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Abstract: 
It is of increasing interest in systems biology to discover 

gene regulatory networks (GRNs) from time-series genomic 
data, i.e., to explore the interactions among a large number of 
genes and gene products over time. Currently, one common 
approach is based on Granger causality, which models the 
time-series genomic data as a vector autoregressive (VAR) 
process and estimates the GRNs from the VAR coefficient 
matrix. The main challenge for identification of VAR models is 
the high dimensionality of genes and limited number of time 
points, which results in statistically inefficient solution and high 
computational complexity. Therefore, fast and efficient variable 
selection techniques are highly desirable. In this paper, an 
introductory review of identification methods and variable 
selection techniques for VAR models in learning the GRNs will 
be presented. Furthermore, a dynamic VAR (DVAR) model, 
which accounts for dynamic GRNs changing with time during 
the experimental cycle, and its identification methods are 
introduced. 
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1. Introduction 

Inference of gene regulatory networks (GRNs) from 
genomic data is a significant and challenging problem in 
systems biology, because it not only leads to an insightful 
understanding of molecular mechanisms, but can also be 
useful for practical applications, such as cancer prediction 
and drug discovery [1]. A GRN is a collection of interactions 
and relationships among a set of genes and gene products 
(RNA or proteins) in a cell or an organism. Complex 
biological activities, such as the transcription regulation, 
genetic pathway, protein-protein interactions, etc., can be 
revealed by elucidating the structures of GRNs.  

Because computational methods for GRN inference are 
cheaper and quicker than biological experiments, they are 
attracting the attention of more and more scientists and 

researchers from statistical and engineering fields [2]-[5]. In 
last decade, a number of statistical models and system 
identification methods have been proposed to study the 
GRNs, such as the Bayesian network, probabilistic Boolean 
network, graphical Gaussian models, structural equation 
models, etc. See review papers [2]-[5] and the references 
therein for details of above methods. These methods 
represent the GRN on different levels of abstraction and 
depend on different prior knowledge on reaction mechanisms, 
and thus they have different performances and superiorities in 
practical applications. However, all these methods may fail to 
reveal the causality (i.e., the direction of information flow), 
which is of special importance in GRNs, among the genes 
and proteins. 

More recently, Granger causality, as a powerful 
approach to identify the causality between time-series, gains 
increasing attention in systems biology due to its simplicity 
and effectiveness. Its successful applications to inferring 
GRNs of yeast cells, cancer cells, and human blood cells 
were reported in [6]-[15]. Generally, the Granger causality is 
tested by means of vector autoregressive (VAR) models. In 
the case of GRN, time-series genomic data are modelled as a 
VAR process, with the dimension being the number of genes 
and proteins in the genomic data. The extent of the Granger 
causality between two genes is evaluated by the 
corresponding element in the VAR coefficient matrix. The 
estimation of the VAR coefficients is conventionally achieved 
by minimizing the maximum likelihood function, which leads 
to the ordinary least-squares solution. However, because the 
number of variables is always much larger than the number of 
samples, the solution to the VAR model is often statistically 
inefficient and computationally demanding [16]. Therefore, 
fast and efficient variable selection techniques are highly 
desirable for identification of the VAR model.  

Prior biological knowledge is helpful for selecting 
meaningful genes before building the VAR model, but it is 
not always available for most genomic data. Hence, variable 
selection is often carried out automatically by regularization 
techniques during identification of the VAR model [17]-[19]. 
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Regularization techniques are extensively studied and widely 
applied in a variety of fields, because of its effectiveness in 
reducing the estimation variance and automatic variable 
selection [20]-[23]. The effect of variable selection can be 
obtained because some regularization techniques, such as the 
L1 regularization [21], the elastic net [22], and the smoothly 
clipped absolute deviation (SCAD) [23], hold the property of 
sparsity where small and irrelevant coefficients can be shrunk 
towards zero. This sparsity property is extremely desirable 
for inferring GRN, where only a few interactions among a sea 
of genes exist [24]. In this paper, an introductory review of 
popular variable selection techniques in identifying VAR 
models and inferring GRNs will be presented. 

