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Abstract Simulating turbulent flows in a city of many thousands of buildings using gen-
eral high-resolution microscopic simulations requires a grid number that is beyond present
computer resources. We thus regard a city as porous media and divide the whole hybrid
domain into a porous city region and a clear fluid region, which are represented by a mac-
roscopic k–ε model. Some microscopic information is neglected by the volume-averaging
technique in the porous city to reduce the calculation load. A single domain approach is used
to account for the interface conditions. We investigated the turbulent airflow through aligned
cube arrays (with 7, 14 or 21 rows). The building height H, the street width W, and the build-
ing width B are the same (0.15 m), and the fraction of the volume occupied by fluid (i.e. the
porosity) is 0.75; the approaching flow is parallel to the main streets. There are both micro-
scopic and macroscopic simulations, with microscopic simulations being well validated by
experimental data. We analysed microscopic wind conditions and the ventilation capacity
in such cube arrays, and then calculated macroscopic time-averaged properties to provide
a comparison for macroscopic simulations. We found that the macroscopic k–ε turbulence
model predicted the macroscopic flow reduction through porous cube clusters relatively well,
but under-predicted the macroscopic turbulent kinetic energy (TKE) near the windward edge
of the porous region. For a sufficiently long porous cube array, macroscopic flow quantities
maintain constant conditions in a fully developed region.
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130 J. Hang, Y. Li

1 Introduction

Modern compact cities generally consist of agglomerations of buildings and other solid
obstacles, with small voids between neighbouring buildings and large voids such as street
networks. Though the urban canopy layer provides residents with shelter, protection and
convenience, it also disturbs the turbulent flow in the atmospheric boundary layer and causes
a blockage to the approaching flow. In crowded cities, concentrated human activities may
produce a large amount of airborne contaminants (Fenger 1999). A study of wind conditions
in the urban canopy layer of a city aids the understanding of urban airflow in redistributing
and/or removing airborne pollutants. The question is how to quantify the airflow below the
canopy layer. In analogy to the ventilation of buildings (Etheridge and Sandberg 1996), the
concept of ventilation flow rates and the air exchange rate (ACH, i.e. the air change rate per
hour) may be introduced. The city ventilation flow rates refer to the amount of external air
entering and flowing through the urban canopy layer. The ACH for a space in the urban can-
opy layer represents the relative amount of air exchange between the space and the external
air surrounding it, which can be calculated via the volumetric ventilation flow rates and the
volume of the space.

Computational fluid dynamics (CFD) simulations have been used to predict urban wind
conditions. Previous studies may be divided into two types, i.e. the mesoscale type (up to
10–200 km horizontal scale) and the microscale type (up to 100 m to 2 km horizontal scale).
The former type (Liu et al. 2001; Ding et al. 2004; Tong et al. 2005) usually considers a city as
an enhanced surface roughness, and emphasizes the effects of geographic and meteorological
conditions as well as regional pollutant transport on wind conditions and urban pollution on
a larger scale, without any flow information below the urban canopy layer on the building or
street scale. The latter type studies turbulent airflows and pollutant dispersion on the micro-
scale, i.e. around isolated buildings (Li and Stathopoulos 1997), in two-dimensional (2D)
street canyons (Oke 1988; Sini et al. 1996; Baik and Kim 2002; Liu et al. 2005; Xie et al.
2006; Li et al. 2009), in groups of building arrays (Hanna et al. 2002; Chang and Meroney
2003; Britter and Hanna 2003; Belcher 2005; Martilli and Santiago 2007; Santiago et al.
2007, 2008) using large-eddy simulation (LES) or microscopic simulations with Reynolds-
averaged Navier–Stokes (RANS) turbulence models or wind-tunnel experiments. Cheng et al.
(2003) investigated the turbulent flow over a matrix of cubes with a LES model and a RANS
standard k–ε model. They reported that the LES model produces the turbulence structure
more precisely than the RANS standard k–ε model, but with a calculation load nearly 100
times greater than the RANS turbulence model.

We aim to study wind conditions in a city with a scale of up to 2 km or more than 10 km,
in which thousands of buildings are included, and also quantify wind conditions on a street
scale. We treat a city with agglomerations of building obstacles as porous media made up
of solid buildings with street voids between them. The airflow in a porous city region is
solved by macroscopic simulations with a porous turbulence model, in which some micro-
scopic information is neglected by the volume-averaging technique and the turbulent airflow
between individual obstacle elements is unresolved, while the effects of the building cluster
on the urban airflow are modelled as sink or source terms for momentum and turbulence in
the transport equations.

Turbulence and transport flow in porous media have been found in many industries and
engineering applications, including chemical reactors or heat exchangers, plant canopies
or soil mechanics, etc. The flow properties in porous models depend on the interaction of
the overlying clear-fluid region with the porous region, the porosity and the permeabil-
ity of porous media. General porous models in previous studies were derived from the
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Wind Conditions in Idealized Building Clusters 131

volume-averaging technique on a representative elementary volume (REV) and based on
Darcy’s Law or its extension. These models focused on the global flow characteristics in
the REV and neglected detailed flow information. All the volume-averaging techniques on
microscopic equations generate several additional terms to model the viscous and drag forces
in porous media together providing closure problems for these additional terms (Antohe and
Lage 1997; Nakayama and Kuwahara 1999; Getachew et al. 2000; Pedras and de Lemos
2000; Lien et al. 2005; Chandesris et al. 2006; Kuwahara et al. 2006). Flow through a
packed city can be assumed to be an incompressible turbulent flow in a rigid isotropic
and fixed porous matrix with high Reynolds number. The experientially based Brinkman–
Forchheimer-extended Darcy (BFD) flow model is widely used, possibly because of its
similarity to the Navier–Stokes equations. Regarding this model, Antohe and Lage (1997)
mathematically developed a two-equation macroscopic turbulence model for high Reynolds
number incompressible flow within fluid-saturated and rigid porous media, in which the
closure coefficients are the same as those in the standard k–ε turbulence model. In their
derivation, while modelling the form drag, only the Forchheimer terms that are linear in the
fluctuating velocities were retained. In their conclusion, for porous media of small perme-
ability, the effect of the solid matrix is to damp the turbulence, while in the case of large
permeability, it can enhance or damp turbulence. Getachew et al. (2000) pointed out that
neglecting the higher-order part may lose some significant effects of the Forchheimer term
because most of the statistical properties of turbulence are in the second-order correlation
terms. So they added the second-order correlation term into the Forchheimer term. The addi-
tional higher-order terms produce additional correlation coefficients. The model derived by
Antohe and Lage (1997) and modified by Getachew et al. (2000) may be considered as the
most comprehensive turbulence models used for flows in porous media and the most suit-
able one for this research. Because several closure coefficients in Getachew’s model are still
unknown and should be decided by numerical experiments using LES or direct numerical
simulation (DNS), we suggest using the model of Antohe and Lage (1997) for simulations in
future. Prakash et al. (2001a,b) studied the way that the porous features affect low Reynolds
number flow in the overlying fluid layer using the porous turbulence model developed by
Antohe and Lage (1997) and LDV visualization measurements, in which the Reynolds num-
ber, the effect of permeability, the height of the fluid layer and the thickness of the porous
media were estimated. They reported that the permeability of porous foam and the height
of the overlying fluid layer strongly influence the flow pattern in the overlying fluid region.
They also demonstrated the significant role of the interaction between the porous region and
the overlying clear-fluid region. There are few studies that use the porous turbulence model
developed by Antohe and Lage (1997) for a porous urban canopy flow.

Brown et al. (2001) performed a detailed wind-tunnel experiment of a group of low-rise
aligned seven-row cube building arrays (H = W = B = 0.15 m, the fraction of volume occu-
pied by air voids i.e. porosity φ= 0.75), using a pulsed-wire anemometer (PWA). Lien and
Yee (2004); Lien et al. (2005) carried out a detailed microscopic simulation of airflow in
similar cube arrays and then performed macroscopic simulations using a modified k–ε turbu-
lence model to study macroscopic airflow through and over porous media with cubic arrays.
In this research, the higher-order approximations of the source/sink terms in the k–ε equations
did not offer any predictive advantage. So we use the porous turbulence models developed
by Antohe and Lage (1997) to study the flow reduction through idealized porous building
clusters. Santiago et al. (2007) performed a detailed microscopic CFD simulation based on
a RANS standard k–ε turbulence model and analysed the flow structure in such a cube array
with detailed validation by wind-tunnel data. Then Martilli and Santiago (2007) and Santiago
et al. (2008) analysed the drag coefficient and spatially-averaged properties in this cube array.
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132 J. Hang, Y. Li

It may be mentioned that, following the model of Finnigan (2000) for flows in vegetation
canopies, Belcher et al. (2003) and Coceal and Belcher (2005) developed theoretical mod-
els to study the spatially-averaged mean flow and macroscopic velocity reduction through
sparse porous cube arrays (porosity=0.89) where the gap between obstacles is large. How-
ever, these theoretical models are invalid for the low-rise medium (porosity=0.75) cube
array (H/W = 1) because the skimming flow regime exists in such obstacle arrays.

