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ABSTRACT 

 The nonlinear Schrödinger equation (NLSE) is an important model for 

wave packet dynamics in hydrodynamics, optics, plasma physics and many 

other physical disciplines. The ‘derivative’ NLSE family usually arises when 

further nonlinear effects must be incorporated. The periodic solutions of one 

such member, the Chen – Lee – Liu equation, are studied. More precisely, the 

complex envelope is separated into the absolute value and the phase. The 

absolute value is solved in terms of a polynomial in elliptic functions while the 

phase is expressed in terms of elliptic integrals of the third kind. The exact 

periodicity condition will imply that only a countable set of elliptic function 

moduli is allowed. This feature contrasts sharply with other periodic solutions 

of envelope equations, where a continuous range of elliptic function moduli is 

permitted.  
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1. Introduction 

The nonlinear Schrödinger equation (NLSE) is an important model in 

many branches of physics, e.g. hydrodynamics [1], optics [2 – 4] and nonlinear 

science [5, 6]. NLSE incorporates a quadratic dispersion law and a cubic 

nonlinearity, and is written here in canonical form (* = complex conjugate):  

                                       0*λ 2
2

2

=−
∂
∂

+
∂
∂ AA

x
A

t
Ai .                                                   (1) 

If λ is positive (negative), plane waves are stable (unstable) [1 – 6]. 

Solitons can propagate as a permanent entity by a balance of dispersion and 

nonlinearity. In the context of water waves, packets of sufficiently large 

steepness, i.e., fourth order in the (small) amplitude parameter, call for the 

introduction of higher order nonlinear terms. From the perspective of optical 

physics, short waves demand the inclusion of ‘self steepening’ terms too. 

Frequently such higher order NLSE models are not amenable to analytical 

treatment. The goal here is study one such family of models, the ‘derivative’ 

NLSE, where exact solutions can be obtained, and thus insight and qualitative 

properties can be deduced.  

More precisely, we study the Chen – Lee – Liu equation (CLL) [7 – 13]: 

                                                                  (2) ,0*σ*λ 2 =+−+ xxxt AAAiAAAiA

where the last term represents ‘self steepening’ effects in hydrodynamics and 

optics. In this paper, we shall focus on the regime λ > 0, σ > 0, and a 

comprehensive description on the other possible combinations will be left for 

 3



future study. The objective is to investigate a class of periodic solutions of these 

‘derivative’ NLSE models analytically, with CLL being one typical example.  

 

Periodic solutions of NLS 

It will be instructive to review the periodic solutions of NLSE. Several 

classes of such solutions are known earlier in the literature. A brief, but 

certainly incomplete, overview can be provided: 

(1) Rational solutions of hyperbolic and trigonometric functions with nonzero 

asymptotic values in the far field – physically, they correspond to waves of 

elevation moving on a continuous wave background [14 – 17]. 

(2) Real Jacobi elliptic functions in x and a complex exponential in t – 

Physically, the wave profile is periodic in space (x) and harmonic / oscillatory in 

time (t), and the wave intensity (|A|2) is independent of time [18 – 20]. 

(3) Jacobi elliptic functions in both x and t – The wave intensity pattern is now 

doubly periodic, i.e. periodic in both space and time [3, 21, 22].  

(4) Both the absolute value and argument of the complex envelope A depend on 

the spatial coordinate x, but the time dependence is just simple harmonic. Such 

solutions have usually been known in the literature as the ‘nontrivial phase’ 

type [23 – 27].  

(5) Computer algebra software has recently been employed in the search for 

traveling wave solution [28]. 
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Periodic solutions of CLL 

 Although brief discussions on the periodic solutions of derivative 

nonlinear Schrödinger equations have been found scattered in the literature, 

most, if not all, of these works either have a trivial phase or have neglected the 

treatment of the phase factor [29, 30].  

The main goal here is to extend the class of ‘nontrivial phase’ solutions of 

NLSE [23 – 27] to other integrable envelope equations. The family of derivative 

NLSE, with CLL as illustrative example, will constitute the focus of the present 

work.  

