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In a deterministic quantum key distribution (DQKD) protocol with a two-way quantum channel, Bob sends a
qubit to Alice who then encodes a key bit onto the qubit and sends it back to Bob. After measuring the returned
qubit, Bob can obtain Alice’s key bit immediately, without basis reconciliation. Since an eavesdropper may attack
the qubits traveling on either the Bob-Alice channel or the Alice-Bob channel, the security analysis of DQKD
protocol with a two-way quantum channel is complicated and its unconditional security has been controversial.
This paper presents a security proof of a single-photon four-state DQKD protocol against general attacks.
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I. INTRODUCTION

Quantum cryptography enables two remote parties to share
an information-theoretically secure key, which can be used
for later cryptographic applications. Since the pioneering
protocol was presented by Bennett and Brassard in 1984
(called the BB84 protocol) [1], its security against general
attacks has been studied in idealized settings [2–4] and in
practical settings [5]. Meanwhile, a deterministic quantum
key distribution (DQKD) protocol with a two-way quantum
channel has been proposed [6,7], which allows Alice and
Bob to encode and decode secret messages in a deterministic
manner. Bob can obtain Alice’s key bit directly with his
measurement outcomes, without a basis reconciliation step,
which makes key distribution efficient and even a quasisecure
direct communication possible when the two parties are
connected with an ideal two-way quantum channel [6,8]. As
for experimental demonstrations, DQKD protocols without
entanglement, e.g., the single-photon two-state DQKD protcol
[9] and the single-photon four-state DQKD protocol [10]
(we call it the four-state protocol hereafter), were proposed.
Although the security of the four-state protocol against some
special individual attacks has been considered [11], its security
against general attacks has not been proved [12].

The difficulty of the security proof for the DQKD protocol
against general attacks is due to the use of a two-way quantum
channel. In the BB84 protocol, a qubit just travels from Alice to
Bob once, carrying one-bit secret information. Upon receiving
the qubits, Bob measures it in either of the alternative bases to
obtain Alice’s key bits. A powerful eavesdropper, Eve, whose
capacity is only limited by the physical laws, may attack the
information-carrying qubit in the one-way quantum channel.
In the DQKD protocol [6], however, a qubit departs from Bob
to Alice (the forward channel, Bob-Alice), and then it carries
Alice’s secret key bits back to Bob (the backward channel,
Alice-Bob). In this case, Eve might attack the qubits traveling
on both the Bob-Alice channel and the Alice-Bob channel.
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Comparing it with the BB84 protocol, the security analysis
of the DQKD protocol is complicated and its unconditional
security has not been proved before [12]. In fact, the security
of the two-way DQKD protocol has been challenged over time
(see, e.g., [7,13–15]). Some of these challenges have led to
refinement of the protocol and some have been refuted [12]. In
this paper, we present a security proof of the four-state protocol
against general attacks, thus confirming the unconditional
security of the protocol.

This paper is organized as follows. In Sec. II, we introduce
the four-state protocol. Next in Sec. III, we present the security
proof and final key generation rate against collective attacks.
Then we extend our security proof and key generation against
general attacks. We finally conclude in Sec. IV.

II. FOUR-STATE PROTOCOL

The four-state protocol works as follows:
(1) Bob prepares n qubits randomly in one of the four states,

|0〉, |1〉, |+〉, and |−〉, where |±〉 = (|0〉 ± |1〉)/√2 and sends
them to Alice.

(2) In the check mode, Alice randomly measures part of the
received states in the X or Z basis.

(3) In the encoding mode, Alice randomly performs the
unitary operations I = |0〉〈0| + |1〉〈1| (bit 0) or Y = |0〉〈1| −
|1〉〈0| (bit 1) on the rest received states.

(4) Alice sends the encoded qubits back to Bob. It is inter-
esting to note that Y {|0〉,|1〉} = {−|1〉,|0〉}, and Y {|+〉,|−〉} =
{|−〉, − |+〉}, so Bob measures each qubit in the same basis
as the one he used for preparation. In this way, Bob can obtain
Alice’s key bits deterministically, without basis reconciliation
[9–11].