2 Model Descriptions and Methodology

2.1 Microscopic and Macroscopic Equations

The urban airflow is a turbulent flow through, around and over groups of porous building
clusters with different porosities and building heights. The whole domain consists of a porous
city region and a clear airflow region with a macroscopic interface. We first study porous
cube arrays with a single porosity and uniform building height.

There are two kinds of average operators on the Navier–Stokes equations, the time-
average operator and local volume-average operator. With the time-average operator, the
general fluid property ψ can be divided into the time average ψ and the time fluctuating
component ψ ′,

ψ = 1

�t

t+�t∫

t

ψdt, (1a)

where ψ = ψ + ψ ′. With the volume-average operator, the property ψ can be divided into
the intrinsic average 〈ψ〉 f and its spatial variation ψ i in porous media,

〈ψ〉 f = 1

�V f

∫

�V f

ψdV (1b)

where ψ = 〈ψ〉 f +ψ i . In addition, the volume average 〈ψ〉v and the intrinsic average 〈ψ〉 f

are related by the porosity φ in porous media,

〈ψ〉v = 1

�V

∫

�V f

ψdV , (2a)

φ = �V f

�V
, (2b)

where 〈ψ〉v = φ〈ψ〉 f ,�V f is the fluid volume in a special REV �V and φ is the fraction
of fluid volume in porous media, i.e. the porosity.

The well-known RANS models, including k–ε turbulence models and the Reynolds stress
model (RSM), are the most commonly used to close the time-averaged Navier–Stokes equa-
tions. Here we use the standard k–ε turbulence model to estimate the mean flow and turbulence
characteristics for stationary, incompressible, and isothermal flow conditions in the clear fluid
region (outside of the porous city region) in macroscopic simulations, or in the whole flow
field in high-resolution microscopic simulations when there are not too many buildings and
the calculation load is not too great. The microscopic time-averaged governing equations
include the continuity equation,
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∂(ρui )

∂xi
= 0, (3)

the momentum conservation equation,

∂(ρui u j )

∂x j
= ∂

∂x j

[
(μ+ μt )

∂ui

∂x j

]
−

(
∂p

∂xi
+ 2

3
ρ
∂k

∂xi

)
, (4)

and two transport equations for turbulent kinetic energy (TKE) and its dissipation rate,

∂(ρu j k)

∂x j
= ∂

∂x j

[(
μ+ μt

σk

)
∂k

∂x j

]
+ Gk − ρε, (5)

∂(ρu jε)

∂x j
= ∂

∂x j

[(
μ+ μt

σε

)
∂ε

∂x j

]
+ cε1

ε

k
Gk − ρcε2

ε2

k
, (6)

where the closure coefficients (Cε1, Cε2, Cμ, σk , σε)= (1.44, 1.92, 0.09, 1.0, 1.3). In Eqs. 3–6,
μt = ρCμk2/ε is the turbulent viscosity, μ is the viscosity and Gk is the turbulence kinetic

energy production
(
= μt

∂ui
∂x j

(
∂ui
∂x j

+ ∂u j
∂xi

))
. All the variables (ui , p, k, ε) here are micro-

scopic time-averaged quantities (i.e. the mean velocity components, pressure, turbulence
kinetic energy and its dissipation rate).

The macroscopic time-averaged quantities (i.e. the volume average of time-averaged vari-
ables) for flows through porous media can be acquired by volume averaging the corresponding
microscopic time-averaged quantities over a volume of REV (�V ).

〈ψ〉v = 1

�V

∫

�V f

ψdV , (7a)

〈ψ〉 f = 1

�V f

∫

�V f

ψdV , (7b)

〈ψ〉v = φ〈ψ〉 f , (7c)

where 〈ψ〉v and 〈ψ〉 f are the volumetric and intrinsic averages of a time-averaged quantity
ψ that are related by the porosity φ. To simplify the equations, we write macroscopic time-
averaged variables 〈ψ〉 f (i.e. the spatial intrinsic averages of microscopic time-averaged
variables) into ψ f in the following governing equations.

There are two methods of deriving the macroscopic transport equations for airflow in
porous media depending on the order of application of the two operators. Pedras and de
Lemos (2001) found that the final form of the momentum transport equations from both
methods is the same. However, those in turbulence models are different. Antohe and Lage
(1997) derived a macroscopic turbulence k–ε model for incompressible flows in porous
media by time averaging the general equations for high Reynolds number incompressible
flow within fluid-saturated and rigid porous media. The transport equations can be written
in the following conservative form:

∂
(
ρφu f

i

)

∂xi
= 0, (8)

∂
(
ρφu f

i u f
j

)

∂x j
= ∂

∂x j

[
(μJ + μt )

∂φu f
i

∂x j

]
−

(
∂φp f

∂xi
+ 2

3
ρ
∂φk f

∂xi

)
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udarcy︷ ︸︸ ︷
−φ μ

K
φu f

i

uForch︷ ︸︸ ︷
−φ ρCF√

K
φQ f φu f

i , (9)

∂(ρφu f
j k f )

∂x j
= ∂

∂x j

[(
μJ + μt

σk

)
∂φk f

∂x j

]
− ρφε f

TKEgen︷ ︸︸ ︷
+φGk

TKEdarcy︷ ︸︸ ︷
−2φ

μ

K
φk f

TKEForch︷ ︸︸ ︷
−φ2 CF√

K

8

3
ρQ f φk f +

TKE_Fk︷ ︸︸ ︷
2φφ2 CF√

K
Fk, (10)

∂(ρφu f
j ε

f )

∂x j
= ∂

∂x j

[(
μJ + μt

σε

)
∂φε f

∂x j

]
+ cε1φ

ε f

k f
Gk − Jρcε2φ

ε f

k f
ε f

EDdarcy︷ ︸︸ ︷
−2φ

μ

K
φε f

EDForch1︷ ︸︸ ︷
−8

3
φ3 CF√

K
ρQ f ε f

EDForch2︷ ︸︸ ︷
−8μ

3
φ3 CF√

K

∂k f

∂xr

∂Q f

∂xr

+

EDForch3︷ ︸︸ ︷
2φ2φ

CF√
K

⎡
⎣μνt

∂

∂xr

⎛
⎝u f

j u f
i

Q f

⎞
⎠ ∂2u f

i

∂xr∂x j
+ 2μνt

u f
j u f

i

Q f

∂2

∂x2
r

(
∂u f

i

∂x j

)⎤
⎦,
(11)

Q f =
√

u f
i u f

i , (12a)

μt = Cμρ
k f 2

ε f
, (12b)

Gk = μt
∂u f

i

∂x j

⎛
⎝∂u f

i

∂x j
+ ∂u f

j

∂xi

⎞
⎠ , (12c)

Fk = μt
u f

j u f
i

Q f

∂u f
j

∂xi
, (12d)

where ρ is the fluid density, u f
i , p f , k f , ε f are intrinsic averages of time-averaged variables

(the velocity components, pressure, TKE and its dissipation rate), μ and μt are the dynamic
and turbulent viscosities, respectively, J = μ̃/μ is the viscosity ratio that can be assumed
to be equal to one for most applications in porous media (Antohe and Lage 1997), K is the
permeability, and CF is the Forchheimer coefficient. We used the same constant coefficients
as those in Eqs. 5 and 6.1

1 There are some errors in the derivation for the transport equation of ε f [see Eqs. 28–31 in Antohe and

Lage (1997)]. For example, in Eq. 28 of Antohe and Lage (1997), the derivation 1
2
∂Q
∂xr

∂
∂xr

(
u f ′

i u f ′
i

)
=

1
2
∂Q
∂xr

∂k f

∂xr
is wrong and should be 1

2
∂Q
∂xr

∂
∂xr

(
u f ′

i u f ′
i

)
= ∂Q

∂xr
∂k f

∂xr
. So EDForch2 and EDForch3 in the pres-

ent equations are different from those in the original equations in Antohe and Lage (1997)

(
i.e. EDForch2
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In the right-hand side of Eq. 9, there are the pressure gradient term
(−∂(ϕp f )/∂xi

)
,

the viscous diffusion term

(
∂
∂x j

[
μJ

∂ϕu f
i

∂x j

])
and the eddy diffusion term

(
∂
∂x j

[
μt

∂ϕu f
i

∂x j

]