The theoretical treatment is first presented in Section 2. These nontrivial 

phase solutions have usually been studied in two contexts, either the Gross – 

Pitaevskii equation with a periodic potential or in the language of algebraic 

geometry and curves. In the former, the restrictions in the modulus and the 

phase are usually masked by the underlying periodic potential. In the latter case, 

the techniques of algebraic geometry, while elegant mathematically, are usually 

beyond the everyday language of most practitioners of hydrodynamics and 

optics. Furthermore, it is difficult to impossible to implement the physically 

significant quantities, e.g. frequency and wave speed, from the predictions of 

algebraic curves theory to common computer algebra software. 

On employing polar representation, the absolute value and phase of the 

complex envelope A are expressed in terms of a polynomial in elliptic functions 

and elliptic integrals of the third kind respectively. For the wave profile to be 
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periodic, these two entities must have commensurate periods. This imposes a 

‘quantized’ condition for the permissible modulus of the associated elliptic 

functions / integrals (Sections 2, 3).  

Although elliptic functions have been employed extensively in the 

literature [31], elliptic integral of the third kind has been used much less 

frequently in science and engineering [32 – 34]. Hence a brief introduction is 

provided in Section 3. A consistency check, and the computational results which 

demonstrate the existence of solutions explicitly, are presented in Section 4. For 

any given CLL, the precise periodicity condition will select a ‘discrete’ set of 

allowable elliptic function moduli. This contrasts sharply with other families of 

periodic solutions of envelope equations, where a continuous range of moduli is 

permitted. 

 

2. Polar representations  

The polar or Madelung representation calls for 

                                      ).Θ(Θ),(),Θexp( xxRRtiiRA ==ω−=                  (3) 

Solutions with Θ being different from a constant or a linear function in x will be 

termed ‘nontrivial phase solutions’. To minimize algebraic complexity, we first 

study the case where the angular frequency, ω, is assumed to be zero for the rest 

of this paper. Substituting (3) into (2) and simple manipulations now lead to  

                              ,
4

σ 2

2
0 R

R
C

x −=Θ      and                                                        (4)                    
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where C0, C1 are constants. This is a canonical equation for an elliptic function 

in R2 [18 – 27]. In fact, if we let Y = R2, then equation (5) reduces to (dY/dx)2 = 

P(Y), where P is a polynomial of degree four. It is well known that Y is a 

rational function, rational in the exponential function or elliptic function if P has 

a triple zero and a simple zero, two double zeros and four distinct zeros 

respectively. For the generic case where P has four distinct zeros, by applying a 

well established procedure, the differential equation (dY/dx)2 = P(Y) can be 

further transformed into the Jacobi normal form, and the solution is the Jacobi 

sine amplitude sn(x). Hence Y = R2 can always be expressed as certain algebraic 

functions in sn(x). A comprehensive listing of all possible elliptic functions 

solutions as well as their degenerations will be left for future study. 

   At present we shall be content with one particular solution as: 

                                       ,
λ

)(dnσ1
σ
λ2
2

2
⎥⎦
⎤

⎢⎣
⎡ +=

rxrR                                           (6) 

with dn being the Jacobi elliptic function and k is the associated modulus. The 

function dn has a period 2K, where K is the complete elliptic integral of the first 

kind,  

                     ∫
π

θ−
θ

==
2/

0 22 sin1
)(

k
dkKK  .                                   (7) 

The other parameters are given by 
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λ6σ)2(
3

2222

0
−−

=
rkC           4

2222

1 σ2
]λ2σ)2λ[( −−

=
rkC  .             (8) 

The coefficients of the cubic nonlinearity (λ) and ‘self steepening’ (σ) cannot be 

independent, and must be related through  

                                                            
λ
σry =                                                    (9) 

where y satisfies the equation 

                                          .                                 (10) 032)2(8 2244 =+−− ykyk

The discriminant of this quadratic in y2 is given by  

)44(64 42 kk −−  

which is positive as long as 

                                                    )12(22 −<k .                                             (11) 

The sum and product of roots of (10), as a quadratic in y2, are both positive. 