(5) After Bob measures all returned qubits, Alice announces
her measurement results in the check mode. They compute the
fidelity of the forward states with results of consistent-basis
measurements, i.e., Alice measures the forward state in the
same basis as Bob’s preparing it. For instance, when Bob sends
a state |0〉 and Alice measures it in the Z basis in check mode,
with a probability of f0, Alice’s measurement outcome is |0〉.
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Similarly, they can calculate the fidelity f1, f+, and f− of |1〉,
|+〉, and |−〉, respectively. Alice and Bob discard results from
the inconsistent-basis measurements.

(6) Alice announces partial of her key bits in the encoding
mode. They compute the error rate e in the Alice-Bob channel.

(7) If Alice and Bob find the error rates in the Bob-Alice
channel are not too high [satisfying Eq. (9)], they will continue
the protocol, i.e., Alice and Bob will perform error correction
(EC) and privacy amplification (PA) to gain the secure final
key bits. Otherwise, we assume Alice and Bob will abort the
protocol.

III. SECURITY ANALYSIS

A. Eve’s attack in the Alice-Bob channel

Suppose that Eve only attacks the qubits in the Alice-Bob
channel. Bob prepares the forward qubits randomly in the
state |0〉, |1〉, |+〉, and |−〉 with the same probability, i.e., the
forward qubit is prepared in a mixed state, ρB = (|0〉〈0| +
|1〉〈1| + |+〉〈+| + |−〉〈−|)/4 = (|0〉〈0| + |1〉〈1|)/2. To gain
Alice’s key bits information, Eve has to distinguish Alice’s
encoded qubit ρB

0 = IρBI from ρB
1 = YρBY in the Alice-Bob

channel. Since ρB
0 = ρB

1 = (|0〉〈0| + |1〉〈1|)/2, Eve cannot
gain any information about Alice’s key bits if she only attacks
the qubits after Alice’s encoding operation. Therefore, we can
conclude that Eve has to attack the qubits traveling on both the
Bob-Alice channel and the Alice-Bob channel in order to gain
Alice’s key bits.

B. Eve’s attack in the Bob-Alice channel

Eve’s most general quantum operation can be described
by a unitary operation together with an ancilla [16]. In the
Bob-Alice channel, when Bob sends a qubit in state |0〉
and Alice measures in the basis |0〉,|1〉, she will get the
measurement outcomes |0〉 with probability c2

00, or |1〉 with
probability c2

01. Define f0 = c2
00 as the fidelity of state |0〉,

which can be verified by Alice and Bob in their postprocessing.
Similarly, Alice and Bob can obtain f1 = c2

11, f+ = c2
++, and

f− = c2
−−, respectively. Since the state space of the forward

qubit is two dimensional, Eve’s most general attack in the
Bob-Alice channel can be written in the form

UBE|0〉B |E〉 = c00|0〉B |E00〉 + c01|1〉B |E01〉,
(1)

UBE|1〉B |E〉 = c11|1〉B |E11〉 + c10|0〉B |E10〉,
and

UBE|+〉B |E〉 = c++|+〉B |E++〉 + c+−|−〉B |E+−〉,
(2)

UBE|−〉B |E〉 = c−−|−〉B |E−−〉 + c−+|+〉B |E−+〉,
where cij , c++, c+−, c−−, and c−+ can be treated as non-
negative real numbers,1 and |Eij 〉, |E++〉, |E+−〉, |E−−〉, and

1In general, the coefficients are a complex number and |Eij 〉 are
normalized vectors. For simplicity, we can rewrite the formula where
the phase of each coefficient is absorbed into the companying . For
instance, cij |Eij 〉 = √

cij c
∗
ij e

iδij |Eij 〉 = √
cij c

∗
ij (eiδij |Eij 〉). Thus, we

can get that cij ≡ √
cij c

∗
ij are non-negative real numbers and |Eij 〉 ≡

eiδij |Eij 〉 are normalized vectors.

|E−+〉 forms four pairs of normalized vectors. For now, we
consider the case that Eve performs a collective attack, i.e.,
UBE are the same for all qubits. This restriction can be removed
with the quantum de Finetti theorem [17–19], and then we can
prove the four-state protocol is secure against general attacks.