− 2
3ρ

∂ϕk f

∂xi

)
, which is from the Reynolds stresses

(
−μt

(
∂ϕu f

i
∂x j

+ ∂ϕu f
j

∂xi

)
+ 2

3ρϕkδi j

)
. The

Darcy term

(
−φ μK φu f

i , i.e. udarcy term

)
and the Forchheimer term

(
−φ ρCF√

K
φQ f φu f

i , i.e.

uForch term

)
are used to model microscopic viscous drag generated by the fluid itself and

microscopic form drag produced by solid particles in porous media (or buildings in a porous
city), which act as sink terms for the momentum. Similarly, in the right-hand side of Eq. 10,
the Darcy term (i.e. TKEdarcy term) and the first part (i.e. TKEForch term) of the Forch-
heimer terms are always negative, which implies that they enhance the reduction of TKE in
porous media. However, the second part (i.e. TKE_Fk term) of the Forchheimer terms for
TKE may act as a sink or source term for TKE because it may be either negative or positive
in the porous media depending on the velocity components and their derivatives. In Eq. 11,
the Darcy term (−2μφ2ε f /K , i.e. the EDdarcy term) is always negative, which results in
a decrease in the dissipation rate of TKE, i.e. weakening the depletion of TKE. The Forch-
heimer terms of Eq. 11 include three parts, in which the first part (− 8

3φ
3CFρQ f ε f /

√
K ,

i.e. EDForch1 term) works in the same way as the Darcy term (i.e. EDdarcy). However, the
other two parts (i.e. EDForch2 and EDForch3 terms) may be positive or negative, and this is
decided by the fluid viscosity μ, the velocity components and their derivatives.

2.2 Interface Conditions

The urban airflow is a kind of turbulent flow through and over a porous city with finite poros-
ity and permeability. The whole domain consists of a porous city region and a clear fluid
region with a macroscopic interface. For turbulent flows through, around and over a porous
city, we use Eqs. 3–6 to solve the flow field in the clear fluid region, and make use of Eqs. 8
to 12a–12d to model the macroscopic time-averaged variables in the porous city region. The
interaction at the interface between the urban canopy layer (the porous city region) and the
atmospheric boundary layer (the clear fluid region) plays a significant role in the flow in
the porous urban canopy layer. So the mathematical treatments at the interface between the
two regions are very important. In previous general studies, there are different issues about
interface conditions for the transport equations of mass (fluid, pollutant, heat), momentum,
and turbulence (k and ε). One issue involves utilization of the interface shear-stress jump
condition between the two regions, in which the definition of the interface condition only
depends on an empirically decided constant. Silva and de Lemos (2003) and de Lemos (2005)
investigated both laminar and turbulent flow over porous media with this kind of jump inter-
face condition, and it was found that a small change in the value of the stress jump parameters
results in a very different structure for the turbulence flow field. Another significant issue is
the classical continuity boundary conditions, i.e. no jump condition at the interfaces for all

Footnote 1 continued

= − 5μ
3 φ

3 CF√
K
∂k f

∂xr
∂Q f

∂xr
EDForch3 = 2φ2φ

CF√
K

[
2μνt

∂
∂xr

(
u f

j u f
i

Q f

)
∂2u f

i
∂xr ∂x j

+ μνt
u f

j u f
i

Q f
∂3u f

i
∂x j ∂x2

r

])
. We

find that some different constants are used in the terms of EDForch2 and EDForch3 between the present
equations and Antohe and Lage’s original model. The effect of such differences will be checked and discussed
using numerical simulation results.
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the variables. Choi and Waller (1997) developed the classical continuity boundary conditions
to deal with the transportation problem at the interface in a laminar regime. Chan et al. (2007)
extended this condition to the turbulent regime, and it was found that the penetration extent of
turbulence was Darcy-number dependent and porosity dependent. We used a third approach,
i.e. a single domain approach (Neale and Nader 1974; Prakash et al. 2001a). In this approach,
if the porosity φ is 1, the permeability K has a finite value and the Forchheimer coefficient
CF is zero. Equations 8 to 12a–12d for porous regions become the same as those in the clear
fluid region (Eqs. 3–6). So we treated the two regions as a single domain and used the same
equations (Eqs. 8 to 12a–12d) for both regions, by using different parameters (the porosity
φ, the permeability K and the Forchheimer coefficient CF ).

We developed a ‘Ventair’ code using Fortran language to carry out both microscopic and
macroscopic simulations. For macroscopic simulations using the porous turbulence model,
we defined an interface between the porous city region and the clear fluid region. We used
distributions ofφ(x, y, z), K (x, y, z) and CF (x, y, z) to define parameters in the two regions.

2.3 Experimental Model Description

As shown in Fig. 1a, Brown et al. (2001) performed detailed wind-tunnel measurements on
a group of low-rise aligned seven-row (in the streamwise (x) direction) and 11-column (in
the lateral (y) direction) cube building array (H = W = B =0.15 m). The working test section
of the wind tunnel is 18.3 m long, 3.7 m wide and 2.1 m high, in which a neutrally stratified
atmospheric boundary layer with a depth of 1.8 m and a friction velocity u∗ =0.24 m s−1 was
generated in the upstream flow of the cube array using a roughness length of 0.001 m. The
mean streamwise velocity in the upstream free flow was described by a power-law profile
(U0(z) = UH (z/H)0.16), and UH =3.0 m s−1 is the reference velocity of the upstream free
flow at z=H. The Reynolds number (ReH = ρUH H/μ≈30,000) is sufficiently high to
ensure Reynolds-number independence (Meroney et al. 1996).

Vertical profiles of the three velocity components and TKE at many points of the vertical
symmetric plane (i.e. in the plane of y/H=0) were presented in Brown et al. (2001). As
shown in Fig. 1a, we define x/H=0 as the location of the windward edge of the first row of
cubes. The seven buildings are named as buildings No. 1–7. The canyons behind buildings
No. 1–6 are named as canyons No. 1–6. Figure 1b shows the detailed information of these
points in the plane of y/H=0: points C1, C2, C3, C4, C5 and C6 are the centre points inside
canyons Nos. 1, 2, 3, 4, 5 and 6, for which the locations are x/H=1.5, 3.5, 5.5, 7.5, 9.5 and
11.5. In addition, Points C0 and C7 are at x/H=−0.5 (i.e. the windward side of building No.
1) and 16.5 (i.e. the leeward side of building No. 7), respectively. Points B1, B2, B6 and B7
are the centre points of building rooftops for buildings Nos. 1, 2, 6 and 7.

2.4 Numerical Model Descriptions

To reduce the calculation time in the microscopic simulation, we only considered the middle
column of the cube array and only used half of this column that is surrounded by dots in
Fig. 1a, so the computational domain is only H wide in the lateral (i.e. y) direction. In addi-
tion, the computational domain is 8H high in the vertical (i.e. z) direction. In the streamwise
direction (i.e. x), it is 6.6H long from the upstream domain inlet to the windward edge of
the first row of cubes, and 20.3H long from the leeward edge of the final building to the
downstream domain outlet. To study the dependence of the flow solution on grid resolution,
we first used two types of grids. For a coarse grid (235 × 23 × 47), uniform grids in the x and

123



Wind Conditions in Idealized Building Clusters 137

y

Wind

0 x/H

W
W=H

2 4 6 8 10 12 14

B
B=H

y

Wind

0 x/H

W
W=H

2 4 6 8 10 12 14

B
B=H

(a)

-0.5
x/H

z

1 2 3 4 5 6 7

C0 C1 C2 C3 C4 C5 C6 C7

0 1.5 3.5 5.5 7.5 9.5 11.5 16.5

7B6B2B1B

-0.5
x/H

z

1 2 3 4 5 6 7

C0 C1 C2 C3 C4 C5 C6 C7

0 1.5 3.5 5.5 7.5 9.5 11.5 16.5

7B6B2B1B(b)

x

2H 4H 6H 8H 10H 14H

1 2 3 4 5

12H

6 7

z

0H

x

2H 4H 6H 8H 10H 14H

1 2 3 4 5

12H

6

12H

6 7

z

0H

dz
x

dz
x

(c)

13.5H11.5H9.5H7.5H5.5H3.5H1.5H-0.5H

z

x

13.5H11.5H9.5H7.5H5.5H3.5H1.5H-0.5H

z

x

(d)

Fig. 1 Model description of wind-tunnel experiments and vertical profiles at several points in Brown et al.
(2001). a x–y view and b x–z view in the plane of y/H=0. Definitions of an aligned seven-row cube array
(W=H) into seven REV units with two methods: c Method 1 (seven REV units and seven thin horizontal
slabs) and d Method 2 (seven REV units)

