The HKU Scholars Hub The University of Hong Kong 香港大學學術庫

Title	Neural crest derived from Hirschsprung iPS cells show a reduced neural plasticity
Author(s)	Chow, KHM; Yung, JSY; Ngan, ESW
Citation	The 2011 Meeting of the Days of Molecular Medicine (DMM), Hong Kong, 10-12 November 2011.
Issued Date	2011
URL	http://hdl.handle.net/10722/144713
Rights	Creative Commons: Attribution 3.0 Hong Kong License

66] Neural crest derived from Hirschsprung iPS cells show a reduced neural plasticity

Kim HM CHOW^{1,2}, Jasmine SY Yung², and Elly SW NGAN²

¹Stem cell and Regenerative Medicine Consortium, ²Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.

Hirschsprung's disease (HSCR) is a congenital disease characterized by the absence of ganglian cells in the colon. It would be attributed to the defects in neural differentiation and/or migration of enteric neural crest (NC) cells. For a better understanding of disease pathogenesis of HSCR, our laboratory has recently established two iPS cell lines from a HSCR patient. With a gradient switch from KSR medium to a neural inductive N2 medium supplemented with various neurotropic factors, we could direct human iPS cells to differentiate towards NC cells $(HNK1^{+}/p75^{+})$. Both the HSCR and control (IMR90) iPS lines could generate NC cells of similar capacity. However, we found that HSCR iPS cells exhibited a lower efficiency to produce enteric NC cells (HNK1⁺/RET⁺). A significantly less $(18.9\pm1.0\%)$ number of HNK1⁺/RET⁺ cells were obtained from HSCR iPS cells on day 9 in the differentiation medium. Despite the patient NC cells could differentiate further along neuronal lineage, number of neuronal precursors (TH⁺/Tuj1⁺) obtained from the patient lines was also reduced by $49.3\pm2.8\%$. In addition, they were not able to fully differentiate to mature neurons (PGP9.5⁺) of proper neurite outgrowth and showed a reduced neural plasticity to form enteric neurons (such as VIP⁺ neurons).

In parallel, an *ex vivo* gut culture experiment was performed and revealed that iPS-derived NC cells were able to engraft in the muscle layers of the aganglionic gut excised from a HSCR patient. More importantly, these engrafted cells could differentiate into neuronal precursors $(Tuj1^+)$ in the diseased bowel.

In summary, we have demonstrated that HSCR-iPS cells derived NC cells may harbor the intrinsic neuronal differentiation defects, while iPS cells from healthy individual may represent a powerful tool to reconstitute/replenish absent ganglia in HSCR bowel.