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Second harmonic generation (SHG) and X-ray diffraction rocking curves of high-quality ZnO single

crystals implanted by different ions (He, Cu, and Zn) were investigated. Interestingly, it was found that

both He- and Zn-implanted samples show a convinced increment in SHG efficiency while the

Cu-implanted one does not. X-ray diffraction rocking curves of the samples show satellite structures,

and the simulations firmly reveal the formation of quasi-interfaces inside He- and Zn-implanted

crystals. These quasi-interfaces lead to SHG improvement in the two samples. Polarization dependence

of SHG of the samples on the excitation light also evidences this conclusion. VC 2011 American
Institute of Physics. [doi:10.1063/1.3651379]

I. INTRODUCTION

In recent years, ZnO has attracted a renewed interest

because of its potential applications in fabricating ultraviolet

optoelectronic devices, laser diodes, solar cells, spintronics,

and nonlinear optical devices.1,2 In order to explore these

potential applications, different treatments have been intro-

duced to modify and manipulate properties of ZnO.3 In particu-

lar, as a well-established technique for modifying properties of

semiconductors, ion-implantation has been used to manipulate

the electric and thermal characters of ZnO, as well as its crystal

structure and defect properties.4–8 As a standard second-order

nonlinear optical process, second harmonic generation (SHG)

has been increasingly studied in ZnO bulk crystals and

nanostructures.9–13 However, to the best of our knowledge,

there have been no reports about the study of nonlinear optical

properties and X-ray diffraction (XRD) rocking curves of ion-

implanted ZnO single crystals. In this article, we fill in this gap

by presenting an interesting investigation on nonlinear optical

properties of ZnO single crystals implanted by He, Cu, and Zn

ions. Both He- and Zn-implanted samples show some improve-

ment in SHG efficiency while the Cu-implanted one does not

show observable change compared with the control sample. X-

ray rocking curve measurements reveal that formation of quasi-

interfaces in He- and Zn-implanted samples is responsible for

the observed SHG improvement in these two samples.

II. EXPERIMENTAL

High-quality ZnO single crystals (Cermet, Inc.) with a

thickness of 0.5 mm were used in this study. They were synthe-

sized by the melt grown method and polished on one face

which is terminated by Zn. Their optical and crystalline quality

were well confirmed by low temperature photoluminescence

spectra which exhibit very intensive narrow bound exciton

emissions and almost no impurity/defect related visible emis-

sion (not shown here). Three different ions, namely, He, Cu,

and Zn were implanted into ZnO single crystals at room tem-

perature, 300 and 300 �C, respectively. An equal fluence of

1014 cm�2 was used for all the three ions. Ion energies were

100, 100, and 500 keV for He, Cu, and Zn, respectively. The

ion concentration profile inside ZnO substrates was calculated

by the Monte Carlo program TRIM (Transport of Ions in

Matter),14 and the results were shown in Fig. 1. As can be seen

from Fig. 1, the penetration depth of He ions is much deeper

than that of Cu ions for the same ion energy. Thermal anneal-

ing treatment was performed on the implanted samples in the

atmosphere of argon gas at 900 �C for 30 min for further inves-

tigations. For SHG measurements, a femtosecond laser with a

pulse width of �80 fs and a repetition rate of 82 MHz, pro-

duced from a self-mode-locked Ti:sapphire oscillator (Tsu-

nami) pumped by a 10 W solid-state laser (Millennia), was

used as the excitation source. Emission signals from the sam-

ples were collected by a pair of lenses, analyzed by Acton

SP305 monochromator, and detected with a Hamamatsu pho-

tomultiplier tube (R928). A standard lock-in amplification

technique was used to improve the signal to noise ratio. A half-

wave plate was used to rotate the polarization direction of the

excitation beam. All SHG measurements were performed at

room temperature. X-ray diffraction 2h scanning and rocking
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curves of the samples were conducted on an X-ray diffractom-

eter (Bruker, AXS D8 Discover) at room temperature.

