
Title Adaptive thread scheduling techniques for improving scalability
of software transactional memory

Author(s) Chan, K; Lam, KT; Wang, CL

Citation

The 10th IASTED International Conference on Parallel and
Distributed Computing and Networks (PDCN 2011), Innsbruck,
Austria, 15-17 February 2011. In Proceedings of the 10th
IASTED-PDCN, 2011, p. 91-98

Issued Date 2011

URL http://hdl.handle.net/10722/144628

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37966510?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ADAPTIVE THREAD SCHEDULING TECHNIQUES FOR IMPROVING
SCALABILITY OF SOFTWARE TRANSACTIONAL MEMORY

Kinson Chan, King Tin Lam, Cho-Li Wang

Department of Computer Science
The University of Hong Kong
Pokfulum Road, Hong Kong

{kchan, ktlam, clwang}@cs.hku.hk

ABSTRACT
Software transactional memory (STM) enhances both
ease-of-use and concurrency, and is considered state-of-
the-art for parallel applications to scale on modern multi-
core hardware. However, there are certain situations
where STM performs even worse than traditional locks.
Upon hotspots where most threads contend over a few
pieces of shared data, going transactional will result in
excessive conflicts and aborts that adversely degrade per-
formance. We present a new design of adaptive thread
scheduler that manages concurrency when the system is
about entering and leaving hotspots. The scheduler con-
trols the number of threads spawning new transactions
according to the live commit throughput. We imple-
mented two feedback-control policies called Throttle and
Probe to realize this adaptive scheduling. Performance
evaluation with the STAMP benchmarks shows that ena-
bling Throttle and Probe obtain best-case speedups of
87.5% and 108.7% respectively.

KEY WORDS
Software transactional memory, Adaptive concurrency
control, Thread scheduling

1. Introduction

The rise of multicore processor architecture has reshaped
supercomputing and marked the beginning of a new era.
The shift to multi-core also marks an inflection point for
mainstream software design philosophy [1]. Dissimilar
readiness of software and hardware has presented an un-
precedented challenge to software designers, preventing
them from making best utilization of the rich hardware.
To date, systems researchers are actively looking for
promising parallel paradigms that permit future software
both ease-of-use and high concurrency to solve this prob-
lem. Transactional memory (TM) has become a heavily
reviewed candidate to increase the software-exposed par-
allelism for scaling with more and more cores. TM is a
concurrency control mechanism analogous to database
transactions for synchronizing access to shared memory
among multiple threads. The first proposal [2] of using
transactions as a consistency model dates back to 1993.
Shavit and Touitou soon proposed the all-software ap-
proach to implementing TM in and coined the term soft-

ware transactional memory (STM) [3]. STM is a specula-
tive approach going for optimistic concurrency and relies
on contention managers [4] to remedy conflicts. While
attaining much better concurrency than lock-based syn-
chronization, STM performance hinges heavily on the
commit throughput all over the execution because every
aborted transaction is simply wasting the CPU time. For
applications that contain high contention by nature, STMs
can perform even poorer than lock-based synchronization.
 We argue that running parallel threads in a totally
unsupervised but post-recovery manner via a contention
management module is not the best but a “blind” STM
infrastructure. When considering wider domains of paral-
lel applications, STMs must be able to cope with the per-
formance issue due to high contention. For virtues of high
concurrency and high commit throughput to coexist at
runtime, we propose new adaptive thread scheduling
mechanisms to tune the level of concurrency dynamically,
thereby reducing or even avoiding the chance of transac-
tional conflicts when they are about to grow in number
and aggravate the STM. On the other hand, if the thread
scheduler observes that the present execution seldom en-
counters conflicts, it may speculate on boosting concur-
rency on-the-fly for better speedup. We see that research
efforts [5, 6, 7, 8] in a similar direction yet nascent condi-
tion have lately begun (Section 5). To advance the state of
the art, the contributions of this paper are two-fold:
 1. By experimenting the STAMP benchmark suite
[9], we conduct in-depth analysis (in Section 2) on the
relation between the commit throughput and thread count,
confirming that (a) variable concurrency is indeed wanted
by different sections of the program execution; (b) the
instantaneous commit rate or ratio is a trackable control
parameter for dynamic tuning on the active thread count.
 2. We develop an adaptive thread scheduler and
design two concurrency control policies called Throttle
and Probe (Section 3.2-3.3), pluggable to the scheduler. In
particular, Probe is novel in its self-regulatory control
logic against overreactions to commit ratio fluctuations.
We implement our proposed techniques on TinySTM [10]
(Section 3.4), and evaluate their performance with all
STAMP applications (Section 4). The experimental re-
sults are generally positive and highlighted here: Throttle
speeds up 6 out of 10 benchmarks with the best case up to
87.5%. Probe is effective to 4 applications (best-case gain
is up to 108.7%; among the losing cases, three of them

