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Abstract 

In cardiovascular diseases and during ageing, endothelial dysfunction is due in part to the 

release of endothelium-derived contracting factors (EDCF) that counteract the vasodilator 

effect of the nitric oxide (NO). Endothelium-dependent contractions involve the activation of 

endothelial cyclooxygenases and the release of various prostanoids, which activate smooth 

muscle thromboxane prostanoid TP receptors of the underlying vascular smooth muscle. The 

stimulation of TP receptors elicits not only the contraction and the proliferation of vascular 

smooth muscle cells but also diverse physiological/pathophysiological reactions, including 

platelet aggregation and activation of endothelial inflammatory responses. TP receptor 

antagonists curtail endothelial dysfunction in diseases such as hypertension and diabetes, are 

potent antithrombotic agents and prevent vascular inflammation.  
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1) Introduction: the history: 

At the very beginning of the endothelial saga, the comparison of the endothelium-

dependent responses of canine arteries and veins yielded the surprising finding that in the 

latter endothelial cells not only release relaxing factors, but also can initiate endothelium-

dependent contractions of the underlying vascular smooth muscle cells [13]. A pivotal finding 

was that those endothelium-dependent contractions can be prevented by various inhibitors of 

cyclooxygenases [50]. The initial observations made in canine veins were soon extended to 

the basilar artery of the same species and the aorta of the rat [34,35,43]. Later bioassay studies 

demonstrated that the endothelium-dependent contractions were indeed caused by 

vasoconstrictor prostanoids [endothelium-derived contracting factor (EDCF)] produced by the 

endothelial cells and diffusing to the underlying vascular smooth muscle [90]. The EDCF-

mediated responses evoked by stretching and agonists that elevate the endothelial intracellular 

calcium concentration shared the characteristic to be abrogated by inhibitors of 

cyclooxygenase. Thus, the increase in endothelial intracellular calcium must stimulate 

phospholipase A2, which frees arachidonic acid for further metabolism by cyclooxygenase. 

The breakdown of the fatty acid by this enzyme generates endothelium-derived constrictor 

prostanoids. They ultimately activate thromboxane prostanoid (TP) receptors of the smooth 

muscle to evoke contractions [5,80]. Over the years, oxygen derived free radicals [36,89], 

thromboxane A2 [24,68], endoperoxides [21], prostacyclin [23] and prostaglandin F2α [86] 

have been identified as cyclooxygenase-derived mediators of endothelium-dependent 

contractions. 

To exemplify this phenomenon, this brief review will highlight the pathological role of 

endothelium-dependent contractions, especially in aging, hypertension and diabetes, and in 

view of the central role of cyclooxygenases in these EDCF-mediated responses, will focus 
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particularly on the two endothelial isoforms of the enzyme, cyclooxygenase-1 (COX-1) and 

cyclooxygenase-2 (COX-2). 

2) Arachidonic acid metabolism 

Arachidonic acid, the most common precursor of prostaglandins, is generally released 

from the cell membrane phospholipids by phospholipases and can be metabolized by several 

enzymatic systems including cyclooxygenases, lipoxygenases and cytochrome P450 

monooxygenases [66].  

The first cyclooxygenase (COX-1) was purified in 1976 and subsequently cloned in 

1988 [15,49,51,93]. In 1991, the product of a second gene (COX-2), possessing also both 

cyclooxygenase and peroxidase activities, was identified [31,57]. It is generally assumed that 

COX-1, in most tissues, is expressed constitutively while COX-2 is induced mainly at sites of 

inflammation [12,79]. However, COX-2 is also expressed constitutively in several organs and 

cell types, including the endothelial cells where its expression is regulated by shear stress 

(Topper et al., 1996). In the vascular wall, both endothelial and vascular smooth muscle cells 

contain COXs, however, in healthy blood vessels, endothelial cells contain much more of the 

enzyme than the surrounding smooth muscle cells [14]. In most blood vessels, prostacyclin, 

first described as a potent anti-aggregating agent and as a vasodilator, is the principal 

metabolite of arachidonic acid, the endothelium being the major site of its synthesis [51, 

Moncada et al., 1977]. In the rat aorta, where both COXs isoforms are detected, the amount of 

COX-2 transcripts in endothelial or smooth muscle cells is markedly less than that of COX-1 

[74]. However, the COX isoform expressed by the human vasculature has been a matter of 

controversy. Nevertheless, several lines of evidence indicate that in humans, although COX-2 

is the predominant contributor of the systemic generation of prostacyclin, endothelial COX-1, 

in both healthy and diseased blood vessels, appears to be also a major source of vascular 
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prostaglandins [McAdam et al., 1999; Funk & Fitzgerald, 2007; Flavahan, 2007; Rovati et al., 

2010]. 