For SHG measurements, the incident angle of the excita-

tion beam was about 26o. The collection direction was nor-

mal to the ZnO sample surface (parallel to the c-axis of the

sample). The excitation beam was originally linear polarized

in the vertical direction. Because of the relatively strong

band-edge emission under two-photon excitation,10 the

wavelength of the excitation beam was chosen as �840 nm.

During the SHG measurements, the power of the excitation

beam was kept as a constant (�400 mW) by using a neutral

metallic filter. Under these conditions, both the band-edge

emission and SHG signal were observed, as shown in Fig. 2.

III. RESULTS AND THEORETICAL ANALYSIS

Figure 2(a) shows the results for pre-annealed samples

including one non-implanted sample, whereas Fig. 2(b)

depicts the results for post-annealed ones. The spectra were

normalized at the peak of the band-edge emission for a better

comparison of the SHG signals. A double-Gaussian-function

fitting was adopted to fit the band-edge emission (�396 nm)

and SHG (�420 nm), and the same method was used in

determining the relative intensity of the two peaks in excita-

tion polarization dependence measurements. By taking and

comparing the ratio of the integrated intensity of SHG signal

to that of the band-edge emission between implanted and

non-implanted samples, we can know that the ratios of pre-

annealed sample implanted with Heþ increases by 16% and

by 17% after annealing. Increment of the ratio of Zn-

implanted sample was 23%. However, the increment drops

to 12% after experiencing post-implantation annealing. It

seems that Cu implantation did not have significant influence

on SHG efficiency of ZnO. As seen below, theoretical analy-

sis and arguments on the experimental results were given.

Compared with the non-implanted sample, there is an

additional quasi-interface forming at a short distance from

the sample surface in the ion-implanted ZnO samples.

Within this quasi-interface region, there are higher concen-

trations of implanted ions and induced disorders. Such quasi-

interface shall be responsible for the observed improvement

in SHG efficiency of the implanted samples. Treating the

effect of the quasi-interface inside the crystal as “a thin

film”15 we can develop a simple interpretation to the experi-

mental results. For the non-implanted sample, SHG comes

from two parts and can be expressed as16

ISHG ¼ IB
SHG þ IS

SHG; (1)

where IB
SHG represents the contribution from the bulk, and

IS
SHG the contribution from the surface. For ion-implanted

samples, one additional term should be added to the right-

hand side of Eq. (1), IF
SHG, taking into account the contribu-

tion from the thin film. For a film thickness that is compara-

ble with the wavelength of the fundamental beam, the SHG

from the film is proportional to the square of the film thick-

ness and the effective second-order susceptibility,17

IF
SHG / d2 � v 2ð Þ

eff

��� ���2; (2)

where d denotes the thickness of the film and v 2ð Þ
eff the effec-

tive second-order susceptibility. Simply supposing that v 2ð Þ
eff

is the same for the thin films induced by different ion-

implantations, the main parameter affecting SHG would be

the film thickness. Considering the ion concentration pro-

files, we have two approaches to evaluate the film thickness:

(I) the distance from the crystal surface to the ion concentra-

tion peak and (II) the full width at half maximum of the ion

concentration profile. For method (I), the thicknesses were

estimated as 37.5, 215.0, and 477.0 nm for Cu-, Zn-, and

FIG. 1. (Color online) Ion concentration distributions vs depth calculated by

TRIM. Rectanglesþ line for He ions in ZnO, circularsþ line for Zn ions

while trianglesþ line for Cu ions.

FIG. 2. (Color online) Emission spectra from pre-annealed samples (a) and

post-annealed samples (b), compared with the as-grown one (solid line). In

(a) and (b), solid squares for Cu-implanted sample, solid circles for He-

implanted and solid triangles for Zn-implanted. For clear comparison, the

band-edge emissions of all the samples were renormalized.
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He-implanted samples, respectively; while for method (II),

the thickness as 48.0, 185.0, and 207.0 nm for Cu-, Zn-, and

He-implanted samples, respectively. From the experimental

results, method (II) seems more reasonable as the improve-

ment of SHG efficiency of Zn- and He-implanted samples is

more noticeable than that of the Cu-implanted sample.