Lastly, this paper will give a brief review on inferring of 
dynamic GRN from time-series genomic data. With the rapid 
developments of high-throughput technologies and increased 
availability of time-series microarray data, growing attention 
has been paid to how the GRNs of a cell or an organism 
changes with time over a period, say, during different stages 
of cell cycle or under different experimental conditions. As an 
extension of VAR models to non-stationary conditions, the 
dynamic VAR (DVAR) models and its existing identification 
methods are introduced, while some potential extensions are 
discussed.  

2. Granger causality and VAR models 

2.1. Granger causality 

Granger causality was originally proposed by the Nobel 
laureate Clive Granger in 1969 for econometric data [25]. 
Given two time-series X  and Y , if the past values of X  
can help result in a better prediction of future value of Y  
than the prediction solely based on past values of Y , then we 
can say that X  “Granger-causes” Y . More precisely, 
denote the prediction of )1( +nY  based on )|( nX ≤ττ  
and )|( nY ≤ττ  as )1(ˆ ),( +nY YX , and denote the prediction 
of )1( +nY  using only )|( nY ≤ττ  as )1(ˆ )( +nY Y . If the 
prediction error of )1(ˆ ),( +nY YX  is smaller than the error of 

)1(ˆ )( +nY Y , it is implied that )|( nX ≤ττ  contain useful 
information for the evolution of Y  and thus X  
“Granger-causes” Y . 

Granger causality can be easily extended to 
K -dimensional ( 2>K ) data KXXX ,,, 21 � . If past values 
of jX  can yield a more accurate prediction of lX  when 
past values of other kX  ( Kk ,,2,1 �=  and jk ≠ ) are also 
included in the prediction, then jX  “Granger-causes” lX . 
It is worth noting that the Granger causality can be extended 
to evaluate the spectral causality of two or more time-series 
in the frequency domain [11].  

2.2. VAR models 

Granger causality is generally tested by a VAR model, 
which is actually multiple linear regression accounting for 
linear relationship. We now consider a set of time-series 
microarray data containing K  genes and measured at N  
time instants as T

K nxnxnxn )](,),(),([)( 21 �=x  
( Nn ,,2,1 �= ). A p -order VAR model describes the 
microarray data as  
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. The order of the VAR model, 

p , is commonly selected as 1 in literature because a larger 
order implies much more VAR coefficients to be estimated 
and may result in a larger variability for the estimated 
coefficients [8]. Higher-order ( 1>p ) VAR models were also 
tested in [13], and the results showed improved performance 
in some cases.  

Granger-causality can be revealed by checking the 
components of the VAR coefficient matrix )(iA . That is to 
say, an entry )(

,
i
lja , Kj ,,2,1 �=  and Kl ,,2,1 �= , in 

)(iA  denotes whether gene lx  “Granger-causes” gene jx . 
If the value of )(

,
i
lja  is significantly deviated from zero, 

Granger-causality between jx  and lx  can be identified. 
On the other hand, a zero value of )(

,
i
lja  implies the absence 

of Granger-causality between jx  and lx .  

2.3. Identification of VAR models 

To identify the VAR models, we rewrite (1) in a standard 
linear regression framework as 
 )()()( nnn eBXY += , (2)
where KT nn ×∈= 1)()( RxY ,  

pKTTT pnnnn ×∈−−−= 1)](,),2(),1([)( RxxxX � , and 
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KpKTp ×∈= RAAAB ],,,[ )()2()1( � . The VAR coefficient B  
can be estimated by the maximum likelihood estimation 
(MLE). Since the additive noise )(te  is assumed to be zero 
mean and white Gaussian distributed, maximizing the 
likelihood is equivalent to minimizing the mean squared error 
(MSE) criterion as follows: 
 2||||minargˆ BXYB

B
−= , (3)

where KpNTTTT Npp ×−∈++= )()](,),2(),1([ RYYYY � , 
and pKpNTTTT Npp ×−∈++= )()](,),2(),1([ RXXXX � . 
Eq. (3) leads to the ordinary least-squares (OLS) solution as  
 YXXXB 1)(ˆ −= T . (4)