As discussed above, Bob’s forward qubit is prepared in
a mixed state ρB = (|0〉〈0| + |1〉〈1|)/2. After Eve’s attack in
the Bob-Alice channel, the joint state of the forward qubit and
Eve’s ancilla becomes

ρBE
Bob-Alice = UBE(ρB ⊗ |E〉〈E|)UBE.

After receiving the forward qubits, in the encoding mode,
Alice will encode her key bits onto the forward qubit. With
probability p = 1/2, she encodes key bit 0 by the operation
IB or key bit 1 by the operation YB . After the encoding, the
state of the qubit and Eve’s ancilla becomes

ρABE = 1
2 |0〉〈0|A ⊗ ρBE

0 + 1
2 |1〉〈1|A ⊗ ρBE

1 , (3)

where ρBE
0 = ρBE

Bob-Alice, and ρBE
1 = YBρBE

Bob-AliceYB . Next, Al-
ice sends the encoded qubits back to Bob.

After Bob measured all the returned qubits, Alice will
announce her measurement outcomes in the check mode, so
that they can gain the fidelity of Bob’s forward states, f0, f1,
f+, and f− in the Bob-Alice channel. Alice will also publish
some of her key bits to gain the error rate e of the key bits in
the Alice-Bob channel. For simplicity, we will consider first
the case that f0 = f1 and f+ = f−.

C. Secret key generation

The asymptotic key generation rate can be defined as
r = limm→∞ k(m)/m, where m is the size of the raw key
and k(m) is the number of the final key bits. Alice sends
Bob EC information over a classical channel so that he can
correct his raw key to match Alice’s. This EC information is
encrypted using pre-shared secret key bits and thus is unknown
to Eve. The final key is then derived by applying two-universal
hashing to their common raw key as PA [20]. In the asymptotic
scenario, the secure key rate rPA for secret key generation is
bounded by the conditional entropy of Alice and Bob’s key
bits given the quantum information of Eve about the key bits,
rPA = S(ρA|ρBE).

After Alice’s encoding operations, Eve can gain some
quantum information about Alice’s key bit from the quantum
state ρBE = trA ρABE that is a joint state of the backward qubit
and her ancilla. Here, we assume the worst case that Eve uses
the entire state ρBE to gain information about the key bit, even
though she may have to send part of the state to Bob. With
Renner and König’s results [20], we have rPA = S(ρA|ρBE) =
S(ρABE) − S(ρBE), where S(ρABE) = −tr ρABE log2 ρABE ,
and S(ρBE) = −tr ρBE log2 ρBE . In the following, we should
calculate the eigenvalues of ρABE and ρBE to get S(ρABE) and
S(ρBE).

D. Key generation rate for PA

Let us denote that

〈E00|E01〉 = s0 + is1,

〈E00|E10〉 = u0 + iu1,
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〈E00|E11〉 = p0 + ip1,

〈E11|E10〉 = r0 + ir1,

〈E01|E11〉 = v0 + iv1,

〈E01|E10〉 = q0 + iq1, (4)

where pi , qi , ri , si , ui , and vi are real numbers. Taking the
inner product of two equations of Eq.(1) gives

c00c10〈E10|E00〉 + c11c01〈E01|E11〉 = 0. (5)

For simplicity, we rewrite c0 ≡ c00 = c11 and c1 ≡ c01 = c10

and thus we have u0 = −v0 and u1 = −v1.
Let us calculate S(ρABE) and S(ρBE). A straightforward

computation2 shows that the eigenvalues of ρABE can be
obtained as λABE

0,1,2,3,4,5,6,7,8,9,10,11 = 0 and λABE
12,13,14,15 = 1/4.