Various biologically active eicosanoids are formed from the short-lived, but 

biologically active endoperoxides [prostaglandin H2 (PGH2)], through the action of a set of 

synthases namely PGD, PGE, PGF, PGI and thromboxane synthases. Prostaglandins interact 

with specific seven transmembrane, G-protein-coupled receptors, which are classified in five 

subtypes DP, EP, FP, IP and TP receptors in function of their sensitivity to the five primary 

prostanoids, prostanglandins D2, E2, F2α, I2 (prostacyclin) and thromboxane A2, respectively 

[76]. 

The stimulation of TP receptors elicits diverse physiological/pathophysiological 

responses, including platelet aggregation and smooth muscle contraction. Furthermore, the 

activation of endothelial TP receptors promotes the expression of adhesion molecules and 

favours adhesion and infiltration of monocytes/macrophages [56]. Although thromboxane A2 

is the preferential physiological ligand of the TP receptor [39], PGH2 and the other 

prostaglandins, with a various range of potency, also can activate this receptor [23] (Figure 1). 

Additionally, isoprostanes (prostaglandin isomers that are generally produced non-

enzymatically from the oxidative modification of polyunsaturated fatty acids [54] but also in 

endothelial cells, in a COX-dependent manner [82]) as well as hydroxyeicosatetraenoic acids 

(HETEs, generated by lipoxygenases and cytochrome P450 monoxygenases or formed by 

nonenzymatic lipid peroxidation in endothelial cells and leukocytes) are also potent 

endogenous agonists at TP receptors [9,19,75,78,92].  

Prostacyclin is a potent inhibitor of platelet adhesion to the endothelial cell surface and 

of platelet aggregation [51,59,60] and is generally described as an endothelium-derived 

vasodilator. Prostacyclin is the preferential ligand of IP receptors and most of its effects involve 
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the activation of adenylyl cyclase and the subsequent elevation of intracellular cyclic-AMP 

[81,84]. 

 

3) Spontaneously hypertensive rats (SHR): the archetypal model 

 The first endothelium-dependent contractions associated with an endothelial 

dysfunction were observed in the isolated aorta of the SHR [17,43]. In this artery, the 

endothelium-dependent relaxations are impaired because the generation of a diffusible EDCF 

opposes the relaxing effect of nitric oxide [43,90]. These endothelium-dependent contractions 

are correlated with the severity of hypertension. They increase during the aging process and 

also occur in aging normotensive WKY [32,40]. Endothelium-dependent contractions and the 

associated endothelial dysfunction are attenuated less pronounced in female SHR [27,37]. 

 Endothelium-dependent responses are associated with an increase in endothelial 

intracellular calcium concentration ([Ca2+]i). Indeed, acetylcholine causes a rapid increase in 

[Ca2+]i in endothelial cells of SHR and to a much lesser extent in that of WKY, while the 

calcium ionophore A 23187, which allows the free entry of extracellular calcium into 

endothelial cells, produces a similar increase in [Ca2+]i in the endothelial cells of both WKY 

and SHR. Acetylcholine- and more generally receptor-mediated endothelium-dependent 

contractions are larger in SHR than in WKY while the maximal amplitude of these responses, 

when elicited by A 23187, are similar in the aortae of the two strains [24,73,92]. These results 

illustrate the first endothelial dysfunction associated with endothelium-dependent 

contractions, i.e. an abnormal calcium signalling in the endothelial cells of SHR in response 

to neuro-humoral agents. 