123



138 J. Hang, Y. Li

x/H

1 2 3 4 5 6 7

z 
/ H

1 2 3 4 5 6 7

(a)
y/

H

x/H

1 2 3 4 5 6 71 2 3 4 5 6 7

(b)

-1 0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Streamwise velocity (m s-1)

z 
/ H

Vertical profiles at Point C5 (x/H = 9.5)    
Wind tunnel data 

Micro-CFD results using grid of  
ni = 235,nj = 23,nk = 47
ni = 349,nj = 45,nk = 60
ni = 349,nj = 23,nk = 60

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Vertical profiles at Point C5 (x/H = 9.5)  

Wind tunnel data
Micro-CFD results using grid of   

ni = 235,nj = 23,nk = 47
ni = 349,nj = 45,nk = 60
ni = 349,nj = 23,nk = 60

Turbulent kinetic energy (m2 s-2)  

z 
/ H

  

(c) (d) 

Fig. 2 Grid generation of the medium grid (349 × 23 × 60) within and around a seven-row cube array, a in
the plane y/H=0, and b in the plane z/H=0. Grid-sensitivity analysis using vertical profiles at Point C5 in
the seven-row cube array c streamwise velocity and d TKE

z directions inside the canyons were used with a grid size of 0.0125 m (i.e. 12 points), and the
uniform grid size in the y direction was 0.0068 m. For a fine grid (349 × 45 × 60), uniform
grids in the x and z directions inside the canyons were used with a grid size of 0.0083 m (i.e.
18 points) and the uniform grid size in the y direction was 0.0034 m. The grid size in the
streamwise direction (x) increases from the first row of cubes to the upstream domain inlet
and from the last row of cubes to the downstream domain outlet, with a ratio of 1.05 and
1.1, respectively. The grid size in the vertical direction (i.e. z) above the cube buildings also
increases with a ratio of 1.05.

Figure 2c and d shows vertical profiles of the mean streamwise velocity and TKE at Point
C5 (x/H=9.5). The difference in the mean streamwise velocity between the coarse and fine
grids is small but the profiles of TKE with the coarse and fine grids are a little different.
So we also used a medium grid (349 × 23 × 60), i.e. the same grid as the fine grid in the
streamwise direction and the vertical direction, and the same grid as the coarse grid in the
lateral direction. We found that the prediction using the medium grid (349×23×60) is just as
good as that of the fine grid (349×45×60), in contrast to the wind-tunnel data. So we finally
used the medium grid (349 × 23 × 60) as the default choice in the following simulations
considering both solution accuracy and calculation time. To study grid independence, we
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also used the coarse grid to provide a comparison. The grid generation of the medium grid
(349 × 23 × 60) within and around cube arrays in the plane of y/H=0 and in the plane of
z/H=0 is shown in Fig. 2a and b. In addition, we also studied a cube array of 14 rows and 21
rows using a similar grid structure to the medium (349×23×60) and coarse (235×23×47)
grids for the seven-row cube array, generating grids for fourteen-row (601 × 23 × 60 and
415 × 23 × 47) and twenty-one-row (853 × 23 × 60 and 583×23 × 47) cube arrays.

For macroscopic simulations, we used the same computational flow domains as those
in microscopic simulations but with a different grid structure. Considering the symmetrical
characteristics, the three-dimensional (3D) microscopic urban canopy flows with groups of
buildings are replaced by 2D macroscopic turbulent flows through continuous porous media.
The distances above the porous region, from the domain inlet to the porous region, and from
the porous region to the domain outlet, are the same as those in the microscopic simulations.
For porous media corresponding to the cube cluster of seven rows, we used a coarse grid
and a fine grid to investigate the grid independence problems, i.e. 191(x) × 5(y) × 71(z)
and 266(x) × 5(y) × 86(z). For these two kinds of grids, a small grid size was used near
the interfaces between the porous region and the surrounding clear fluid region for which
the minimum grid sizes are 0.0035 and 0.0022 m, respectively. As we found that numerical
results using the two grids generated little difference, so the coarse grid is sufficient for the
macroscopic simulation. For porous media corresponding to cube clusters of 14 and 21 rows,
we used grids of 261(x) × 5(y) × 71(z) and 331(x) × 5(y) × 71(z). The grid number in
macroscopic simulations can be reduced effectively because buildings disappear in porous
media, and the grid size in a horizontal plane can be large in regions with small spatial
gradients of variables, even larger than the size of buildings.

For both microscopic and macroscopic simulations using the porous turbulence model,
we used a no-slip wall boundary condition at all wall surfaces and a normal zero-gradient
boundary condition at the domain outlet, the domain top and all the symmetrical boundaries.
At the upstream domain inlet, we used the power-law vertical profile of the mean streamwise
velocity measured in the upstream free flow (uinlet) and the calculated TKE (kinlet) and its
dissipation rate (εinlet) assuming an equilibrium turbulent flow as boundary conditions:

uinlet(z) = UH (z/H)0.16, (13a)

kinlet(z) = u2∗/
√

Cμ, (13b)

εinlet(z) = C3/4
μ kinlet(z)

3/2/(κvz), (13c)

where Cμ is 0.09, UH =3.0 m s−1, u∗ =0.24 m s−1, κv is von Karman’s constant.
In the ‘Ventair’ code, the flow equations are expressed in time-implicit and conservative

finite difference form on a staggered grid (see Eqs. 8 to 12a–12d). The transport equations
for the momentum and turbulent properties were discretized by finite volume techniques.
The hybrid upwind/central differencing scheme was used to discretize the advection terms,
with an option of the second-order upwind scheme and the QUICK scheme. The discretized
differential equations were solved by the SIMPLE algorithm. We used an under-relaxation
factor of 0.5 for the mean velocities and pressure, and values of less than 0.5 for the turbulent
properties to avoid divergence problems.

2.5 Macroscopic Averaged Technique and Parameters in the Porous Model

We regarded the urban canopy as spatially continuous porous media that acts as a sink/source
of the momentum and turbulence properties of the urban flow. We used Eq. 7b to calculate
macroscopic time-averaged quantities by volume averaging the corresponding microscopic
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time-averaged quantities over an REV (�V ). The urban canopy consists of many units, each
of which is formed by a building and a canyon. The definition of REV units should not be
smaller than such a unit. We show two methods for the definition of the smallest REV units
in such a seven-row cube array (W=H); see Fig. 1c (Method 1) and 1d (Method 2). The
Forchheimer coefficient (CF ) shows the effect of form drag produced by building units on
urban airflows, and may vary with the variation of vertical location (z) and in different REV
units. To analyse the Forchheimer coefficient (CF ) using the high-resolution CFD simulation
results for urban canopy flows, we defined a number of thin horizontal slabs centred at the
height z in this seven-row cube array, as shown in Fig. 1c; dz is the interval distance between
two neighbour grids in the vertical direction.

We defined the volume of a thin horizontal slab as�V = H(xi+1 − xi )dz, where i is the
number of the seven REV units (from 1 to 7). For Method 1, xi = 2(i − 1)H , xi+1 = 2i H ,
and for Method 2, xi = 2(i − 1)H − 0.5H , xi+1 = 2i H − 0.5H .

Important parameters for porous media include the porosity (φ), permeability (K) and
Forchheimer coefficient (CF ). The porosity (φ) is defined in Eq. 2a and 2b as the fraction of
fluid volume in the total volume of an REV unit. The permeability (K) in the Darcy terms for
the viscous drag and the Forchheimer coefficient (CF ) for the form drag can be approximately
modelled by the Ergun equation as follows:

K = φ3d2
p/(150(1 − φ2)), (14a)

CF = 1.75β/
√

150φ3, (14b)

where dp is the characteristic size of solid particles in porous media, the porosity φ is 0.75,
β = 1 in the original Ergun equation. Kanda (2006) studied the form drag in cube arrays of
different building area densities (i.e. 1 − φ) of a staggered order or aligned order using LES,
and reported that the form drag in an aligned array is generally less than that in a staggered
array. So we also revised the original Ergun equation, assuming β = 1.0 (i.e. CF = 0.22)
for the first row of building arrays and β = 0.56 (i.e. CF = 0.12) for the other rows of
such medium cube arrays according to Kanda (2006), considering the first row may provide
shelter for the other rows and generate a larger form drag to the approaching flow than the
others.