Thus, we obtain S(ρABE) = ∑
i λ

ABE
i log2 λABE

i = 2,
where we have used the convention 0 log2 0 = 0.
The eigenvalues of ρBE = trA ρABE are λBE

0,1,2,3, = 0,
λBE

4 = 1
4 [1 + (�1 + �2)], λBE

5 = 1
4 [1 + (�1 − �2)], λBE

6 =
1
4 [1 − (�1 + �2)], and λBE

7 = 1
4 [1 − (�1 − �2)], where

�1 =
√

(c2
0p0 + c2

1q0)2 + (c2
0p1 + c2

1q1)2 + c2
0c

2
1(s0 + r0)2

and �2 =
√

c2
0c

2
1(s0 − r0)2.3 Considering the concavity

of von Neumann entropy [16], we can find
S(ρBE) = −∑

i λ
BE
i log2 λBE

i approaches its maximum
when r0 = s0 = q1 = p1 = 0. In this case, we have λBE

4,5 =
1
4 [1 + (c2

0p0 + c2
1q0)] and λBE

6,7 = 1
4 [1 − (c2

0p0 + c2
1q0)].4

2First, we select a completely orthogonal basis |E′
00〉, |E′

01〉,
|E′

11〉, and |E′
10〉 on the Hilbert space H E . Then we have

|E00〉 = ∑
ij aij |E′

ij 〉, |E01〉 = ∑
ij bij |E′

ij 〉, |E11〉 = ∑
ij fij |E′

ij 〉,
and |E10〉 = ∑

ij gij |E′
ij 〉, where i,j ∈ {0,1}, and 〈E00|E01〉 =

s0 + is1, 〈E00|E10〉 = −〈E01|E11〉 = u0 + iu1, 〈E00|E11〉 = p0 +
ip1, 〈E11|E10〉 = r0 + ir1 and 〈E01|E10〉 = q0 + iq1. After some
tedious calculations, we can gain the eigenvalues of ρABE on the
basis |0〉A, |1〉A, |0〉B , |1〉B , |E′

00〉, |E′
01〉, |E′

11〉, and |E′
10〉 in the Hilbert

space H ABE = H A ⊗ H B ⊗ H E , and the eigenvalues of ρBE on
the basis |0〉B , |1〉B , |E′

00〉, |E′
01〉, |E′

11〉, and |E′
10〉 in the Hilbert space

H BE = H B ⊗ H E .
3Calculation of the eigenvalues of ρABE and ρBE was partially

performed by computers with symbolic computation. It is surprising
at first glance that the parameters ui , vi , s1, and r1 are canceled out
in the formula for the eigenvalues of ρBE . The reason that ui and
vi are canceled out is that ui and vi are symmetric with ui = −vi .
Also, s1 and r1 are canceled out because s1 and r1 are the imaginary
parts of 〈E00|E01〉 and 〈E11|E10〉, respectively, and thus they can be
canceled out by diagonalization as arbitrary phase factors. Similarly,
the eigenvalues of ρABE are independent of the parameters ui , vi , ri ,
si , pi , and qi .

4As discussed earlier, Eve has to attack the traveling qubit twice,
on both the Bob-Alice and Alice-Bob channels, to gain Alice’s
key bits. On the Bob-Alice channel, Eve attacks the forward
qubit to distinguish its states, and then she can determine Alice’s
encoding operations after she attacked the backward qubit on the
Alice-Bob channel. It is optimal for Eve to distinguish Alice’s
states when 〈E00|E01〉 = 〈E00|E10〉 = 〈E11|E10〉 = 〈E01|E11〉 = 0,
〈E00|E11〉 = p0, and 〈E01|E10〉 = q0 [21], and thus it is optimal
among collective attacks in the four-state protocol.

With the eigenvalues of ρABE and ρBE , we get

S(ρABE) = 2,

S(ρBE) = −
∑

i

λBE
i log2 λBE

i .

From Eqs. (1) and (2), we can get

2c++|E++〉 = c00|E00〉 + c01|E01〉 + c11|E11〉 + c10|E10〉.
2c+−|E+−〉 = c00|E00〉 − c01|E01〉 − c11|E11〉 + c10|E10〉,
2c−−|E−−〉 = c00|E00〉 − c01|E01〉 + c11|E11〉 − c10|E10〉,
2c−+|E−+〉 = c00|E00〉 + c01|E01〉 − c11|E11〉 − c10|E10〉.