Phospholipase A2 catalyzes the breakdown of membrane phospholipids to arachidonic 

acid. There are two major cytosolic types of the enzyme, calcium-dependent (cPLA2) and 

calcium-independent (iPLA2) phospholipase A2. The increase in endothelial [Ca2+]i, 
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irrespective of the stimulus, activates cPLA and provokes the mobilization of arachidonic 

acid. However, in response to acetylcholine, iPLA2 is involved by producing 

lysophospholipids, which open store-operated calcium channels, permitting the influx of 

extracellular calcium and the subsequent activation of cPLA2. By contrast, the calcium 

ionophore bypasses the cell membrane receptors and causes increase in endothelial calcium 

and a direct activation of cPLA2 (Wong et al., 2010). 

The subsequent steps involve the activation of cyclooxygenase and the production of 

reactive oxygen species along with that of EDCFs and finally the activation of TP receptors 

[21,23,24,43,73,89,91]. In the SHR aorta, COX-1 is the preponderant enzyme involved in the 

generation of EDCF since endothelium-dependent contractions are blocked by specific 

inhibitors of COX-1 and minimally affected by specific inhibitors of COX-2 [21,23,24,73,89-

91]. Indeed, aortic endothelial cells of various species express preferentially COX-1 versus 

COX-2 [38,58] and, in SHR endothelial cells, the mRNA and protein expression of COX-1 is 

enhanced when compared to that of WKY [21,74]. In agreement with a preponderant role for 

COX-1 in endothelium-dependent contractions, these responses are abolished in aortae taken 

from COX-1 knockout mice while they are maintained in aortic rings of COX-2 knockout 

animals [72]. 

However, in both WKY and SHR endothelial cells, the induction of COX-2, especially 

in resistance arteries and during ageing, is also associated with the generation of endothelium-

derived contractile prostanoids. In these arteries, COX-2 contributes to the endothelial 

dysfunction [2,7,8,20,30,64,81,94, Xavier et al., 2008]. Therefore, the enhanced endothelial 

expression of COX-1 and/or COX-2 is the second endothelial dysfunction associated with 

endothelium-dependent contractions. 

Additionally, COX is also involved in the endothelial generation of reactive oxygen 

species. The enhanced COX-dependent generation of reactive oxygen reactive is the third 
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endothelial abnormality associated with endothelium-dependent contractions observed in the 

SHR aorta [73]. Reactive oxygen species decrease NO bioavailability [28,68] and activate 

COX [29]. This may involve a positive feedback loop on the endothelial cells by further 

activating COX and, since reactive oxygen species diffuse toward the vascular smooth muscle 

cells, they can stimulate COX in smooth muscle cells and produce more contractile 

prostanoids [4,36,89]. Reactive oxygen species can also favour vascular smooth muscle 

contraction of the vascular smooth muscle cells. Superoxide anions stimulate Ca2+ release 

from the sarcoplasmic reticulum of vascular smooth muscle these cells[67]. In addition, 

exogenous hydrogen peroxide,  and/or or the reactive oxygen species generated by the 

activation of TP receptors itself, enhances the stability and increases the density of functional 

TP receptors at the cell membrane [77, Wilson et al., 2009]. Thus, while the activated TP 

receptor is being internalized and degraded, a key component in limiting the action of its 

agonists, a reactive oxygen species-dependent pathway induces the enhanced biogenesis of 

TP receptor. Activation of this positive feedback mechanism may underlie the augmented TP 

expression observed in cardiovascular diseases (Katugampola & Davenport, 2001). Finally, 

TP receptors are also expressed in endothelial cells and their stimulation can induce the 

inhibition of NO production [42]. This feed-forward loop involving a reactive oxygen species-

dependent post-transcriptional stabilization of TP receptors associated with a decrease 

production of NO, further altering the unbalance between relaxing and contracting factors and 

exacerbating the endothelial dysfunction, suggest that TP receptors are very likely to play a 

pivotal role in cardiovascular diseases (Wilson et al., 2009). 