To obtain a better prediction of the form drag, the sectional Forchheimer coefficient CF (z)
in each REV unit can be calculated from the pressure difference between the windward wall
surfaces and the leeward wall surfaces of each building using,

CF (z) = fx (z)
√

K

ρQ f (z)u f (z)
, (15)

fx (z) =
∫

S p(z)nx d S

�V (z)
, (16)

where Q f (z) and u f (z) are local intrinsic averages of time-averaged velocity and the
streamwise velocity component in each thin horizontal slab of REV units
(Q f =√

u f 2 + v f 2 + w f 2), K is the permeability, fx (z) is the sectional form (pressure)
drag in each thin horizontal slab (d S = dydz, S = 0.5Hdz, the height of thin slabs is the
local vertical grid size dz), and�V (z) = 0.5H2dz is the total volume of each thin horizontal
slab.

Therefore, the microscopic simulations were validated using wind-tunnel data. They were
then were used to analyse the microscopic flow field within and around buildings, and to cal-
culate the macroscopic time-averaged quantities and the sectional Forchheimer coefficient
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Fig. 3 Vertical profiles of streamwise velocity, vertical velocity and TKE at several points including both
wind-tunnel data and microscopic simulation results in the seven-row cube array

in each thin slab of separated REV units. The macroscopic time-averaged quantities by inte-
gration of the microscopic simulation results show the macroscopic variation of the flow
field and can be used for comparison with macroscopic simulation results using the porous
turbulence model.

3 Microscopic Simulation Results

3.1 Validation by Wind-Tunnel Data

To validate the effectiveness of the present microscopic simulations (349 × 23 × 60), Fig. 3
shows vertical profiles of the measured mean streamwise velocity, vertical velocity and TKE

123



142 J. Hang, Y. Li

at several sample points. The present predictions are of similar accuracy as those in Lien and
Yee (2004) and Santiago et al. (2007). Taken as a whole, we mainly emphasize the airflow
below or near the roof level (0 < z/H < 1.2) in cube arrays (i.e. Points C1–C6). The mean
streamwise velocity and vertical velocity were predicted generally well but TKE was under-
predicted due to the limitation of the k–ε turbulence model. The shapes of TKE profiles
were well estimated, in contrast to wind-tunnel data. Using similar grids, we then studied the
microscopic flow field in cube arrays of 14 rows and 21 rows with grids of 601 × 23 × 60
and 853 × 23 × 60, respectively.

Santiago et al. (2007) gave a detailed analysis of the flow mechanisms in such a 3D cube
array. Here, we focused on the main flow pattern, ventilation conditions [i.e. flow rates and the
air exchange rate (ACH)] and the macroscopic flow reduction (spatially-averaged properties
and drag effects of buildings) in such cube building arrays, which are useful for discussing
the results of simulations using the porous turbulence model.

3.2 Microscopic Flow Pattern

The main streets and the secondary streets are parallel and perpendicular to the approaching
flow, respectively. We define the secondary streets as ‘canyons’. Figure 4 shows the distribu-
tions of the streamwise velocity, vertical velocity and TKE and velocity vectors in the plane
y/H = 0. Figure 4d confirms that recirculation flows exist in each canyon, and that the
vortices in canyons are not symmetric. Because of the clockwise characteristics of vortices
in canyons, the mean vertical velocity is negative (i.e. downward motion) near the windward
wall and positive (i.e. upward motion) near the leeward wall (see Fig. 4b). Such vertical
mean flows contribute to the air exchange between street canyons below the roof level and
the external flows above them. Due to the shelter effect of buildings, the mean streamwise
velocity in canyons is much smaller than that above the roof level, resulting in a large velocity
gradient and a strong shear layer near the roof level (see Fig. 4a). Such a strong shear layer
contributes to large TKE near the roof level (see Fig. 4c).

Figure 5a and b shows the distribution of the streamwise velocity and TKE in the plane
z/H = 0.8; there is a reduction in the streamwise velocity and TKE from upstream regions
to downstream regions of the cube array. Figure 5c and d shows velocity vectors in the
plane z/H = 0.8 and z/H = 0.2; we find that recirculation flow exists in each canyon. At height
z/H = 0.8, the forward flow is deflected onto the windward corner of each building and some
air enters the canyons laterally from the main street. However, in Fig. 5d, at height z/H = 0.2,
some air flows out of the canyons into the channels. Figure 5e shows the distribution of the
spanwise velocity in the plane y/H = −0.5 (the interface plane between the main street
and canyons); it confirms that the spanwise velocity is mainly positive (i.e. flow from the
main street to canyons) in the upper half of the interface plane, and negative (i.e. from can-
yons to channels) in the lower half of the interface plane. Such flows contribute to lateral air
exchanges between the main streets and canyons.

3.3 Microscopic Flow Reduction and Ventilation Performance

As shown in Fig. 5c, for the seven-row cube array, we defined six canyon units for the sec-
ondary streets and six channel units along the main street. Similarly, for fourteen-row and
twenty-one-row cube arrays, 13 units and 20 units can be defined. In the canyons, 3D vortices
exist and flow is relatively weak. Vertical (upward and downward) mean flows across canyon
roofs and lateral mean flows across the interface between channels and canyons contribute
to the ventilation and air exchange in canyons. In channels, the ventilation may be better
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Fig. 4 Distribution of microscopic quantities in the seven-row cube array in the plane y/H=0 a streamwise
velocity, b vertical velocity and c TKE. d Velocity vectors in the plane y/H=0

than that in canyons because the flow can pass easily through such aligned channels. Hor-
izontal flow rates along the main street significantly determine the capacity of ventilation
and pollutant dilution in channels. In addition, turbulence across all boundaries between a
control volume (channels or canyons) and the external air environment also contributes to
the ventilation of this control volume.

To quantify the flow reduction in the main street parallel to the approaching flow (i.e.
through the channel units), we normalized the streamwise (x) or vertical (z) velocity compo-
nents by the velocity (U0(z)) at the same height in the domain inlet. To estimate the ventilation
flow rates, we defined the flow rate through the same area with the windward street entry far
upstream (i.e. at the domain inlet here) as the reference flow rate (Q∞):
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Fig. 5 Distribution of a streamwise velocity, b TKE in the plane z/H=0.8. Velocity vectors c in the plane
z/H=0.8 and d in the plane z/H=0.2. e Distribution of spanwise velocity in the plane y/H=−0.5

Q∞ =
∫

U0(z)d A, (17)

where A is the area of the windward street entry of the building array, and U0 is the streamwise
velocity far upstream at the domain inlet.

Then we used this reference flow rate to normalize the volumetric flow rates along the
main street (channels) or vertical flow rates across canyon roofs, as well as the effective flow
rate through canyon roofs due to turbulence fluctuations, as defined in Hang et al. (2009).

Q∗ =
∫

A

	V •	nd A/Q∞, (18)

Q∗
turb± = ±

∫
0.5σwd A/Q∞, (19)
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where, in Eq. 18, 	V is the velocity vector, 	n is the normal direction of a given surface (street
openings, a lateral face within channels, or canyon roofs), A is the area of this given surface;

and in Eq. 19, A is the area of a given canyon roof (A = H2/2 in this case), σw =
√
w′w′ =√

2k/3 is the standard deviation of vertical velocity fluctuations on canyon roofs based on
the assumption of isotropic turbulence (u′ = v′ = w′), and the given u′, v′, w′ are the

streamwise, spanwise, and vertical velocity fluctuations with k = 0.5
(

u′u′ + v′v′ + w′w′
)

being the TKE. In Eq. 19, 0.5σw implies that turbulent exchange contributes to the same
magnitude of upward and downward fluctuations across canyon roofs.

To evaluate the air exchange between each canyon unit and each channel unit, we intro-
duced a concept of the air exchange rate (ACH, i.e. the air change rate per hour). We first
calculated the total volumetric flow rates due to mean flows and the total effective flow rates
due to turbulent exchanges for each canyon unit and each channel unit, viz.

QT in =
∑
Ai

Qin = −QT out = −
∑
Ai

Qout, (20)

QT turb =
∑
Ai

Qturb±, (21)

where Ai are surfaces of a given canyon or channel unit,
∑

Ai
Qin (i.e. QT in, positive value)

and
∑

Ai
Qout (i.e. QT out, negative value) are the sums of inflow and outflow rates across

these surfaces, and
∑

Ai
Qturb± is the sum of the effective flow rates due to turbulence across

these surfaces.
To analyse the ACH for each of the canyon units and channel units, we defined a refer-

ence air exchange rate (ACH0) in Eq. 22, and then utilized it to normalize all ACHs for each
canyon unit and each channel unit in Eqs. 23 and 24. viz.

