume that x0 is collinear with a.
Define n, k, m and A as in the proof of part (i). Note that Lemma 4.4 (i) applies to the points
of C ′ except x0 and x1 and that x1ICt (a, x1). It follows that 2(m −1)+1 = n +2(s −n − k)

and so n is odd.
(b) Let {x0, x1, . . . , xs} and {x0, x1, y2, . . . , ys} be the sets of points on C and C ′ respec-

tively, where without loss of generality we may assume that x2 and y2 are collinear with a.
Let C = {Ct (a, xi )|0 ≤ i ≤ s, i �= 2}. Define n, k, m and A as in the proof of part (i). In this
case 2(m − 2) + 2 = n + 2(s − n − k) and so n is even. 
�

5 A geometric proof of Theorem 3.3

In this section we give a proof of Theorem 3.3 using Laguerre geometry. Thus, let S = (P,

B, I) be a GQ of (odd) order s with an antiregular point z ∈ P . Let z′ be another point. We
want to prove that z′ is antiregular.

First we consider the case where z′ ∈ z⊥\{z}. Let u, u′ ∈ P\{z′} be two distinct points such
that z′

� u � u′
� z′. To prove that z′ is antiregular, it suffices to show that |z′⊥ ∩ u⊥ ∩ u′⊥ |

is even. Indeed, from the usual counting argument presented in the proof of Theorem 2.7,
this implies that |z′⊥ ∩ u⊥ ∩ u′⊥ | = 0 or 2 and Lemma 2.3 applies. There are three cases to
consider: (i) |{u, u′} ∩ z⊥| = 2, (ii) |{u, u′} ∩ z⊥| = 1, and (iii) |{u, u′} ∩ z⊥| = 0. For (i), as
z is antiregular, |z′⊥ ∩ u⊥ ∩ u′⊥ | = 2. For (ii), we may assume without loss of generality that
u ∈ z⊥ and u′ /∈ z⊥. If |z′⊥ ∩u⊥ ∩u′⊥ | = 0, then we are done. Suppose |z′⊥ ∩u⊥ ∩u′⊥ | ≥ 1.
Let v ∈ z′⊥ ∩ u⊥ ∩ u′⊥ . Applying Lemma 4.3 with z′, u, u′ and v respectively playing the
roles of y, z, C ′ and C of Lemma 4.3, we obtain in the Laguerre plane L a unique circle C ′′
containing y, z and tangent to C ′, i.e. in S a unique point, say w, which is in z′⊥ ∩ u⊥ ∩ u′⊥

and different from v. Thus |z′⊥ ∩ u⊥ ∩ u′⊥ | = 2. For (iii), by applying Lemma 4.5 with
z′, u, u′ playing the roles of a, C, C ′ respectively, we conclude that |z′⊥ ∩ u⊥ ∩ u′⊥ | is even.

The other case is where z′ ∈ P\z⊥. Let tr(z, z′) = {u1, . . . , us+1}. Since u1 ∈ z⊥\{z}
and z′ ∈ u⊥

1 \{u1}, we are back in the previous case, and so the antiregularity of u1 follows
from that of z, and the antiregularity of z′ follows from that of u1. As a result, every point of
S is antiregular.

This completes the geometric proof of Theorem 3.3.
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