EDCFs diffuse toward the vascular smooth muscle cells and directly activate the TP 

receptors [90]. Inhibition of thromboxane A2 synthesis does not affect the endothelium-

dependent contractions to acetylcholine but partially inhibits those in response to A23187, 

ADP or endothelin-1, indicating that thromboxane A2 is only one of the EDCFs that could can 
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be released from SHR aortic endothelial cells [5,21,23-25,33,41,43,68,89,92]. PGH2 is the 

second most potent agonist at TP receptors and is more effective in activating TP receptor in 

vascular smooth muscle from SHR than in that of WKY. Therefore, PGH2 is also a suitable 

candidate as EDCF [5,21,23-25,33]. However, in SHR aortic endothelial cells, the massive 

expression of prostacyclin synthase [74] and its close association with COX-1 [38] are not in 

favour of a large PGH2 spill over. Paradoxically, prostacyclin is likely to be a major EDCF in 

SHR aorta. Because of an early and specific dysfunction of the smooth muscle IP-receptors of 

the vascular smooth muscle [26], prostacyclin does not produce relaxations but evokes TP-

receptor-dependent contractions [23,61]. Furthermore, prostacyclin, as PGH2, is also more 

potent in producing contraction in SHR than in WKY [23]. Therefore, the fourth dysfunction 

associated with endothelium-dependent contractions involves changes in the responses of the 

smooth muscle IP and TP receptors of the vascular smooth muscle without major changes in 

their respective expression (Numaguchi et al., 1999; 74). Prostacyclin is also a major 

contributing factor accounting for the endothelial dysfunction in the aorta and mesenteric 

artery of WKY and SHR treated with aldosterone [7,88]. Finally, PGE2 and PGF2α can also 

act as EDCF when prostacyclin synthase is inhibited and the metabolism of PGH2 diverted 

[23], a phenomenon that may occur when severe oxidative stress leads to the tyrosine nitration 

of prostacyclin synthase [96]. Thus, in the SHR aorta, thromboxane A2, PGH2, PGI2 and, 

depending on the circumstances, PGE2 and PGF2α can all act as EDCF (Figure 2). 

The contribution of EDCF- and TP-receptor-mediated responses in the endothelial 

dysfunction, first observed in the SHR, has been reported in numerous other models of 

hypertension and is likely to occur in patients with essential hypertension [18]. Additionally, 

non-endothelium-derived contractile prostanoids can contribute to vascular dysfunction. For 

instance, in the aorta of the hypertensive eNOS knockout mice, smooth muscle- and COX-2-
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derived thromboxane A2 contributes to the enhanced contractions in response to endothelin-1 

[95]. 

 

4) Enhanced action of COX-derived EDCF in ageing 

Aging favours a shift of the fine balance between NO-mediated endothelium-dependent 

relaxations and COX-dependent contractions towards the latter. Impaired endothelium-

dependent relaxations to acetylcholine have been demonstrated in the aorta and superior 

mesenteric arteries of aged rats. This is, accompanied by an increased expression of COX 

isoforms. The relaxations are potentiated by a non-selective COX inhibitor indomethacin, 

suggesting a critical role of COX-derived vasoconstrictor prostanoids in impairing 

endothelium-dependent relaxations [46]. Similar findings are reported in small mesenteric 

arteries [1], in which indomethacin and a specific COX-2 inhibitor NS-398, restored the 

attenuated endothelium-dependent relaxations and eliminated contractions caused by high 

concentrations of acetylcholine. 

Endothelium-dependent contractions are usually unveiled in pathological models, owing 

to a reduction of NO bioavailability that allows the emergence of endothelium-dependent 

contractions. However, there are exceptions, one being the occurrence of endothelium-

dependent contractions in the aorta of young and healthy hamsters [85,86]. In this preparation, 

COX-2 is expressed constitutively and incubation with an inhibitor of eNOS unmasks the 

ability of acetylcholine to elicit endothelium-dependent contractions which are sensitive to 

COX-2 inhibition and TP receptor antagonism, while these responses are unaffected by COX-

1 inhibitors and reactive oxygen species scavengers. By contrast to the SHR aorta in which 

the proposed EDCFs are prostacyclin, PGH2 and thromboxane A2, the endothelium-derived 

vasoconstrictor prostanoid responsible in the hamster aorta appears to be PGF2α [85,86]. In 

the hamster, aging not only exaggerates endothelium-dependent contractions, which are again 
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attenuated by COX-2 inhibitors, but also increases COX-2 expression and augments the 

release of and the vascular sensitivity to PGF2α [86]. One distinctive feature of the 

endothelium-dependent contraction in the aorta of aged hamsters compared with their younger 

counterparts is that the response can be observed in the absence of inhibitors of eNOS. On the 

other hand, the endothelium-dependent relaxations are diminished in preparations from aging 

hamsters, reinforcing the interpretation that endothelium-dependent contractions are 

unmasked by a reduction in NO bioavailability in aged animals. 