suffer only slight slowdown within 10%). We also com-
pare our solutions with the previous work done, namely
Yoo’s [6] and Shrink [7], whose codes have been ported
to TinySTM. Averaging over all the STAMP benchmarks,
we find that Throttle and Probe perform equally well as
Yoo’s and outperform Shrink by 13-14%.

2. The Excessive Threading Problem

In general, applications initiate an adequate number of
threads to “exhaust” all the available parallelism. How-
ever, the inherent parallelism in the application may vary
over the execution. We call the section of execution lack-
ing inherent parallelism a hotspot. The more threads pass-
ing through a hotspot, the more likely transactional con-
flicts are seen. Analytic models made by Zilles, et al [11]
show that conflict likelihood is proportional to c2 where c
denotes concurrency (i.e. concurrent transaction count).
So running an application with a static thread count may
see concurrency benefit for some duration but adverse
performance effect around hotspots. In serious cases, ex-
cessive conflicts, aborts and retries due to hotspots could
offset all benefits of the STM’s optimistic approach.
 We conducted an in-depth analysis for gaining in-
sights into the problem of excessive threading, leading to
ideas of our adaptive solutions. We run the STAMP
benchmark suite [9] on an 8-core server supporting 16
hyper-threads (See Section 4.1 for detailed hardware con-
figuration and brief characteristics of STAMP). We run
the applications with initial thread count of 4, 8, 16 and 32.
The 32-thread case is made deliberately for assessing ex-
treme concurrency, emulating a more conflict-prone envi-
ronment. Fig. 1 shows the variation of commit ratio
against thread count. Commit ratio is the fraction of
committed transactions out of all executed transactions.
Practically, our commit ratios are taken per unit time.
That means the system will reset the statistics of commit-
ted and executed transactions at regular time intervals. In
theory, under low contention, performance gets improved
by running more threads. This is because the transaction
attempt rate increases with concurrency and the majority
of attempts will become successful commits if contention
is rare. On the contrary, running more threads under high
contention worsens the commit rate and hence the per-
formance. Our experimental result shown in Fig.1 con-
firms several hypotheses.

1) Commit ratio truly varies along the execution:
Nearly in all applications, the commit ratio keeps chang-
ing from time to time. Taking the 4-thread case of In-
truder as an example, commit ratio keeps steadily to be
over 85% during the initial stage but drops exponentially
(implying more contentions) near the end of execution.
This is normal if we cross-check the application nature.
Intruder is a network intrusion detector. In order to detect
intrusion attempts, the system first draws packets from a
first-in-first-out queue. The worker threads try to link
packets into network streams with a dictionary (a self-
balancing tree), as well as retrieving completed streams

for detection. There are more conflicts at the later stages
because it takes more operations and time to access a tree
than a queue. The conflict probability further increases
when there are less data remaining in the tree. So commit
ratio drops naturally. As a conclusive message to be taken
by STM designers, there is no “cure-all” concurrency
setting for applications and adaptive tuning is necessary to
make the most of an STM system.