ACH0 = 3600Q∞/(volcanyon + volchannel), (22)

ACH∗ = 3600QT in/(vol ACH0), (23)

ACH∗
turb = 3600QT turb/(vol ACH0), (24)

where volcanyon and volchannel are the volumes of each canyon unit or channel unit, and ACH∗
and ACH∗

turb are the normalized ACHs for each given canyon unit or channel unit due to all the
volumetric flow rates (QT in) and due to the total effective flow rates by turbulent exchanges
(QT turb) across the surfaces of a local unit. Finally, vol is the control volume of each canyon
unit or each channel unit.

Figure 6a and b shows horizontal profiles of the normalized streamwise velocity and the
normalized vertical velocity along the street centrelines (z = H or 0.5H ) of the main street
for three cube arrays of 7, 14 and 21 rows. Figure 6c displays the normalized horizontal
flow rate along the main street in cube arrays of 7, 14 and 21 rows; x/H=0 is the windward
street entry. We find that the normalized streamwise velocity and the normalized horizontal
flow rate at x/H=0 is a little more than 1.0, denoting that flow at the windward entry is a
little stronger than that at the domain inlet far upstream. After an accelerating process across
the windward street entry, the normalized streamwise velocity and the normalized horizon-
tal flow rate decreases along the main street because some air parcels leave the main street
upward, as can be confirmed by the positive vertical velocity in Fig. 6b. At places with a
sufficient distance far from the two entries of the main street (windward and leeward entries),
the macroscopic variation of the streamwise velocity and horizontal flow rate is small (see
Figure 6a, c). In such regions, it is interesting to find that the horizontal profile of the vertical
velocity (see Fig. 6b) at the roof level (z = H ) is a relatively smooth shape and nearly remains
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Fig. 6 Horizontal profiles of a normalized streamwise velocity and b normalized vertical velocity along street
centrelines of the main street parallel to upstream wind for three cube arrays of 7, 14 and 21 rows, c normalized
horizontal flow rate along the main street for three cube arrays of 7, 14 and 21 rows. d Normalized flow rates
across roofs of 20 canyon units in the 21 row cube array. Normalized ACHs of canyon units and channel units
in cube arrays of 7, 14 and 21 rows e due to the flow rates (mean flow) and f due to the effective flow rates
(turbulent exchange). In a–c, x/H=0 is the windward street entry

at zero; however, that at z=4 0.5H shows a variation of a periodic wave shape with positive
values (i.e. upward motion). The profile of horizontal flow rates along the main street also
shows a similar wave shape (see Fig. 6c), and may result from the deflection of the forward
flow on the windward corner of buildings and the lateral air exchange between the channel
units and canyon units. Near the leeward street entries (i.e. x/H = 13, 27 and 41 for cube
arrays of 7, 14 and 21 rows), the normalized vertical velocity is negative (see Fig. 6b), which
confirms a downward flow rate from the above external flow into the main street across the
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street roof near the leeward entry. As a result, the streamwise velocity and the horizontal
flow rate increase a little along the main street near the leeward entry (see Fig. 6a, c). In a
macroscopic view, as the cube array changes from 7 rows to 14 rows, the horizontal flow
rate continues to decrease along the main street. However, as the cube array changes from
14 rows to 21 rows, the horizontal flow rate ceases to decrease.

Figure 6d shows the normalized flow rates across roofs of the 20 canyon units in the twenty-
one-row cube array due to upward and downward flows as well as turbulent exchanges. The
flow rate due to the downward inflow Q∗(in) (i.e. positive) is larger than that due to the upward
outflow Q∗(out) (i.e. negative), so the total vertical flow rate (Q∗ = Q∗(out) + Q∗(in)) is
positive (i.e. downward inflow). This result shows that the flow rates entering canyons are
a little more than those leaving them across their roofs, and they differ from 2D turbulent
canyon flows in which Q∗(out) is always equal to Q∗(in). The extra vertical inflow rate across
canyon roofs may supply external clean air from external flows downward into 3D canyons.
The effective flow rate due to turbulent exchanges (Q∗

turb) across canyon roofs exceeds sev-
eral times that due to vertical mean flows, confirming that turbulence is very important for
the ventilation of canyons. Figure 6e and f shows the normalized ACHs for each canyon unit
and each channel unit in cube arrays of 7, 14 and 21 rows (6, 13 and 20 units) due to the mean
flow and turbulence. We find that the normalized ACHs (see Fig. 6e) due to the mean flow in
channel units are almost three times those in canyon units, because the horizontal flow rates
through channels (the main street) are several times the flow rates for canyons. Air exchange
rates due to turbulence (see Fig. 6f) in canyon units are of the same order as those in channel
units. For canyon units, the normalized ACHs due to turbulence are about 0.6 (see Fig. 6f)
and those due to the mean flow are about 0.2 (see Fig. 6e), showing that turbulence is even
more important than the mean flow for air exchanges in canyon units. For air exchanges in
the channel units (see Fig. 6e, f), turbulence also contributes significantly, in contrast to the
mean flows.

3.4 Spatially-Averaged Quantities in REV Units and Sectional Forchheimer Coefficient

There are two methods of REV definition (Method 1 and Method 2) in the volume-averaging
technique (see Fig. 1c, d). Using both methods, Fig. 7a–c shows the horizontal profiles of nor-
malized spatially-averaged streamwise velocity, vertical velocity and TKE (i.e. macroscopic
quantities) at z = 0.5 H (thin horizontal slabs), and the sectional Forchheimer coefficient at
z = H in cube arrays of 7, 14 and 21 REV units. U0(z) is the streamwise velocity at the
upstream domain inlet at the same height (z = 0.5H ). It is confirmed that these three mac-
roscopic quantities and the Forchheimer coefficients calculated using two different methods
of REV definition are almost the same in most locations, except at the first unit (No. 1) and
the final unit (Nos. 7, 14, or 21). This is usual the airflow on the windward side of the first
cube and in the wake region behind the final cube is different from that in canyons between
two neighbouring cubes.

Figure 7e shows the vertical profiles of the sectional Forchheimer coefficient for the seven
REV units in the seven-row cube array. We find that the Forchheimer coefficient at unit 1
(i.e. the first building) is greatest at most vertical locations because the first cube blocks the
approaching flow the most effectively. The first cube provides a significant ‘shelter’ for the
second cube (i.e. unit 2) and, as a result, the Forchheimer coefficient due to the blockage
of the second cube is the smallest. For all seven units, the Forchheimer coefficient at roof
level (i.e. z = H ) is smaller than that at a lower level (z/H from 0.35 to 0.95). Both Fig. 7d
and e confirm that the Forchheimer coefficient for the seven units of the seven-row cube

123



148 J. Hang, Y. Li

0 2 4 6 8 10 12 14 16 18 20 22
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Wind

No of REV units

u
 / 

U
0(z

)
uf/U

0
(z) at z = 0.5H with REV definition of 

Method 1 7  rows 14 rows 21 rows  
Method 2 7  rows 14 rows 21 rows

0 2 4 6 8 10 12 14 16 18 20 22
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
wf/U

0
(z) at z = 0.5H with REV definition of 

Method 1 7  rows 14 rows 21 rows  
Method 2 7  rows 14 rows 21 rows

No of REV units

Wind

w
f  / 

U
0 (

z)

(b)(a)

0 2 4 6 8 10 12 14 16 18 20 22
0.00

0.04

0.08

0.12

0.16

0.20
kf/U

0

2(z) at z = 0.5H with REV definition of 
Method 1 7  rows 14 rows 21 rows  
Method 2 7  rows 14 rows 21 rows

No of REV units

Wind

kf  / 
U

0(z
)2

0 2 4 6 8 10 12 14 16 18 20 22
0.00

0.04

0.08

0.12

0.16

0.20
C

F
(z) at z = H with REV definition of 

Method 1 7 rows 14 rows 21 rows  
Method 2 7 rows 14 rows 21 rows

No of REV units

Wind

C
F
(z

)

(d)(c)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

z 
/ H

C
F
(z)

REV definition of Method 1
in seven-row array at REV unit

 1#  2#  3#
 4#  5#  6#
 7#

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 .1.2
0.0

0.2

0.4

0.6

0.8

1.0

z 
/ H

C
F
(z)

REV definition of Method 1 in 
twenty-one-row cube array at REV units

 14#  15#  16#
 17#  18#

(f)(e)

f

Fig. 7 Horizontal profiles of macroscopic quantities of a streamwise velocity, b vertical velocity, c TKE at
z=0.5H (thin horizontal slabs), and d sectional Forchheimer coefficient (CF ) at z=H with 7, 14 and 21 REV
units using two methods of REV definition. Vertical profiles of CF (z): e for the seven units in the seven-row
cube array and f for the five REV units Nos. 14–18 in the twenty-one-row cube array. In a–c, U0 is streamwise
velocity at the upstream domain inlet at the same height (z=0.5H). Method 1 and Method 2 are shown in
Fig. 1c and 1d as two methods of REV definition. All results are from microscopic solution using grids of
349 × 23 × 60, 602 × 23 × 60 and 853 × 23 × 60 for these three cube arrays

array always changes from No. 1–7. However, Fig. 7d shows that the horizontal profile of
the Forchheimer coefficient at roof level from unit 12 to unit 18 almost remains constant. To
verify whether the sectional Forchheimer coefficient from units 12 to 18 change little at other
heights, Fig. 7f displays the vertical profiles of the Forchheimer coefficient at these units,
finding that it varies very little.

