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Local Polynomial Modeling of Time-Varying
Autoregressive Models With Application to

Time–Frequency Analysis of Event-Related EEG
Z. G. Zhang*, Member, IEEE, Y. S. Hung, Senior Member, IEEE, and S. C. Chan, Member, IEEE

Abstract—This paper proposes a new local polynomial model-
ing (LPM) method for identification of time-varying autoregressive
(TVAR) models and applies it to time–frequency analysis (TFA) of
event-related electroencephalogram (ER-EEG). The LPM method
models the TVAR coefficients locally by polynomials and estimates
the polynomial coefficients using weighted least-squares with a win-
dow having a certain bandwidth. A data-driven variable bandwidth
selection method is developed to determine the optimal bandwidth
that minimizes the mean squared error. The resultant time-varying
power spectral density estimation of the signal is capable of achiev-
ing both high time resolution and high frequency resolution in the
time–frequency domain, making it a powerful TFA technique for
nonstationary biomedical signals like ER-EEG. Experimental re-
sults on synthesized signals and real EEG data show that the LPM
method can achieve a more accurate and complete time–frequency
representation of the signal.

Index Terms—Electroencephalogram, event-related potential,
local polynomial modeling (LPM), time–frequency analysis (TFA),
time-varying autoregressive (TVAR) model.

I. INTRODUCTION

MOST biomedical signals are nonstationary in nature and
usually contain numerous time-variant and transient

components associated with underlying physiological or psy-
chological activities. The time-varying autoregressive (TVAR)
model is one of the most commonly used time-series models
employed to describe the dynamics of nonstationary signals or
characterize the variations associated with such signals, due
to its simplicity and effectiveness. For instance, they have been
used to classify electroencephalogram (EEG) in brain–computer
interfaces [1], [2], to estimate changes of electromyogram dur-
ing muscle contraction [3], and to track blood pressures [4]. The
TVAR coefficients can also be used to estimate time–frequency
distributions of biomedical signals. For example, TVAR time–
frequency distribution has been employed to identify EEG os-

Manuscript received August 4, 2010; revised September 22, 2010; accepted
October 15, 2010. Date of publication October 25, 2010; date of current version
February 18, 2011. This work was supported by the University of Hong Kong
CRCG Small Project Funding. Asterisk indicates corresponding author.

*Z. G. Zhang is with the Department of Electrical and Electronic
Engineering, University of Hong Kong, Pokfulam, Hong Kong (e-mail:
zgzhang@eee.hku.hk).

Y. S. Hung and S. C. Chan are with the Department of Electrical and Elec-
tronic Engineering, University of Hong Kong, Pokfulam, Hong Kong (e-mail:
yshung@eee.hku.hk; scchan@eee.hku.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2010.2089686

cillations [5]–[8] and to detect clinical events from intracranial
pressure [9].

Generally, methods for estimation or identification of TVAR
coefficients can be classified into three categories, namely: 1) the
sliding-window approach [3], [10], 2) Kalman filtering (KF) [6],
[9], and 3) basis expansion modeling [3], [4]. The sliding-
window approach employs a time shifting window to derive
a short-time data segment from the original signal at a particu-
lar time. The local data samples are assumed to be wide-sense
stationarity, and hence, the AR coefficients of each segment
can be estimated independently at different time instants using
classical AR identification methods [11]. The selection of the
window size is critical to the performance of the sliding-window
approach and automatic window selection is still a difficult prob-
lem, which considerably hinders its practical application. The
KF method employs a stochastic state-space model to describe
the variation of the TVAR coefficients and it is an optimal es-
timator in the minimum mean-square error sense if the model
is precisely given. Other adaptive algorithms similar to KF in-
clude recursive least-squares [3], [5] and the Kalman smoother
(KS) [7], [8]. The basis expansion method, on the other hand,
uses deterministic basis expansion to model the coefficient vari-
ations over a given time windowed signal, and the TVAR coeffi-
cients are approximated by a linear combination of known basis
functions [3], [12], [13]. In real-world applications, however,
the model parameters of the KF or the basis functions in basis
expansion modeling are often unknown and they have to be es-
timated or chosen by trial and error [1], [6], [8], [12]. Therefore,
the KF or basis expansion modeling method is highly dependent
on these parameters, and their performance will be considerably
degraded when the parameters are inappropriately estimated or
chosen [12].