 The alterations in the endothelial function observed in various animal models of aging 

suggest that the endothelial dysfunction observed in hypertension could can be considered as 

a consequence of the premature aging of the vessel wall [17].  

5) Role of prostanoids in endothelial dysfunction in diabetes 

Micro- and macrovascular diseases are currently the major causes of morbidity and 

mortality in patients with diabetes mellitus and endothelial dysfunction plays also a key role 

in the pathogenesis of these diabetic vascular diseases. Impaired endothelium-dependent 

vasodilatation has been demonstrated in various vascular beds of different animal models of 

diabetes and in humans with type 1 and 2 diabetes. However, the mechanisms of endothelial 

dysfunction appear to differ according to the diabetic model and the vascular bed under study 

and include impaired signal transduction or substrate availability, impaired release of NO, 

increased destruction of NO, decreased sensitivity of the vascular smooth muscle to NO and 

enhanced release of endothelium-derived constricting factors. These dysfunctions are again 

generally associated with the over-generation of reactive oxygen species, lipid peroxidation, 

and elevated production of adhesion molecules [47, De Vriese et al., 2000]. 

Streptozotocin-induced diabetes leads to a diminished endothelium-dependent NO-

mediated relaxation in rat conduit arteries. and TP receptor antagonism, again, restores the 

impaired relaxation and prevents the endothelium-dependent contraction. Neither 
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thromboxane A2 nor prostacyclin plays a significant role as the relaxation is unaffected by 

thromboxane A2 synthesis inhibition and since prostacyclin does not cause contractions in 

those arteries [65]. Likewise, indomethacin inhibits the occurrence of endothelium-dependent 

contractions in the femoral artery of streptozotocin-treated rats and whereby COX-1-derived 

products appear to play a dominant role [63]. Thromboxane A2 does not play a direct role in 

reducing endothelial function in type 1 diabetes, but endothelium-derived thromboxane A2 

may be involved in the enhanced contractile response to endothelin-1 as thromboxane A2 

synthesis inhibition attenuates the exaggerated contraction to endothelin-1 in the mesenteric 

arteries of streptozotocin-treated rats [3]. In the mesenteric artery of type 2 diabetic OLETF 

rats, the impaired endothelium-dependent relaxation to acetylcholine is normalized and the 

contraction to the muscarinic agonist inhibited by indomethacin [45]. The acetylcholine-

stimulated release of thromboxane A2 and PGE2 are greater in OLETF than non-diabetic rats; 

however, this study did not further determine whichbut it is not clear which  COX-derived 

prostanoid is most likely involved [45?]. The impaired endothelium-dependent relaxations in 

the mesenteric vascular bed of streptozotocin-induced diabetic mice is opposed by a 

compensatory up-regulation of both expression and activity of COX-2 and selective inhibition 

of COX-2 unmasks endothelial dysfunction [55], suggesting a vascular benefit of COX-2-

derived products. 
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 Despite a clearly demonstrated role of COX-derived prostaglandins in the regulation 

of vascular reactivity in conduit arteries, their link to endothelium-dependent 

hyperpolarization of vascular smooth muscle (EDHF-mediated responses) in resistance blood 

vessels is unclear. Indomethacin augments the endothelium-dependent EDHF-mediated 

relaxation in mesenteric resistance arteries from streptozotocin-induced diabetic but not in 

those from control mice [53], suggesting that COX-derived prostanoids inhibit either the 

release of EDHF from the endothelium or its action on vascular smooth muscle [53].  

 

6) Clinical relevance 

The information available in animal models demonstrates that in aging and in a 

number of diseases such as hypertension, diabetes and atherosclerosis, as the endothelium 

becomes dysfunctional, the release of EDCF is favoured and endothelium-dependent 

contractions become more prominent [11,22,41,43,45]. The indirect evidence available in 

people suggests that the same is true. Indeed, indomethacin potentiates the relaxations to 

acetylcholine in isolated renal arteries of aged patients [44] and the vasodilator response to the 

muscarinic agonist in the forearm of people with essential hypertension [69-71]. The 

comparison of the effect of the non-selective inhibitor of cyclooxygenases in different age 

groups further suggests that the contribution EDCF augments with advancing age [70,71], as 

it does in the animal. In patients with endothelial dysfunction an improvement was observed 

with selective COX-2 inhibitors [10,83], which may imply an important role for that isoform 

of the enzyme. The TP-receptor blocker S18886 improves endothelial function in patients 

with coronary disease [6], which further illustrates the role of vasoconstrictor prostanoids in 

human endothelial dysfunction. 