To further investigate the influence of ion-implantation

on SHG of ZnO single crystals, the excitation polarization de-

pendence of SHG and the band-edge emission from the pre-

annealed samples with and without ion-implantation was

measured. Figure 3(a) depicts the results from the non-

implanted sample, while Fig. 3(b) for the Zn-implanted sam-

ple. Results (not shown here) measured from He-implanted

sample were similar to those from Zn-implanted sample. Solid

triangles represent the SHG signal while solid circles for the

band-edge emission. Again, the polarization dependence

measurements show additional evidence for the improvement

of SHG in the ion-implanted samples. It is known that SHG

intensity is proportional to the square of second-order polar-

ization induced by the fundamental beam,16,18

ISHG / P 2ð Þ x ¼ 2x0ð Þ
h i2

; (3)

where P 2ð Þ x ¼ 2x0ð Þ ¼ v 2ð Þ
ijk EjEk; v 2ð Þ

ijk is the second-order

susceptibility of the crystal. Since wurtzite ZnO crystal

belongs to the C6t (or 6 mm) point group symmetry, and

under Kleinman symmetry conditions, its two nonzero

second-order susceptibility elements are v 2ð Þ
zzz ¼ �14:31pm=V;

and v 2ð Þ
zxx ¼ 1:36pm=V:19 Considering that the incident angle

is �26o in the present study, the second-order susceptibility as

a function of the linear polarization angle u of the incident

fundamental beam can be derived as

P 2ð Þ x ¼ 2x0ð Þ / 2:73 sin2 u: (4)

Calculated dependence (solid line) of an ideal SHG signal on

the polarization of incident fundamental beams using Eqs.

(3) and (4) is shown in Fig. 3. Compared with the non-

implanted sample, relatively stronger SHG dependence on

the excitation polarization direction in Zn- and He-implanted

samples were observed, indicating the enhanced SHG effi-

ciency in these ion-implanted samples.

The possible influence of thermal annealing on the SHG in

the ion-implanted samples was also investigated as thermal

treatment can have significant impact on disorder recovery. The

results are shown in Fig. 2(b). As expected, the SHG signals

from the annealed ion-implanted samples exhibits some degra-

dation possibly due to disorder improvement and recrystalliza-

tion.20 As for the Cu-implanted sample, no noticeable change

of SHG efficiency was observed before and after thermal

annealing due to the shallow and narrow copper ion distribution

in ZnO. The XRD patterns shown and discussed below from

the samples give interesting and positive information, which is

consistent with the SHG observations.

Figure 4 shows measured XRD rocking curves of the ZnO

samples and the inset of Fig. 4(a) depicts the XRD 2h scanning

pattern of the as-grown sample. Within the 2h scanning range

(30�-70o), only one peak around 34.42o was observed for all

the samples, which was assigned to the [002] peak from hexag-

onal ZnO (PDF pattern: 36-1451). However, a remarkable dif-

ference between the rocking curves of the samples was

interestingly observed. As seen from Fig. 4, for pre-annealed

Cu-implanted ZnO, its rocking curve is almost the same as the

as-grown one. This is consistent with the SHG result that no

improvement of SHG was observed from the Cu-implanted

one. In contrast to the case of Cu-implanted sample, the

FIG. 3. (Color online) Measured dependence of integrated intensity of SHG

(solid circles) and band-edge emission (solid squares) on polarization of the

excitation beam: (a) As-grown ZnO; (b) Zn-implanted ZnO. The solid line

represents a theoretical polarization dependence of the standard SHG signal.

FIG. 4. (Color online) XRD rocking curves of the ZnO samples: (a) and (b)

for Cu-implanted ZnO before and after thermal annealing, respectively; (c)

and (d) for He-implanted; (e) and (f) for Zn-implanted. The solid line in Fig.