2) Running fewer threads generally raises commit ratio:
We can observe a common phenomenon from Fig.1 that
except Kmeans-high and Bayes, all applications tend to
attain a higher level of commit ratio when using fewer
threads. Looking at Intruder again, commit ratio stays
under 20% all the time at 32 threads but reaches 85% at 4
threads. Other applications show a similar behavior
though the extent of variation differs. This leads to the
idea that if the observed commit ratio stays poor, the sys-
tem suspends some threads from running, thus helping the
active ones commit more smoothly. Except those limited
set of embarrassingly parallel applications, we expect
most parallel applications running on shared-memory
machines can benefit from such an adaptive control over
the active thread count.

3) Commit/abort statistics can serve as feedback control:
If the commit ratio variation simply consists of random
spikes and intense fluctuations all the time, it cannot be
used as a control parameter for dynamic scheduling of
active threads at all. Fig. 1 shows that the changing com-
mit ratios in most applications indeed undergo traceable
transitions. Exceptions are Labyrinth and 32-thread cases
of Kmeans and Ssca2 where the commit ratio fluctuates
promptly and are difficult to track. We can also see that
scaling to 32 threads, the commit ratio curves tend to be
more unstable. Fluctuation becoming more vigorous could
serve as a sign of “over-threading” though our policies are
not based on this property.

3. Adaptive Thread Scheduling Techniques

In this section, we present our adaptive concurrency con-
trol protocol. The essence of the protocol is similar to
flow control of communication which aims not to over-
flow the medium: we don’t want too many threads enter
into concurrent transactions around the detected hotspots.
The basic mechanism is based on using a dynamic quota
parameter to limit active threads and hence concurrency.
Different models or policies can be implemented to tune
the quota. We develop two models called Throttle and
Probe for doing so.

3.1 Quota-Driven Adaptive Concurrency Control

We introduce the following system parameters into the
STM for concurrency control.
1. quota: number of concurrent threads allowed to enter
into transactions, we call it the concurrency quota.

(a) 4 threads (b) 8 threads (c) 16 threads (d) 32 threads

Figure 1. Variation of commit ratio across execution time

2. active: number of active threads that have entered
into transactions and not yet exited.

Table 1. Concurrency Quota Mechanisms

function onBegin
retry:

if active >= quota then
set stalled to true
yield
goto retry

end if
active := active + 1
if peak < active then

peak := active
end if

end

function onCommit
active := active - 1
commits := commits + 1

end

function onAbort

active := active - 1
aborts := aborts + 1

end

3. peak: peak number of threads that have begun trans-
actions; including threads that have exited transaction.
4. commits: number of committed transactions.
5. aborts: number of aborted transactions.
6. stalled: a Boolean flag indicating that some threads
are stalled at transactions’ entrance for all concurrency
quotas have been used up, i.e. active has equaled quota.
 Among them, quota is the tuning target; commits and
aborts are observed statistics channeled from the STM
runtime; active, peak and stalled are derived variables
facilitating the control algorithm. Note that variables 3-5
are rate-based: we accumulate and reset their values per
regular time intervals, e.g. 5 ms. So commits means the
number of committed transactions within the current in-
terval, not the total accumulated since the program start.
We would write last_commits in later context to mean the
count of committed transactions within the last interval.

Table 2. Throttle Policy

while true do
sleep for a constant time (e.g. 5ms)
if commits + aborts < warmup then

continue
end if
ratio = commits / (commits + aborts)
if peak < quota then

quota := peak
else if ratio < threshold then

quota := quota - 1
else if stalled is true and ratio > threshold then

quota := quota + 1
end if
reset peak, commits, aborts to zero and
stalled to false

end do

 Table 1 shows the basic mechanism to operate on the
concurrency quota concept. When a thread tries to begin a
new transaction (i.e. call the STM’s begin() function), it
has to check if the current active thread count has reached
the current quota allowed. If this is the case, it has to wait
in place until either some active threads get exited trans-
actions (in other words, some transactions get committed
or aborted) or the current quota is lifted up on demand by
the background daemon running some tuning policies to
be explained in Sections 3.2 and 3.3. We added an extra
heuristic to the mechanism: we record the active thread
count that once happens to be the highest into the peak
variable. If the daemon finds that the current quota is even
larger than peak, it will set quota to peak. This measure is
to avoid quota being incremented beyond the highest con-
currency need. Superfluous quota will simply oppose the
virtue of putting a bound on concurrent thread count.