The role of the specific COX isoforms and arachidonic acid metabolites in the 

regulation of vascular function in human diabetes is less well defined. In young patients with 
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type 1 diabetes, the impaired NO-dependent relaxation might may be compensated by an 

increase in prostacyclin-mediated responses [48]. Indeed, indomethacin-sensitive blood flow 

is greater in patients with type 1 diabetes than in non-diabetic subjects [87], further suggesting 

a compensatory response for prostacyclin when the bioavailability of NO is declining. On the 

other hand, COX-derived prostanoids contribute to the appearance of endothelium-dependent 

contractions in arteries from older patients with diabetes and hypertension [86].  

 Since the stimulation of TP receptors elicits not only the contraction and the 

proliferation of vascular smooth muscle cells but also diverse 

physiological/pathophysiological reactions in platelets (adhesion and aggregation), and 

endothelial cells (expression of adhesion molecules associated with the subsequent adhesion 

and infiltration of monocytes/macrophages) Refs???, TP receptor antagonists may have a 

unique potential for the treatment of cardiovascular disorders (Figure 3). However, in contrast 

to many examples of animal models of cardiovascular diseases, in patients, no study is yet 

available demonstrating that reversal of endothelial dysfunction is independently associated 

with a better clinical outcome. The results of large-scale clinical trials are awaited in order to 

determine the proper therapeutic indication of TP antagonists and to confirm their potential 

beneficial effect. 
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Figure Legends 

Figure 1 Endothelium-dependent responses in WKY and SHR isolated aortic rings 

The isometric measurement of the changes in isometric tension in isolated aortic rings 

contracted with phenylephrine (PE) shows that the acetylcholine-induced endothelium-

dependent relaxation is blunted in SHR rings when compared to that of normotensive WKY. 

In SHR quiescent rings treated with an inhibitor of NO synthase (L-nitroarginine: L-NA), 

acetylcholine produces endothelium- and concentration-dependent contractions, which are 

blocked by valeryl salicylate, a preferential COX-1 inhibitor or S 18886 a specific TP receptor 

antagonist, but are only partially inhibited by NS-398, a preferential COX-2 inhibitor. 

Source? 

 

Figure 2 Mechanisms of endothelium-dependent contractions in WKY and SHR aortic 

rings 

 M: muscarinic receptor, AA: arachidonic acid, eNOS: endothelial nitric oxide 

synthase, NO: nitric oxide, O2
-: superoxide anion, PGS: prostaglandin synthases, COX-1: 

cyclooxygenase-1, PGI2: prostacyclin, TXA2: thromboxane A2, TP: TP receptor, IP: IP 

receptor, SR: sarcoplasmic reticulum, Sol GC: soluble guanylyl cyclase, GTP: guanosine 

triphosphate, cGMP: cyclic guanosine monophosphate. The number , ,  and  indicates 

identified abnormalities which contribute to the exacerbated endothelium-dependent 

contractions in SHR aorta, i.e. endothelial calcium handling, enhanced endothelial COX-1 

expression and activity, increased generation of endothelial reactive oxygen species and 

dysfunctional smooth muscle TP and IP receptors, respectively. Modified from? 
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Figure 3 Involvement of TP and IP receptors in vascular dysfunction 

COXs: cyclooxygenases, LOX: lipoxygenase, P450: cytochrome P450 monooxygenase, ROS: 

reactive oxygen species, PGS: prostaglandin synthases, PGIS: prostacyclin synthase, TXS 

thromboxane synthase, PGs: prostaglandins, PGG2: prostaglandin G2, PGH2: prostaglandin 

H2, PGI2: prostaglandin I2 (prostacyclin), TXA2: thromboxane A2, HETE: 

hydroxyeicosatetraenoic acid 
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