Using the sectional Forchheimer coefficient distribution calculated in microscopic sim-
ulations, we performed macroscopic simulations using the porous turbulence model. Since
the spatially-averaged variables using the two methods of REV definition are approximately

123



Wind Conditions in Idealized Building Clusters 149

Fig. 8 Distribution of a macroscopic streamwise velocity, b macroscopic vertical velocity, and c macroscopic
TKE for porous media of a twenty-one-row cube array, using the revised Ergun equation to calculate the Forch-
heimer coefficient CF1 (in Eq. 14a, 14b, for unit 1, β = 1, CF = 0.22; for all other REV units, β = 0.56,
CF = 0.12). x = 0 is the windward edge of the porous region

the same except for those at the first and final units, we used only Method 1 in the following
analysis and discussion.

4 Macroscopic Simulation Results

4.1 Characteristics of Macroscopic Porous Flows

Using the revised Ergun equation for the Forchheimer coefficient (see Eq. 14a, 14b,β = 0.56
for all REV units except unit 1), Fig. 8 shows the distribution of macroscopic streamwise
velocity, vertical velocity and TKE for the twenty-one-row porous media. Figure 9 shows hor-
izontal profiles of macroscopic variables at different heights in porous media of the seven-row
and twenty-one-row cube arrays, in which U0(z) is the streamwise velocity at the upstream
domain inlet (z/H = 1.0, 0.5, 1/6, respectively) and x = 0 is the windward edge of the
porous region.

On the one hand, the macroscopic flow pattern is similar to the microscopic flow pattern.
The drag effect of porous media reduces the flow on the windward side of the porous region
(x/H < 0) and the flow reduction region (0< x/H < 10). The macroscopic vertical velocity
is positive (i.e. upward motion) and the macroscopic streamwise velocity decreases in these
two regions (see Fig. 9a, b). The macroscopic vertical velocity is greatest near the windward
edge of the porous region (see Fig. 9b) and then decreases from x = 0 to x = 10H . In
the vicinity of the leeward edge of the porous region (near and behind x/H = 42), the
resistance of porous media disappears, and turbulent shear stress transports more momentum
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Fig. 9 Comparisons of
macroscopic simulation results
for porous media of the
seven-row and twenty-one-row
cube array using CF1 (for unit 1,
β = 1, CF = 0.22; for all other
REV units, β = 0.56,
CF = 0.12):
a streamwise velocity, b vertical
velocity and c TKE. U0(z) is the
streamwise velocity at the
upstream domain inlet at the
same height (z/H=1.0, 0.5, 1/6
respectively). x=0 is the
windward edge of the porous
region
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downward. The downward flow (i.e. negative vertical velocity) brings air into the porous
region (see Fig. 9b) and, as a result, the macroscopic streamwise velocity increases a little
(see Fig. 9a).

On the other hand, the macroscopic and microscopic flow regimes are different. In micro-
scopic simulations, we confirmed that such 3D turbulent flows include the channel flow
regime along the main street and the skimming flow regime in canyons. However, in macro-

123



Wind Conditions in Idealized Building Clusters 151

scopic simulations, the difference in the main street and canyons disappears because all the
microscopic time-averaged variables are spatially averaged by the volume-averaging tech-
nique. More importantly, in the microscopic flow field, the windward edge of the first cube
is an important source of TKE resulting in strong turbulence in that region (see Figs. 4c,
5b). However, the windward boundary of the porous region in macroscopic simulations is a
strong sink (i.e. the Darcy term and the Forchheimer term) for turbulence, so TKE near the
windward edge of the porous region is small. In the wake region of microscopic simulations,
recirculation flows exist behind the final cube (see Fig. 4d). However, on the leeward side of
the porous region in the macroscopic flow field (see Fig. 8) the recirculation disappears due
to the volume-averaging technique in the porous region.

Above the top interface of the porous region and near the leeward edge of the porous
region, TKE is large (see Fig. 8c). There is a shear layer near the interface between the
porous region and the overlying clear fluid region. The downward transport of momentum
due to turbulent shear stress acts as a motor for the flow through porous media, and the drag
effects (i.e. the Darcy and Forchheimer terms) in the porous region contribute to the removal
of momentum there. If the porous region is sufficiently long, a balance may be established
in the macroscopic fully developed region. Figure 9 confirms that a macroscopic fully devel-
oped region is approximately generated at places far from the two ends in the longest porous
media (21 REV units), where the macroscopic streamwise velocity almost remains constant,
the macroscopic vertical velocity is nearly zero, and TKE increases at a low rate.

4.2 Effect of Different Terms in the Porous Turbulence Model

In Eqs. 8 to 12a–12d, we qualitatively analysed the effect of all Darcy and Forchheimer terms
that appear in the porous turbulence model. Here, we quantitatively analyse these terms using
macroscopic simulation results. First, for the transport of macroscopic streamwise velocity
(see Fig. 10), both the Darcy (udarcy) and the Forchheimer terms (uForch) are negative, act-
ing as sink terms for the momentum transport. The magnitudes of these two terms are large

Fig. 10 Effects on the macroscopic streamwise velocity in porous media of the twenty-one-row cube array
using CF1 (for unit 1, β = 1, CF = 0.22; for all other REV units, β = 0.56, CF = 0.12) due to a the Darcy
term (udarcy), and b the Forchheimer term (uForch). x = 0 is the windward edge of the porous region. The two
terms appear in Eq. 9. x/H from 0 to 42 is the porous region of 21 REV units
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Fig. 11 Effects on the macroscopic TKE in porous media of the twenty-one-row cube array using CF1 (for
unit 1, β = 1, CF = 0.22; for all other REV units, β = 0.56, CF = 0.12) due to a the generation term of TKE
(TKEgen), b the Darcy term (TKEdarcy), and the two Forchheimer terms of c TKEForch and d TKE_Fk.
x=0 is the windward edge of the porous region. The three terms appear in Eq. 10. x/H from 0 to 42 is the
porous region of 21 REV units

near the windward edge of the porous region where the macroscopic streamwise velocity
is large. The Forchheimer term (i.e. of the order of 10) is much larger than the Darcy term
(i.e. of the order of 0.01). In high-Reynolds-number flow in porous urban canopies, the form
drag due to the resistance from buildings dominates the macroscopic velocity reduction, in
contrast to the viscous drag (the Darcy term), because the fluid viscosity (μ) is small.

Figure 11 shows the TKEgen, TKEdarcy, TKEForch and TKE_Fk terms for the transport
equation of macroscopic TKE. We find that the TKEgen term near the interface between the
porous region and the overlying clear fluid region is the main source of turbulence generation,
resulting in a shear layer near the interface. There is a large gradient of turbulence near the
interface. We also find that the magnitude of the Forchheimer term of TKE (TKEForch, of
the order of 1) exceeds that of the Darcy term (i.e. TKEdarcy, of the order of 0.01) by about
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Fig. 12 Effects on the macroscopic dissipation rate of TKE in porous media of the twenty-one-row cube
array using CF1 (for unit 1, β = 1, CF = 0.22; for all other REV units, β = 0.56, CF = 0.12) due to a the
Darcy term (EDdarcy), the three Forchheimer terms of b EDForch1, c EDForch2, and d EDForch3. x=0 is
the windward edge of the porous region. All these terms are shown in Eq. 11. x/H from 0 to 42 is the porous
region of 21 REV units.

a hundred times. The TKEForch and TKEdarcy terms are negative, confirming a significant
contribution to the reduction of turbulence, especially near the windward edge of the porous
region. The TKE_Fk term (see Fig. 11d) is negative at the windward edge of the porous region
(x=0) and is positive near the upstream region of the top interface (x/H from 0 to 4, z=H),
showing that this term may act as either a source or sink term for turbulence generation.