3.2 Throttle Policy

Table 2 shows the algorithm of our first feedback control
policy. The policy name is coined by analogy with a car‘s
throttle that regulates airflow into the engine and hence
controls how fast the engine goes. A driver normally im-
pedes the car if seeing many cars or even accidents on the
road. Likewise, we want the STM to suppress concur-
rency if it sees abort count to rise. Quota increment and
decrement are analogous to pressing and releasing the gas
pedal by the driver. Since aborts would rise when some
threads are entering a shared memory hotspot, the ob-
served commit ratio, (denoted by ratio in Table 2) would
drop. If the ratio drops below some predefined threshold,
say 0.8, the system would narrow the quota, analogous to
a driver releasing the gas pedal. If the hotspot lasts for a
sufficient period that allows threads to see the new quota,
commit ratio has good chance to rise. Upon leaving a hot-
spot, aborts drop and commit ratio gets back to rise be-
yond the threshold, quota is relaxed (when seeing stalled
= true) for resuming stalled threads to drive parallel exe-
cution at full throttle.

Note: Since peak and other counters will be reset to zero
across regular intervals, e.g. per 5 ms, when the daemon
wakes up, the heuristic of setting quota to peak if quota >
peak will set the current quota to zero, making all threads
stalled! So there is a protective measure to forbid the
daemon from updating the quota until commits + aborts
>= warmup (a predefined constant, e.g. 10). At the mo-
ment that commits + aborts observed in the current inter-
val get larger than 10, there must have been 10 threads
called onBegin(), so peak should be non-zero right now.
Then quota will never vanish to halt the entire system.

3.3 Probe Policy

We show another control policy design in Table 3. The
name Probe implies the algorithm is probing for a concur-
rency quota that optimizes commits by some “trial and
error” method. In theory, there exists an optimal of active
thread count that corresponds to the crest of the commit
rate curve which looks bell-shaped. Note that in this pol-
icy, we use commit rate, i.e. number of committed trans-
actions per unit time, rather than commit ratio. We quan-
tify the unit time logically by laps. Similar to Throttle,
this policy employs a protective postpone of quota update
until commits + aborts >= warmup. What is extra is we
add a counter laps to record the count of daemon sleeping
cycles that have passed until warm-up is done. So commit
rate can be calculated as commits divided by laps.

 In reality, the optimal point for the current active
thread count is floating: it may keep shifting horizontally
along the execution time. We could make the system stay
close to the sweet spot continuously by a probing tech-
nique as follows. If we use fewer threads but observe a
drop in commit rate (refer to the check: if commits / laps
< last_commits / last_laps in Table 3), this implies we are
falling down hill and getting further away from the opti-
mal. Thus we should reverse the tuning direction from
down to up, i.e. keep incrementing the quota until we start
to see another drop of commit rate, which implies “over-
relaxation” on the quota.

3.4 System Implementation

We implemented all the abovementioned in TinySTM
v.0.9.5 [10]. We pick this specific version in order to have
a fair comparison with prior related work on concurrency
control policies, Yoo’s [6] and Shrink [7], that have gone
open-source and bundled in this TinySTM version.

 Thread stalling at lacking quota and periodic daemon
wakeups are realized by spins over sched_yield and
usleep system calls in Linux. The variables active, quota
and peak are stored as bits of a 64-bit integer and modi-
fied via compare-and-swap (CAS) operations in an ob-
struction-free [12] mode, i.e. a preempted thread will not
block other threads from starting or finishing transactions.