Hence (10) has two positive roots for y2, and thus four real roots for y.  The 

phase function Θ(x) must be extracted from (4). The period of the absolute 

value R is 2MK, where M is an integer. For the complex variable A to be truly 

periodic, the periods of the functions R and Θ cannot be independent. As a 

concrete example, consider the Madelung description in hydrodynamics, where 

R would represent density and Θ denotes a velocity potential. Consequently, for 

the flow configuration to be periodic, both the modulus and the phase of the 

wave function should be periodic with that same period. Similar interpretations 

apply to other applications in science and engineering. 
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More precisely, the phase Θ defined by (3) must change by 2Nπ for an 

integral period in R2, where N is integer. The quantitative expression for this 

constraint can now be written as 

πNdvrvr
rvr

dvkr
r

MK
r

MK

2
λ

)(dnσ1
σ2
λ

λ/)(dnσ1
6

λ
)2(σ

σ4
λ 2

0

2

02

222

=⎟
⎠
⎞

⎜
⎝
⎛ +−

+⎥
⎦

⎤
⎢
⎣

⎡
−

−
∫∫ . 

                               (12) 

Due to the periodicity of dn, it is actually sufficient to consider the integrals for 

the interval (0, 2K) and multiply the result by M. This first integral will be 

converted to an elliptic integral of the third kind documented in the next section. 

 

3. Elliptic integrals of the third kind 

For the present purpose, the elliptic integral of the third kind is taken as   

                                 ∫
φ

θ−θ−
θ

=φ
0 222

2 ,
sin1)sin1(

),,Λ(
kn

dkn               (13) 

which depends on the parameter n, in addition to the modulus k and the upper 

limit of integration. A purely algebraic form can be obtained by  

                                                  ,sin,sin φ=ξθ=t      (14) 

                                           ,
)1)(1()1(0 2222∫

ξ

−−− tktnt
dt

    (15) 

where obviously the elliptic integral of the first kind is recovered for n = 0. To 

relate to the formulation in Section 2, the substitution 

                                                         t = sn v,      ξ = sn u,    (16) 
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will lead to  

                                                Λ (n, u, k2) = ,
)sn1(0 2∫ −

u

vn
dv

    (17) 

which will now be employed to calculate the polar angle Θ.  

 One now reduces Θ and R defined by (4) and (6) to a form related to (17), 

which will be taken as the definition of the elliptic integral of the third kind. To 

accomplish this objective, an indefinite integral from the literature [35], which 

can also be verified by direct calculations, is 

∫ +
u

v
dv

0 )(dnα1
 

⎟
⎠
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⎜
⎝

⎛
−

−Λ⎟
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= 2
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⎛
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)cn(
)sn(

α1
α)1(1tan

)α)1(1()α1(

α
2

22
1

2
1222 u

uk

k
 ,           (18)  

where sn and cn are the standard Jacobi elliptic functions. Since sn(0) and sn(2K) 

both vanish, only the first term on the right hand side contributes to a definite 

integral of range (0, 2K) as given in (12). 

 The second integral in (12) is much easier to handle:  

[ ] π==∫ −K K
xdxx

2

0 0
1 ))(sn(sin2)(dn . 

 On using the shorthand notation, 

                                                           
λ
σα r

= ,                                                (19) 
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the periodicity condition (12) can now be written in a compact form: 

         π=
⎭
⎬
⎫

⎩
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⎧
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⎞

⎜
⎝
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2

22

2
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,        (20) 

with M, N integers.  

 

 

4. Consistency checks and numerical results 

Consistency checks 

The objective of the consistency check is to show that, for special 

parameter values (k = 0 here), the elliptic function algorithm developed in the 

previous solution reduces to special, ‘intuitively obvious’ solutions of CLL. 