When considering f+ = f−, the equations above give a crucial
boundary condition,

1 + c2
0p0 + c2

1q0 = 2c2
++. (6)

Let us analyze the maximum of S(ρBE) when the fidelity, c2
0

and c2
++, were verified by Alice and Bob in their postprocess-

ing.
With the boundary condition of Eq. (6) and −1 �

p0,q0 � 1, after some tedious calculation, we obtain that
c2

0p0 + c2
1p1 � 2c2

++ − 1 − 2c2
1,5 and S(ρBE) approaches the

maximum when c2
0p0 + c2

1p1 = 2c2
++ − 1 − 2c2

1 � 0. After
verifying the condition c2

++ − c2
1 � 1/2 in their postprocess-

ing, Alice and Bob can obtain

S(ρBE) = max{S(ρBE|p0,q0)}

= −2c2
++ − 2c2

1

2
log2

2c2
++ − 2c2

1

4

− 2 − 2c2
++ + 2c2

1

2
log2

2 − 2c2
++ + 2c2

1

4
. (7)

Therefore, after verifying c2
++ − c2

1 � 1/2 Alice and Bob can
get the rate of PA against collective attacks,

rPA(ξ ) = S(ρA|ρBE) = 1 − h(ξ ), (8)

where ξ = c2
++ − c2

1, and h(x) = −x log2 x − (1 −
x) log2(1 − x) is the binary Shannon entropy.

In particular, if Eve does not attack the forward qubits
in the Bob-Alice channel, i.e., f0 = f1 = f+ = f− = 1, one
can find that rPA(ξ ) = 1. This states that Eve cannot gain any
information about Alice’s key bits if she does not attack the
travel qubit in the Bob-Alice channel first.

Consider the case that Eve measures each forward qubit in
the Bob-Alice channel in the basis |0〉,|1〉. Alice and Bob can
verify that f0 = f1 = 1, and f+ = f− = 1/2. In this case, we
have rPA(ξ ) = 0. On the other hand, Eve can also measure
each forward qubit in the Bob-Alice channel in the basis
|+〉,|−〉, which gives f+ = f− = 1 and f0 = f1 = 1/2, and
thus rPA(ξ ) = 0. That is, Eve can gain full information of

5With the boundary condition 1 + c2
0p0 + c2

1q0 = 2c2
++, we can

get 2c2
++ − 1 − c2

0p0 = c2
1q0 � c2

1|q0| � c2
1, i.e., c2

0p0 � 2c2
++ − 1 −

c2
1, since |p0| � 1 and |q0| � 1. Thus, we can find that c2

0p0 +
c2

1q0 � c2
0p0 − c2

1|q0| � c2
0p0 − c2

1 � 2c2
++ − 1 − 2c2

1. Here 2c2
++ −

1 − 2c2
1 � 0, i.e., c2

++ − c2
1 � 1/2 is required and should be verified

by Alice and Bob in their postprocessing.
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Alice’s key bits if she has exactly known the forward states
before Alice’s encoding operations.

E. PA for the practical quantum channels

For the practical quantum channels, the condition f0 =
f1 and f+ = f− is too strict to be satisfied. We can use the
following strategy to symmetrize Eve’s channels and eliminate
this condition. We first identify four locations: Alice’s side and
Bob’s side of the Bob-Alice and Alice-Bob channels. For each
bit, we randomly insert a bit flip operation Y at these four
locations. So the four locations are either all Y or all I . In this
way, the fidelities of the new Bob-Alice channel are simply
the average of that of the original channel [i.e., the new f0 and
f1 (f+ and f−) are the average of the old f0 and f1 (f+ and
f−)].6 Thus, this justifies the conditions f0 = f1 and f+ = f−
used in the previous sections.