Table 3. Probe Policy

set direction to down
while true do

sleep for a constant time (e.g. 5ms)
if peak = 0 and active = 0 then

continue
else if commits + aborts < warmup then

laps := laps + 1
continue

else
laps := laps + 1

end if
if peak < quota then

quota := peak + 1
set direction to down

else if quota = 1 then
set direction to up

else if commits / laps < last_commits / last_laps then
set direction to reverse(direction)

end if
if direction is down then

quota := quota - 1
else

quota := quota + 1
end if
last_commits := commits
last_laps := laps
reset peak, commits, aborts, laps to zero

end do

4. Performance Evaluation

4.1 Evaluation Platform and Methodology

Our experiments were conducted on a multicore server of
our PC cluster [13]. The server hardware configuration is
as follows: 2 × Intel E5540 (Nehalem-based) Quad-core
Xeon 2.53GHz CPUs (i.e. total 8 cores), 32 GB 1066MHz
DDR3 RAM and SAS disks/RAID-1. Both CPUs have
hyper-threading enabled, supporting concurrent run of 16
threads. The operating system is Fedora Core 11.
 We evaluate our solutions using the STAMP bench-
mark suite with modifications tailored for TinySTM. Ta-
ble 4 comes from the original STAMP paper [9]. Columns
2 to 5 represent length of transactions (number of instruc-
tions), size of read and write sets, portion of time spent on
transactions, and amount of contention respectively. For
comparison purpose, we obtained implementation of
Shrink and Yoo’s policies, tied with TinySTM v.0.9.5,
from the website of Distributed Programming Laboratory
of EPFL [14]. We ran the 10 test cases unmodified to see
how much speedup the four concurrency control policies
namely, Throttle, Probe, Shrink and Yoo’s can gain over
the plain execution without concurrency control. For con-
ciseness, we use the abbreviation ACC (adaptive concur-
rency control) in later context to collectively refer to any
of these policies. Some applications show high discrepan-
cies in execution times across runs. We handled this by
repeating each test for 7 times and taking the average.

Table 4. Qualitative Summary of the Stamp Benchmark

App Tx Length R/W Set Tx Time Contention
bayes

genome
intruder
kmeans

labyrinth
ssca2

vacation
yada

Long
Medium

Short
Short
Long
Short

Medium
Long

Large
Medium
Medium

Small
Large
Small

Medium
Large

High
High

Medium
Low
High
Low
High
High

High
Low
High
Low
High
Low

Low/Medium
Medium

4.2 Experimental Results

Fig. 2 shows the scalability of TinySTM, with and with-
out ACC. Each separate chart corresponds to one applica-
tion (kmeans and vacation have two test cases: low and
high in terms of inherent contention). The x-axis repre-
sents the static initial thread count (ITC) spawned by the
benchmark. Except “original” (i.e. no ACCs), the actual
number of active threads could be different from time to
time (but never > ITC).
 TinySTM shows increasing speedup for ITC between
2 to 8. Speedup drops when ITC reaches 16 or 32, de-
pending on the application nature. In general, for a ma-
chine of 16 hyper-threads, one cannot expect any speedup
to gain by using thread count beyond 16, so the 32-thread
data point is just for reference, showing how the STM
could behave under extreme condition. We can see in
some cases (mostly the “original” curve), speedup drops
below one when scaling towards 32 threads (an excep-
tional case is bayes where speedup keeps further increas-

Figure 2. Speedups obtained with different concurrency control heuristics

(a) Without concurrency control (b) With Throttle (c) With Probe

Figure 3. Variation of active thread count and commit ratios in kmeans-high across execution time

ing). The reason is contention gets severer along increas-
ing threads. When ACC policies are enabled, we can per-
ceive their rectifying effect that speedup drops less rap-
idly (some of the downhill curves become even bent up-
ward; e.g. Throttle for yada). Meanwhile, we notice in
some benchmarks (kmeans-low) that enabling ACCs
could reduce speedup or scalability even for ITC within
normal range (2-8). Although some programs get slow-
down from ACCs enabled, ACCs show positive effect
from an average point of view. Table 5 shows the best-,
worst- and average-case gain in speedup of the various
ACC policies compared to plain execution without ACC.
The average is taken over all 10 test cases. We see an
overall improvement of 11-13% by enabling an ACC pro-
tocol (except Shrink). Throttle and Probe improve on the
best-case gain and outweigh Shrink and Yoo’s. In particu-
lar, Throttle outpaces others for bayes and vacation, while
Probe performs best for yada, kmeans-high and vacation-
low/high. Overall, Throttle speeds up 6 out of 10 bench-
marks with the best case up to 87.5% (yada). Probe is
effective to 4 applications with the best-case gain up to
108.7%, and among the losing cases, 3 of them suffer
only slight slowdown (< 10%). On average (considering
all 10 benchmarking test cases), Throttle and Probe per-
form equally well as Yoo’s but outrun Shrink by 13-14%.
 We see that kmeans-low is defying all ACC protocols
and makes the worst case. The reason behind is that it
involves too frequent transactions of short lengths. Since
the ACC mechanisms instrument the begin and commit
procedures, a slight addition of overhead will be amplified