4(a) is for the as-grown ZnO. The inset in Fig. 4(a) shows XRD 2h scanning

pattern of the as-grown ZnO. The solid lines (gray color) in (c), (d), (e), and

(f) are the simulation results for the corresponding XRD rocking curves,

respectively.
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rocking curves of He- and Zn-implanted samples show several

satellite peaks, indicating the formation of coarse-grains or

quasi-interfaces in these ion-implanted samples. Generally,

XRD rocking curves of multiple layered heterostructures like

superlattices and even ion-implanted semiconductors exhibit

several satellite peaks.21–23 The formation of quasi-interfaces

inside ion-implanted crystals will certainly cause some

improvement of the SHG efficiency due to the contribution of

these symmetry breaking interfaces to the nonlinear coeffi-

cient.13,16,24 The rocking curves of annealed ion-implanted

samples are also consistent with the SHG results.

A kinematical model25 developed from the uniform sin-

gle crystal dynamical theory26 was adopted to explain the

formation of quasi-interfaces by fitting the XRD rocking

curves. The model includes depth-dependent strain and

spherically symmetric Gaussian distribution of randomly dis-

placed atoms. Depth-dependent strain distributions are repre-

sented by a set of independently but coherently diffracting

laminae oriented parallel to the surface. Each lamina con-

tains many unit cells and has uniform strain. Random dis-

placements/damages are treated through their effect on the

mean structure factor in each lamina.

The plane-wave dynamical theory predicts that for unit

electric field amplitude incident on the surface of an isolated,

uniform, non-absorbing, single crystal plate, the diffracted

amplitude at the same surface is26

ED ¼ e�i2p Ke
0
þBHð Þ�rDD; (5)

where Ke
0 is the incident external wavevector, jKe

0j
¼ 1/k, BH is the reciprocal lattice vector, r is the vector

from origin (chosen on the surface). If the plate thickness

and/or the structure factor are sufficiently small, DD can be

written as

DK ¼ i
FH

FHj j
ffiffiffiffiffiffi
bj j

p
e�iAY sinðAYÞ

AY
; (6)

where FH is the structure factor, b¼ c0/cH; c0, cH are direc-

tion cosines of incident and diffracted wavevectors, respec-

tively, from the inward normal to the surface,

A ¼ re
k FHj j

V

tffiffiffiffiffiffiffiffiffiffiffiffi
c0cHj j

p ; (7)

where re¼ e2/mc2 is the classical electron radius, V is the

volume of unit cell, t is the plate thickness,

Y ¼ w0ð1� bÞ þ ba

2
ffiffiffiffiffiffi
bj j

p
wHj j

; (8)

w0;H ¼ �re
k2

p
F0;H

V
;

a ¼ �2Dh sin 2hB;

Dh ¼ h� hB;

hB is the Bragg angle:

Equations (6)–(8) are valid only for r-polarization. For

p-polarization FH is replaced by FH cos 2hB. If the lattice is

strained in a direction perpendicular to the sample surface,

the corresponding change in Eqs. (8) is

Dh! Dhþ �? cHj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

H

q
þ c2

H tan hB

� �
: (9)

Here �? is the strain and correction includes changes in the

direction and magnitude of the reciprocal lattice vector.

For ion-implanted crystals, a significant fraction of

atoms may be displaced from lattice positions, which may

lead to the formation of quasi-interfaces in the implanted

region. The statistical distribution of displacements Drj away

from lattice j is described by a function q(Drj). Such a distri-

bution will result in a mean structure factor

FHh i ¼
X

j

fj

ð
d3rqðDrjÞe�i2pBH�ðrjþDrjÞ; (10)

where fj is the atomic scattering factor for site j, located at rj

in an undamaged crystal. If the same spherically symmetric

Gaussian form is assumed for all sites, the mean structure

factor becomes

FHh i ¼ expð� 8p2

k2
sin2 hBU2ÞF0

H; (11)

where F0
H corresponds to undamaged crystal and U is the

standard deviation of displacements.