For the special case k = 0, (9, 10) dictate that this class of solutions only 

exists for  

                                                                    
r

2λ
=σ  .                     (21) 

The envelope A itself, as defined by (3), has constant radial part, 

                                                                )21(
2

2 +
λ

=
rR  ,                                            (22) 

and a linear phase 

                                                                 Θ = – rx.                                           (23) 

This solution for A as defined by (3) will satisfy the steady state CCL equation 

                                   xxx AAAiAAA **2 σ+λ−  = 0,                                          (24) 
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when (21) holds. The periodicity condition (20) degenerates to a simple form M 

= – 4N, which dictates that there is only one choice for M for any given N.  

 On the other hand, one cannot study the long wave limit (k → 1), due to 

the restriction (11). 

 

 

Numerical results 

To demonstrate explicitly the existence of solutions for nonzero values of k2, 

typical numerical results for (20) will be presented.  

Fixed k, σ and λ vary – For a solution of a fixed period (k and r), we 

demonstrate how (20) is satisfied by selecting a typical value of M, and 

calculating (20) for various α. Figure 1 plots the left hand side of (20) versus α 

for M = 3. As the graph ranges from a minimum to arbitrary large values 

(numerically), it will always attain a value 2Nπ, for a sufficiently large integer N. 

Thus for any large integer N, there would be two possible values of α = σr/λ 

which would satisfy this periodicity requirement. From the perspective of 

applications, one can always the tune the magnitude of ‘self steepening’ (the 

value of σ), to attain a solution of a given period.  

As a numerical example, M = 3, N = 8, k2 = 0.5, r = 1, one needs α = –0.512.  

Fixed σ and λ, k varies – It is of course more common to have (2) given (σ, λ 

fixed) and a periodic solution is sought. One then first chooses a value for M, 

and attempts to satisfy (20) with a particular choice of k, by simply plotting (20) 
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versus k using standard computer algebra software. Typically only one or at 

most a few values of k can accomplish this goal. We demonstrate the dynamics 

by presenting several illustrative results for α = 0.5: 

M = 1, N = –3, k2 = 0.376; 

M = 1, N = –4, k2 = 0.750; 

M = 2, N = –6, k2 = 0.375; 

M = 2, N = –7, k2 = 0.619; 

M = 2, N = –8, k2 = 0.750; 

M = 2, N = –9, k2 = 0.821; 

M = 3, N = –8, k2 = 0.095; 

M = 3, N = –9, k2 = 0.375; 

M = 3, N = –10, k2 = 0.554; 

M = 3, N = –11, k2 = 0.672; 

M = 3, N = –12, k2 = 0.750; 

M = 3, N = –13, k2 = 0.802. 

It is reasonable to conjecture that for a given M, there will eventually be an 

increasing number of discrete, allowable values of k2 which satisfy the 

periodicity requirement (20). 

 

5. Conclusions 

The nonlinear Schrödinger equation (NLSE), an important model in many 

branches of physics, possesses periodic solutions known frequently in the 
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literature as the ‘nontrivial phase’ type. This mechanism of solving envelope 

equations and this type of wave profiles are conjectured here to be valid for 

derivative NLSE family of models as well. The distinctive characteristic is that 

the phase of the wave function, expressed in polar coordinates, must be a 

nonlinear function of the relevant variable. Typically an elliptic integral of the 

third kind is involved. The details of a typical example of derivative NLSE, the 

Chen – Lee – Liu equation, are worked out explicitly. The precise periodicity 

condition is that both the absolute value and the phase must be periodic. This 

condition is formulated in terms of an elliptic integral of third kind, and is 

computed numerically. Only a countable set of elliptic function moduli is 

permitted, in sharp contrast with other periodic solutions of NLSE and 

derivative NLSE. Other family of solutions for CLL, e.g. by employing other 

elliptic functions for the radial function R and/or invoking a nonzero angular 

frequency (ω) in the initial formulation (2, 3) remains to be explored. Further 

variants of derivative NLSE, e.g. the Kaup – Newell equation, will be studied in 

the future.     
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Figure Captions 

(1) Figure 1 – The periodicity condition, left hand side of Equation (20), versus 

α, M = 3, N = 0, k2 = 0.5. 
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Periodicity condition (20) versus α 
 
 

 
 

Figure 1 
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