as drastic performance degradation. Moreover, as there is
not much contention, the benefit of having concurrency
control cannot cover the overhead. For kmeans-high
whose scalability is per se low, the overhead of concur-
rency control is shadowed by its benefits. We also try to
link the performance benefits in kmans-high to the im-
proved commit ratios after applying Throttle and Probe
heuristics. Fig. 3 shows the variation of active thread
count over execution time and its corresponding effect on
the commit ratio in kmeans-high. Fig. 3(a) depicts the
inherent commit ratio behavior of the application. Fig. 3(b)
shows that Throttle bounds the active thread count to 4,
effectively raising the commit ratio to a level of about
85%. However, this heuristic may be overly strict on con-
currency, i.e. overreaction. On the other hand, Probe fol-
lows a pendulum-like model to approach the current op-
timal active thread count rather than to purely sacrifice
concurrency for a prolonged period as in Throttle. So we
can see more variations in Fig. 3(c). Reconcile with Fig. 2,
we can see this strategy allows Probe to gain more
speedup, winning over Throttle and all prior heuristics.

Table 5. Comparison of ACC Policies

Policy Best Case Worst Case Average
Shrink +64.32% (yada) -36.60% (kmeans-1ow) -2.1%
Yoo +70.50% (yada) -23.27% (kmeans-low) +13.2%

Throttle +87.49% (yada) -34.39% (kmeans-low) +11.1%
Probe +108.69% (yada) -26.94% (ssca) +12.4%

 Yada is an application with commit ratio well below
20% when it is run with TinySTM. Both Throttle and Yoo
policy are misled by frequent aborts to reduce number of
threads. Shrink, which performs hotspot detection, re-
duces the amount of unnecessary serialization and per-
forms generally better than Yoo's. Our Probe policy ac-
tively searches for maximum value of commit rate and
successfully does so when there are less than 16 threads.
When there are 32 threads, however, the variance of
commit rate fluctuates a lot and causes the heuristic to fall.
 Vacation has a random data access pattern. Yoo’s and
our policies handle threads uniformly and perform well.
On excessive threads, performance drops rapidly as the
chance of conflict undergoes quadratic growth. Our poli-
cies defer execution of some threads, successfully reduce
conflicts and have shorter program completion time.

5. Related Work

Ansari et al [5] proposed control mechanisms to adjust
active thread count according to the so-called transaction
commit rate (TCR) which we would regard as commit
ratio. They tested only with sparingly few applications to
show the effectiveness. Our experimental evaluation on
Throttle with diverse benchmarks fills this gap. Our new
policy Probe is more immune to overreacting behavior
which is a consequence of observing commit ratio.
 Yoo, et al [6] proposed another mechanism to adjust
active thread count. Unlike Ansari’s work, Yoo’s policy
does not require heuristic data sharing among threads. It
computes contention intensity (CI) on each thread. When
CI is above a threshold, the thread acquires a common
lock before starting a new transaction. However, counting
the raw conflict count is unreliable since large amount of
conflicts (e.g. in Yada) may mislead the policy to unnec-
essarily serialize the transactions. Our Probe policy disre-
gards the rollback count and is freed from this problem.
 Shrink [7] assumes conflicts are induced by memory
hotspots. It adaptively activates hotspot detection when a
thread encounters repeated conflicts. Transactions that are
known making access to hotspots are required to acquire a
common lock so that they serialize among themselves
without affecting other threads. Unfortunately, if data
access of a program is purely random, all these efforts do
nothing helpful but waste even more computing time, as
shown in vacation, where Shrink does not significantly
bring improvement. In contrast, our heuristics handle this
case properly by reducing active threads system-wide.
 CAR-STM [8] assumes some pairs of threads share
data all the time. It features a scheduling-based mecha-
nism for collision avoidance and resolution. It schedules
transactions that are likely to conflict to the same proces-
sor, effectively serializes them and reduces number of
conflicts. While we have not evaluated this system, we
think it may suffer from the same problem of Shrink that
some threads are unnecessarily serialized in applications
with random access patterns.