Strain and damage distributions are represented by a set

of discrete laminae oriented parallel to the surface. Each lam-

ina contains a large number of unit cells, but is sufficiently

thin so that extinction and normal absorption within the lam-

ina are negligible. Each lamina has its own uniform strain �?

and random displacement standard deviation U. Dynamical

interactions among different laminae are neglected, as is the

effect of extinction on the incident wave. The total diffracted

amplitude is then the sum of coherently interfering functions

of the type shown in Eqs. (6), adjusted for phase lags and nor-

mal absorption during traversal through the crystal. Although

usually extinction is stronger than normal absorption, for

depth-dependent strain distributions the latter can be more im-

portant, which is the case of ion-implanted crystals. With

these considerations, the total amplitude from N laminae can

be written as

EN ¼ i
FH

FHj j
ffiffiffiffiffiffi
bj j

p XN

j¼1

aje
�iðAjYjþ/jÞ sinðAjYjÞ

Yj
(12)

where

aj ¼ exp½�l
c0 þ cHj j
2 c0cHj j

XN

l¼jþ1

tl�; aN ¼ 1;

l ¼ 2k
V

reImðF0Þ;

tl ¼ thickness of lamina l;

/j ¼ 2
Xj�1

l¼1

AlYl; /1 ¼ 0;
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and the previously defined variables Y and A are now sub-

scripted to indicate dependence on strain and damage. In

addition, since Eqs. (12) will be used to determine strain rel-

ative to virgin crystal, the refraction correction w0(1-b) in the

definition of Y in Eqs. (8) is neglected. The total calculated

intensity would be the sum of layer and substrate intensities,

which is

RT ¼
1þ cos4 2hB

1þ cos2 2hB

cHj j
cH

ENE�N þ RS; (13)

where the first factor represents the relative abundance of

r- and p-polarization in double crystal diffractometry, |cH|/c0

relates intensity to power, and Rs is the substrate contribu-

tion which is taken as a Gaussian profile.

For fitting the XRD rocking curves, the thickness of each

lamina is the same and chosen to be in the range of tens nm

(80 nm for He-implanted samples; 50 nm for Zn-implanted

samples). The number of laminae (N¼ 10 in all simulations)

is determined by the lamina thickness and the total thickness

of the ion-implanted region which is indicated by ion concen-

tration profile calculated by the Monte Carlo program TRIM.

The simulation results were shown in gray lines for the corre-

sponding XRD rocking curves in Figs. 4(c), 4(d), 4(e), and

4(f), respectively. The strain values of each lamina along the

c-axis of the crystal are given from the fitting parameters. A

negative strain profile (compressive strain) was found for He-

implanted samples, both pre- and post-annealed ones. For Zn-

implanted samples, both positive and negative strains were

revealed for the best fitting results, which were similar to the

simulation results of As-implanted silicon.23 Figure 5 shows

the strain profile of all four samples extracted from the fitting

results. The strain in the ion-implanted region was induced by

substitutions and interstitial of original lattice sites by

implanted ions and the vacancy-interstitial pairs caused by the

collision of foreign ions with atoms of the target.27 It seems

that Zn ions with high ion energy had more prominent effects

of introducing structural defects. The simulation results of

XRD rocking curves of both He- and Zn-implanted samples

confirm that an overall strain layer was formed near the sur-

face of the samples, which would cause the improvement of

SHG efficiency.

IV. CONCLUSIONS

In summary, SHG and XRD rocking curves of ZnO sin-

gle crystals implanted by He, Cu, and Zn were experimen-

tally investigated. It has been shown that ion-implantation

can lead to some improvement of SHG efficiency if quasi-

interfaces form in implanted samples. The polarization de-

pendence of SHG signals on the excitation light and XRD

results also support this conclusion.
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