Figure 12 shows the Darcy term (EDdarcy) and all Forchheimer terms (EDForch1, ED-
Forch2, EDForch3) for the transport equation of the macroscopic dissipation rate of TKE
(see Eq. 11). Similarly to that described in the previous paragraph, both the Darcy term
(EDdarcy) and the EDForch1 term are negative, i.e. they weaken the dissipation rate of TKE.
And the EDForch1 term (of the order of 1) significantly exceeds the EDdarcy term (of the
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Fig. 13 Comparison of spatially-averaged variables of a streamwise velocity, b vertical velocity, c TKE, and
d static pressure for the twenty-one-row cube array. Distributions of sectional Forchheimer coefficient for the
fourteen-row cube array e horizontal profiles at different heights, and f vertical profiles at REV units Nos. 8,
10 and 12. Fine and coarse grids were used in microscopic simulations. U0(z) is the streamwise velocity in
the free flow far upstream at the height z

order of 0.01) in decreasing the reduction of TKE. In addition, the other two Forchheimer
terms (EDForch2 and EDForch3) may increase or decrease the dissipation rate of TKE, but
their magnitudes (of the order of 0.01 or 0.001) are negligible compared to that of EDForch1
because the fluid viscosity μ in EDForch2 and EDForch3 is small. So the difference in the
EDForch2 and EDForch3 terms between Eq. 11 used here and the original equation derived
by Antohe and Lage (1997) is negligible.

4.3 Comparison of Macroscopic Quantities in Microscopic and Macroscopic Results

To evaluate the grid independence of macroscopic quantities in microscopic simulation
results, Fig. 13a–d shows horizontal profiles of spatially-averaged variables (i.e. macroscopic

123



Wind Conditions in Idealized Building Clusters 155

streamwise velocity, vertical velocity, TKE and static pressure) at different heights in the 21-
row cube array using the fine grid (853 × 23 × 60) and the coarse grid (583 × 23 × 47). We
find that the macroscopic velocity components and turbulence are similar using the two grids,
but the pressure using the two grids is a little different in the 21 REV units. This confirms that
static pressure is grid sensitive in these simulations. As a result, as shown in Fig. 13e and f, the
sectional Forchheimer (CF ) coefficient is also grid sensitive. For CF (z) in the fourteen-row
cube array from microscopic simulation results using the fine grid (601 × 23 × 60) and the
coarse grid (415×23×47), we named this as CF A (fine grid) and CF B (coarse grid), respec-
tively. The constant Forchheimer (CF ) coefficients calculated by the revised Ergun equation
(β = 0.56, CF = 0.12 for all the REV units except unit 1 in Eq. 14a, 14b) and the original Er-
gun equation (β = 1.0, CF = 0.22 in Eq. 14a, 14b) were defined as CF1(β = 0.56,CF = 0.12)
and CF2(β = 1.0,CF = 0.22). Here, CF B and CF2 are larger than CF A and CF1.

Then we compare macroscopic quantities predicted by microscopic and macroscopic sim-
ulation results for the fourteen-row cube array. For microscopic predictions, two groups of
spatially-averaged quantities were used, i.e. those calculated using the fine grid (601×23×60)
and those using the coarse grid (415×23×47). For macroscopic simulations using the porous
turbulence model, we performed the predictions with four kinds of Forchheimer coefficients,
i.e. the sectional Forchheimer coefficients (CF (z)) from microscopic simulation results using
the fine grid (CF A) and the coarse grid (CF B), constant Forchheimer coefficients (see Eq.
14a, 14b) using the revised or original Ergun equation, i.e. CF1 (β = 0.56, CF = 0.12 for
all the units except unit 1) and CF2 (β = 1.0,CF = 0.22). Figure 14 shows the horizontal
profiles of macroscopic quantities in both microscopic and macroscopic simulation results.
All these figures confirm that the difference in spatially-averaged mean velocity and turbu-
lence in the microscopic simulations using two different grids is always small. In Fig. 14a
to c, in contrast to the microscopic simulation results, macroscopic simulations using CF B

(the coarse grid) have improved prediction in the velocity reduction profile than the other
three Forchheimer coefficients at z/H=1, 0.5 and 1/6. CF A and CF1 tend to over-predict
the macroscopic streamwise velocity because CF A and CF1 (i.e. 0.12) are smaller than
CF B and CF2 (i.e. 0.22). The constant Forchheimer coefficients CF2 (i.e. 0.22) evaluate
the macroscopic streamwise velocity well at z/H = 0.5, but under-predict it at the top
interface (z/H = 1) and overestimate it near the ground (z/H = 1/6). Figure 14d shows
that all Forchheimer coefficients may predict the basic variation profile of the macroscopic
vertical velocity, including the upward flow (positive value) near the windward edge, the
weak vertical flow (i.e. nearly zero) in places far from the two ends, and the downward
flow near the leeward edge of the porous region. For horizontal profiles of macroscopic
TKE in Fig. 14e and f, all macroscopic simulations overestimate the turbulence near the
top interface (z = H ), and under-predict the turbulence near the windward edge of the
porous region (near the location of x/H = 0), but predict the shape of profiles well in
places far from the two ends. Considering that microscopic simulations underestimate tur-
bulence below the top interface (i.e. roof level z = H ), in contrast to wind-tunnel data, it
is difficult to estimate the prediction of turbulence using macroscopic simulations. Large-
eddy simulations (LES) will be required to evaluate the accuracy of turbulence prediction
in future work. Overall, a good sectional Forchheimer coefficients profile should be sim-
ilar to CF B (see Fig. 13f), which is about 0.2 (a constant near to CF2 as β = 1) at a
medium height in the porous region, a little smaller than 0.2 near the top interface and
much larger than 0.2 near the ground. Macroscopic simulation is a promising method for
predicting the macroscopic velocity reduction through a porous region of urban canopy
layers.
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Fig. 14 Comparison of macroscopic properties between microscopic and macroscopic simulation results
for the fourteen-row cube array. Macroscopic streamwise velocity at a z/H=1, b z/H=0.5, and c z/H=1/6.
d Macroscopic vertical velocity at z/H=0.5. Macroscopic TKE at e z/H=1, and f z/H=0.5. For sectional
spatially averaged values and Forchheimer coefficient CF (z) calculated in microscopic simulations, fine grid
(853 × 23 × 60; CF A) and coarse grid (583 × 23 × 47; CF B ) were used. For macroscopic simulations, we
also used the Ergun equation (CF2 = 0.22, β = 1.0) and its revised equation (CF1 = 0.12 as β = 0.56 for
all units except unit 1). x=0 is the windward edge of the porous region. U0(z) is the streamwise velocity in
the free flow far upstream

5 Conclusions

We performed both microscopic simulations with a RANS k–ε turbulence model and mac-
roscopic simulations using a porous turbulence model for an investigation of urban turbulent
flows through aligned cube arrays of 7, 14 and 21 rows, in which the aspect ratio is 1.0 and
the porosity is 0.75. Microscopic simulations were validated well by previous wind-tunnel
data. We analysed 3D turbulent flow patterns in such cube arrays where the skimming flow
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regime exists in the secondary streets (canyon units) and channel flows are found in the main
street (channel units), which is parallel to the approaching flow. There are both downward
and upward flows across canyon roofs, together with both lateral inflow and outflow across
the interface between canyons and their neighbouring channel units. The downward inflow
rate across canyon roofs is a little larger than the upward outflow rate across canyon roofs,
showing that the ventilation in 3D canyon flows differs from that in 2D canyon flows. The
normalized flow rates and ACHs for canyons and channels were also estimated, for which we
found the ventilation in channels is much better than that in canyons, and the air exchange for
canyons due to turbulent fluctuations is more important than that due to the mean flow. We
also analysed the microscopic variation of the streamwise velocity and vertical velocity, and
the macroscopic velocity reduction through these cube arrays. Macroscopic quantities may be
approximately fully developed when the cube array is sufficiently long, but the microscopic
variables vary in a wave shape.

Then we carried out macroscopic simulations on porous media of these cube arrays using
a macroscopic k–ε turbulence model, with the sectional Forchheimer coefficients that were
calculated from the microscopic results of the fine and coarse grids or the constant coeffi-
cients using Ergun equations. A single domain approach was used to deal with the interface
conditions. The comparison between macroscopic and microscopic simulation results con-
firms that macroscopic simulations may predict the profile of velocity reduction well if a
suitable profile of the Forchheimer coefficient is selected, but will under-predict the turbu-
lence intensity near the windward edge of the porous region and over-predict the turbulence
intensity near the top interface. The macroscopic fully developed characteristic appears if
the porous region is sufficiently long. In the present porous turbulence model, the Darcy and
Forchheimer terms mainly act as sink terms for the transport of momentum, TKE and its dis-
sipation rate in most situations, and the magnitudes of Darcy terms are always much less than
those of the Forchheimer terms. Overall, the present porous turbulence model with a series
of analysis techniques provides a promising tool for numerical prediction of macroscopic
wind conditions in porous cities with a large number of buildings.
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