Note that in (4), the condition pKpN ≥− )(  must be 
satisfied, so that XX T  is invertible and a unique OLS 
solution exists. However, time-series gene data typically 
contain only tens of time points, while they normally contain 
thousands of genes or more. That is to say, NK >> . 
Therefore, variable (gene) selection is an indispensable part 
in identification of GRN. In general, there are two kinds of 
variable selection approaches for inferring GRNs: one is to 
select a small subset of responsible genes based on prior 
biological knowledge or from clustered genes and to establish 
the VAR model using the selected genes [6], [8], [11], [12], 
and [15]; the other is to build the VAR model using all 
measured genes and then to automatically select genes during 
the identification of VAR models [7], [9], [10], [13] and [14]. 
The latter automatic variable selection approach is of special 
interest because prior biological knowledge may be absent or 
vague in most genomic data sets. The automatic variable 
selection can be achieved by regularization, which will be 
introduced in the next section.  

3. Regularization and variable selection 

3.1. Introduction of regularization techniques 

In statistics, it is general to impose a regularization term 
in the OLS estimator to tackle the ill-posed problem. From a 
Bayesian respective, the regularization is closely related to 
incorporating prior information on the random variable B . 
With the regularization, the estimator of the regularized cost 
function is given as 
 

})(||{||minargˆ
1

,
2 �

=

+−=
pK

i
ikkkk βρ��

�Xy� , (5)

where k�  ( Kk ,,2,1 �= ) is the k -th column of B , ik ,β  
is the i -th entry of k� , ky  is the k -th column of Y , 

)(⋅�ρ  is the regularization or penalty function with one or 
more regularization parameters � .  

Some commonly-used regularization functions include 

the L2 regularization 2)( λββρλ = , which leads to a ridge 
regression [20], and the L1 regularization ||)( βλβρλ = , 
which leads to a least absolute shrinkage and selection 
operator (lasso) [21]. An elastic net regularization, which is a 
combination of L1 and L2 regularization, is also proposed for 
gene selection [22], and it has the form as, 

2
21, ||)(

21
βλβλβρ λλ +=  with two regularization 

parameters 1λ  and 2λ . The smoothly clipped absolute 
deviation (SCAD) regularization [23] is another popular 
technique for gene selection, and it is given as: 
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with two regularization parameters 0>λ  and 2>a .  

3.2. Desirable properties of regularization techniques 

It is claimed in [23] that an appropriate regularization 
technique should hold three desirable properties: continuity, 
sparsity, and unbiasedness. All above regularization 
techniques satisfy the condition of continuity, which means 

)(βρ�  are continuous in β  to avoid instability. The lasso, 
elastic net, and SCAD estimators have the property of 
sparsity, which means that some small coefficients can be 
automatically set to zero, while the ridge estimator does not 
have this property. Therefore, the automatic variable 
selection for inferring GRNs can be achieved by the 
estimators with the sparsity property. Unbiasedness implies 
that the modeling bias introduced by the regularization term 
should be zero when the true coefficients are large enough, 
which is important for estimating significant VAR 
coefficients accurately. Among the four regularization 
techniques, only SCAD has the property of unbiasedness.  

In addition, a “grouping effect”, which means that the 
coefficients of strongly correlated variables tend to be 
identical, is also considered as a useful property when dealing 
with gene data [22]. The elastic net is the only regularization 
technique having the grouping effect. Thus, elastic net can 
select a group of highly correlated genes once one among 
them is selected, while lasso and SCAD may only select one 
of them and discard others. 

Table 1 lists the properties of the four commonly-used 
regularization techniques. The latter three are often used for 
automatic variable selection in inferring GRNs (lasso in [7], 
[9], [13], and [14]; elastic net in [10] and [18]; SCAD in [19]). 
Because no regularization method possesses all the desirable 
properties and their performance is actually data dependent 
[17], the most appropriate one should be determined based on 
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known biological knowledge and practical requirements. 