Now, let us simplify further. Consider the two Y operations
at Alice’s side located before and after Alice’s encoding
operation. Since Alice’s encoding performs either Y or I ,
the two new Y operations commute with Alice’s encoding
operation and cancel out. Now consider the two Y operations
at Bob’s side, if he originally wants to send bit b = 0,1 in
basis W = X,Z through the the Bob-Alice channel, he now
sends bit 1 − b in basis W to implement Y . When he receives
the qubit from the Alice-Bob channel, he performs Y on the
incoming qubit, measures in basis W , records the bit b′, and
computes b ⊕ b′ as Alice’s key bit. This is the same as his
measuring the incoming qubit in W , flipping the bit result
1 − b′ to b′, and computing b ⊕ b′ as Alice’s key bit. Note that
the input to the raw Bob-Alice channel is 1 − b in the basis W

and the output of the raw Alice-Bob channel is measured in
W resulting in bit 1 − b′. Thus, Bob can use this information
directly to infer Alice’s key bit as (1 − b) ⊕ (1 − b′) = b ⊕ b′
without actually implementing the two Y operations. Since b

is uniformly distributed, so is 1 − b and the original protocol
is recovered (i.e., no need to introduce the extra four Y

operations) except that the averages of the fidelities (instead
of the individual fidelities) determined in the check mode are
used in the key generation formulas. Specifically, we can use
ξ = f+,− + f0,1 − 1 in Eq. (8) to calculate PA for any quantum
channels in the four-state protocol, where f0,1 = (c2

00 + c2
11)/2,

f+,− = (c2
++ + c2

−−)/2, and c2
ij ’s are the original fidelities of

the Bob-Alice channel determined in the check mode.

F. Final key generation rate

In the postprocessing, Alice and Bob should estimate the
fidelity in the Bob-Alice channel, and e in the Alice-Bob
channel. Then they will perform EC and PA to generate the
final key bits. In an asymptotic scenario, after verifying

f+,− + f0,1 � 3/2, (9)

6Essentially, the Bob-Alice channel in Eqs. (1) and (2) is
symmetrized by UBE |ψ〉B |E〉|0〉B ′ + YBUBEYB |ψ〉B |E〉|1〉B ′ where
system B ′ indicates whether we have a bit flip or not. We can assume
that we give B ′ to Eve after the qubit transmission so that the pure-state
analysis in the previous sections still applies. Note that giving B ′ to
Eve afterward means that UBE and system E are independent of our
extra bit flip.

Alice and Bob can obtain the secure final key against collective
attacks with the generation rate

r = 1 − h(ξ ) − h(e), (10)

where h(e) is the amount of key bits Alice and Bob should
sacrifice in the EC. To compare the key rate performance of the
two-way DQKD protocol given by Eq. (10) to that of the BB84
protocol given by 1 − 2h(e), we can assume a symmetric attack
by Eve in the DQKD protocol case (in which c2

++ = 1 − e and
c2

1 = e) so that ξ = 1 − 2e. Thus, the key rate of the DQKD
protocol is 1 − h(2e) − h(e), which is smaller than that of the
BB84 protocol when there are errors.

G. Security against general attacks

Our analysis above assumes that the state ρABE of each
run of the system is independent of and identical to the states
of other runs, i.e., we assume the entire state for the n runs
is (ρABE)⊗n. This collective-attack result can be extended
to general attacks where the entire state is arbitrary without
any restriction on the n subsystems. Note that the four-state
protocol is unchanged with a randomized permutation step. In
light of Refs. [18,19], after permuting the n subsystems and
discarding k of them, the resulting n − k subsystems can be
approximated by n − k independent and identically distributed
subsystems.7 Therefore, the final key bits in our proof with the
generation rate in Eq.(10) are secure against general attacks.

IV. CONCLUSION

We have proved that the four-state protocol is secure against
general attacks, thus ending the long-standing dispute about
the security of the deterministic QKD protocol. Our work
may be extended to other QKD protocols with a two-way
quantum channel and shine new light on the universality
of QKD.
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and Bob’s state. Since the latter is finite dimensional, the former
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Eve’s state is finite dimensional, despite that Eve’s knowledge about
her own state could still be infinite dimensional. This can be seen
by the finite number of eigenvalues of the joint ABE state given in
the paragraph below Eq. (5). Also, the Stinespring dilation theorem
states that Eve’s effective ancilla is no more than four dimensional
since the dimensionality of the Hilbert spaces of a travel qubit is 2
(see Sec. III B). Therefore, the application of the quantum de Finetti
theorem is valid in our proof.
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