6. Conclusion

This paper demonstrates two adaptive concurrency con-
trol techniques called Throttle and Probe that can effec-
tively avoid negative effect of excessive threading and
bring about performance gain. Throttle aims for high
commit ratio while scheduling. Probe aims for seeking the
sweet spot on commit rate by varying number of active
threads, and is more robust in that it does not get misled
by low commit ratios. Our results show that Probe outper-
forms existing concurrency control protocols in applica-
tions where the commit ratio is low. In future we may
consider combining the two policies to bring performance
improvement to a broader set of applications. We will
also investigate the notion of adaptively selecting differ-
ent adaptive concurrency control and STM protocol pa-
rameters according to live commit statistics.

Acknowledgement

This research is supported by Hong Kong RGC Grant
HKU7179/09E and Hong Kong UGC Special Equipment
Grant SEG HKU09.

References

[1] Maureen O’Gara. The Intel roadmap: The shift to multicore
is an inflection point for software design philosophy. 2005.
http://opensource.sys-con.com/node/48477.
[2] M. Herlihy, and J. E. B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceedings
of the 20th annual International Symposium on Computer Archi-
tecture, pages 289–300, 1993.
[3] N. Shavit, and D. Touitou. Software transactional memory.
In Proceedings of the 14th ACM Symposium on Principles of
Distributed Computing (PODC), pages 204–213, 1995
[4] W. N. Scherer III, and M. L. Scott. Advanced contention
management for dynamic software transactional memory. In
Proceedings of the 24th Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 240–248, 2005
[5] M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, and I. Wat-
son. Advanced concurrency control for transactional memory
using transaction commit rate. In the Proceedings of the 14th
International Euro-Par Conference on Parallel Computing,
pages 719–728, 2008.
[6] R. M. Yoo, and H. S. Lee. Adaptive transaction scheduling
for transactional memory systems. In the Proceedings of the
20th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pages 169–178, 2009.
[7] Dragojevic, A. V. Singh, R. Guerraoui and V. Singh. Pre-
venting versus curing: Avoiding conflicts in transactional
memories. In Proceedings of the 28th ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pages 7–16, 2009.
[8] S. Dolev, D. Hendler, and A. Suissa. CAR-STM: Schedul-
ing-based collision avoidance and resolution for software trans-
actional memory. In Proceedings of the 27th ACM Symposium
on Principles of Distributed Computing (PODC), pages 125–
134, 2008.
[9] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for multi-
processing. In Proceedings of The 2008 IEEE International
Symposium on Workload Characterization, pages 35–46, 2008.
[10] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance
tuning of word-based software transactional memory. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages 237–246,
2008.
[11] C. Zilles, and R. Rajwar. Implications of false conflict rate
trends for robust software transactional memory. In Proceedings
of the 10th International Symposium on Workload Characteriza-
tion, pages 15–24, 2007.
[12] M. Herlihy, V. Luchangco, and M. Moir. Obstruction free
synchronization: Double ended queues as an example. In the
Proceedings of the 32rd International Conference on Distrib-
uted Computing Systems, pages 522–529, 2003.
[13] HKUCS SRG. HKU Gideon-II Cluster.
http://i.cs.hku.hk/~clwang/Gideon-II/.
[14] LPD-EPFL. How good is a transactional memory imple-
mentation. http://lpd.epfl.ch/site/research/tmeval.