TABLE 1. REGULARIZATION TECHNIQUES AND THEIR 
PROPERTIES FOR ANALYSIS OF GENOMIC DATA 

Property 
 

Method 
Continuity Sparsity Unbiased- 

ness 
Grouping 

effect 
Ridge     

Lasso     

Elastic net     

SCAD     

 

3.3. Algorithms and tuning of parameters 

If an L2 regularization is employed, the ridge estimator to 
the objective function in (5) is given by 
 

k
T

k yXIXX� 1)(ˆ −+= λ . (7)
For lasso, elastic net and SCAD, the objective functions are 
non-differentiable and it is difficult to obtain their solutions 
in analytic form. An iteratively re-weighted least-squares 
(IRLS) algorithm for solving this non-differentiable function 
was proposed in [23]. The IRLS algorithm is based on a 
Taylor approximation of the regularization term )(βρ�  as 

),)(|](|/)('[)()( 2)0(2)0()0(
2
1)0( ββββρβρβρ −+≈ ��� (8)

where )0(β  is an expansion point close to β . Then, an 
approximate closed-form solution to lasso, elastic net, and 
SCAD estimators can be obtained by rewriting (5) as: 
 

})(||{||minargˆ 2
,

1

)0(
,

2
ik

pK

i
ikkkk ββψ�

=

+−= ��
�Xy� , (9)

where ||/)(')( )0()0(
2
1)0( ββρβψ �� = . It can be seen that the 

regularization term in (9) has a similar form to an L2 norm 
with a weight )( )0(

,ikβψ � . Thus, it was suggested to compute 
the ridge regression iteratively to yield the IRLS algorithm 
for the lasso/elastic net/SCAD estimators as: 
 

k
mTm

k yX�XX� 1)()1( )(ˆ −+ += , (10)
where ,...1,0=m  is the number of iteration, and 

)}(,),({ )(
,

)(
1,

)( i
pKk

i
k

i diag βψβψ λλ �=� . A good initial value 
)0(�̂  for (10) is the ridge estimate. The iteration will stop 

until a maximum number is reached or the difference 
between two successive steps is small enough. 

In practical implementation, the regularization 
parameters have considerable impact on the results and need 
to be tuned as well. Conventionally, it can be chosen as the 
best one among a series of candidate values by the 
cross-validation (CV) criterion. For example, in a Q-fold CV 
for a data set containing D  observations, denote the testing 
set and training set as )(qD  ( Qq ,,2,1 �= ) and qDD − , 

respectively. For each testing set )(qD , an estimate of )(
)(

ˆ q
��  

is obtained by candidate parameters � . The optimal �  will 
be the one minimizing the CV criterion as 
 

2
( )

1 ( , )

ˆ ˆarg min || ||
q

Q
q

q D= ∈

= −� � ��
y X

� y X� . (13)

The CV procedure is often very time-consuming, so that 
other criteria, such as the generalized cross-validation (GCV) 
criterion, [7] and [23], and the Bayesian information criterion 
(BIC), [13] and [22], have also been adopted for selecting 
regularization parameters in identification of GRNs.   

4. Dynamic Granger causality and DVAR models 

4.1. Dynamic VAR models 

The VAR model of (1) is only suitable for time-series 
microarray data with stationary network structure because 

)(iA  is fixed and doesn’t vary with time. However, more and 
more biological experiments have shown that the 
transcriptional regulatory, protein-protein interactions, and 
other biological activities, exhibit substantial time-variant 
patterns throughout the cell cycle or other experimental 
period [26]-[28]. Therefore, the dynamic changes in GRNs 
cannot be inferred from the conventional VAR model. 

To address the problem, a dynamic VAR (DVAR) model 
is proposed to describe the time-series genomic data as 
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)(ne  is the error vector with zero-mean and time-varying 
covariance matrix 
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Since the DVAR coefficient matrix )()( niA  is 
time-dependent, the time-varying Granger causality in the 
dynamic GRNs can be revealed. More precisely, in )()( niA , 
the value of )()(

, na i
lj  ( Kj ,,2,1 �=  and Kl ,,2,1 �= ) 

implies the Granger-causality between gene lx  and gene 

jx  at the given time instant n . 
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4.2. Identification of DVAR models 

The DVAR model is actually a time-varying linear 
regression which takes the form  
 )()()()( ntnn e�XY += , (15)
where KpKTp tttt ×∈= RAAA� )](,),(),([)( )()2()1( � . The 
identification of DVAR models is more difficult than 
identification of VAR models, because the DVAR coefficient 
matrix should be estimated based on data measured at one 
time point. To achieve an accurate estimation with small 
variability, several deterministic or stochastic models are 
proposed to account for the variations of the DVAR 
coefficient matrix and they lead to three categories of 
identification methods for DVAR models [29]: 1) basis 
expansion modeling (BEM), 2) Kalman filtering (KF), and 3) 
weighted least-squares (WLS).  

1). In the BEM method, an explicit deterministic model 
of the coefficient variations is assumed, and the time-varying 
coefficients are approximated by a linear combination of 
known basis functions of time. The performance of the BEM 
method is greatly dependent on the basis functions and the 
expansion level, and their optimal selection is not easily 
accessible. This method has been used for inferring 
time-varying GRNs in [8]. The authors of [8] adopted a 
wavelet basis function to model the variation of VAR 
coefficient )()(

, na i
lj  as 

 
��

Ζ

=

−

=

=
0

12

0
,
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,

)(
, )()(

ζ γ
γζγζ

ζ

ψ ncna ii
lj , (16)

where )2(2)( 2/
, γψψ ζζ
γζ −= nn  is the wavelet basis 

function dilated and shifted from a mother wavelet function 
)(nψ , Ζ  is the expansion level, and )(

,
ic γζ  is the 

time-independent wavelet coefficients. By substituting (16) 
into (14), the estimation of )()(

, na i
lj  is reduced to the 

estimation of )(
,
ic γζ , lowering the number of parameters to be 

estimated significantly. However, their work did not consider 
automatic variable selection during the estimation, and only a 
few variables were selected to build the DVAR model based 
on prior knowledge.  

2). The Kalman filtering method employs a state-space 
model (SSM) to describe the coefficient variations, where the 
current coefficients are treated as the system state and are 
obtained by a linear transformation of the previous 
coefficients or state plus an innovation variable through the 
SSM. Given the prior information of the coefficient 
variations in form of the SSM, the Kalman filtering is an 
optimal recursive estimator in the minimum mean-square 
error sense. However, such prior knowledge is often vague in 
real-world applications, so that the Kalman filtering is often 
accompanied by an expectation-maximization (EM) 
algorithm to approximate the SSM parameters [14]. 

According to what we now so far, the Kalman filtering is still 
not an option for identifying DVAR models for GRN 
inference purpose. The authors of [14] proposed an 
alternative approach to combine the SSM and the VAR 
models (i.e., the gene expression data were modeled as the 
sum of a latent variable and a measurement noise while the 
latent variable was described by a VAR model) and employed 
the lasso method to obtain sparse solution, but they did not 
consider the dynamic changes of GRNs. 

3). The WLS method is similar to the conventional OLS 
method, except that kernels or windows are employed to 
assign larger weights to local data and smaller weights to 
remote data. The time-varying coefficients are then estimated 
by minimizing a weighted sum of squared estimation errors. 
It has been shown in [29] that WLS can be viewed as a 
special case of a more general local polynomial modeling 
(LPM) estimator for the time-varying linear regression model. 
In fact, the WLS estimator is LPM with the polynomial order 
equal to zero. The selection of the window size or bandwidth 
is critical to the performance of the WLS/LPM method, and 
automatic data-driven kernel bandwidth selection for WLS is 
a difficult problem, which considerably hinders its practical 
application. The WLS estimator is a common method for 
addressing the similar VAR model identification problem in 
other applications. However, the WLS method has not been 
used to infer GRNs, which may be due to the fact that the 
number of time points of time-series genomic data is quite 
limited and the selection of window length is therefore 
difficult. 

In summary, the identification of DVAR models for 
inferring dynamic GRNs is still an open problem, and few 
successful applications were reported. The conventional 
identification methods for time-varying linear regression 
models face many challenges when handling time-series 
genomic data, which have high dimensionality and limited 
time points. Therefore, it is necessary to develop more 
capable and effective DVAR identification methods, which 
should possess the ability of automatic variable selection and 
have reliable performance for short-duration data. 

5. Conclusions 

Granger causality (via VAR modelling) is an important 
approach to infer gene regulatory network from time-series 
genomic data. The discovering of time-invariant Granger 
causality (i.e., the identification of VAR models) has been 
extensively studied in systems biology. The least-squares 
estimator with regularization techniques showed good 
properties for automatic variable selection for identification 
of VAR models. However, it is still difficult to identify 
DVAR models due to the limitations of the identification 
methods and properties of time-series genomic data. Hence, 
advanced methods for identification of DVAR models are 
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needed to deal with time-series genomic data. 
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