In this paper, we propose a new local polynomial model-
ing (LPM) approach for identification of TVAR models and, in
particular, for time–frequency analysis (TFA) of nonstationary
EEG signals. The LPM method models the TVAR coefficients
locally by a set of polynomials within a data window having
variable bandwidth. Given the local bandwidth, the polynomial
coefficients can be estimated using the weighted least-squares
estimator [14]–[17]. Asymptotic expressions for the bias and
variance of the LPM estimator suggest that both of them are
functions of the window bandwidth and there exists an optimal
local bandwidth that minimizes the mean square error (MSE)
at each time instant. For slowly varying TVAR coefficients, we
would like the bandwidth to be large to reduce the estimation
variance. For fast-varying coefficients, a small bandwidth is

0018-9294/$26.00 © 2011 IEEE
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desirable in order to reduce the bias error. Since the TVAR co-
efficients may vary considerably over time, it is crucial to allow
variable bandwidths to achieve the best bias-variance tradeoff at
every time instant. Based on analytical expressions of the bias
and the variance, a data-driven variable bandwidth selection
(VBS) scheme is developed for the LPM method.

The proposed LPM-VBS TVAR identification method is gen-
eral and may find various applications in analysis of biomedical
signals. In this paper we will focus on its application to TFA of
event-related EEG (ER-EEG). TFA techniques have been exten-
sively and systematically applied in EEG study, and a desirable
TFA technique for ER-EEG study should have both good time
resolution (i.e., the ability to resolve adjacent events in time) and
good frequency resolution (i.e., the ability to resolve adjacent si-
nusoids). However, the performances of conventional TFA tech-
niques are usually highly dependent on the selection of model
parameters (including the window size in the sliding-window
approach, the forgetting factor in recursive least-squares algo-
rithms, and model order and covariance of the KF) as well as
signal statistics. As a result, higher time resolution is achieved at
the expense of undesirable lower frequency resolution and vice
versa. The proposed LPM-VBS method addresses the time–
frequency resolution tradeoff problem in the TFA of ER-EEG
by choosing its bandwidth adaptively to strive for a better com-
promise between time and frequency resolution. The experi-
mental results on simulated signals and real ER-EEG signals
recorded in a visual oddball paradigm show that the LPM-VBS
TFA method can reveal various time–frequency components of
ER-EEG more clearly and accurately than conventional TFA
methods like continuous wavelet transform.

The rest of the paper is organized as follows. In Section II,
the LPM for TVAR models is introduced. The VBS scheme for
the LPM-based TVAR identification is developed in Section III.
The LPM-VBS method is further extended to analyze ER-EEG
in Section IV. Experimental results are presented in Section V.
Final discussions and conclusions are given in Section VI.

II. LPM FOR IDENTIFICATION OF TVAR MODEL

In the TVAR model, a nonstationary discrete-time signal z(t)
is modeled as follows:

z(tn ) =
M∑

m=1

am (tn )z(tn−m ) + ε(tn ) = aT (tn )z(tn ) + ε(tn ),

(1)
where tn (n = 1, 2, . . . , N , N is the total number of samples) are
the sampling time instants, M is the order of the TVAR model,
a(tn ) = [a1(tn ), a2(tn ), . . . , aM (tn )]T represents the TVAR
coefficient vector, z(tn ) = [z(tn−1), . . . , z(tn−M )]T , and ε(tn )
is a zero mean white Gaussian process with variance σ2(tn ).

In the proposed LPM of TVAR model, the mth TVAR co-
efficient am (t) is modeled locally at a time point t = to as a
pth-order polynomial [14]–[17]:

am (t) ≈
p∑

j=0

1
j!

a(j )
m (to)(t − to)j =

p∑
j=0

β(j )
m (to)(t − to)j (2)

where a
(j )
m (to) are the jth derivatives of am (to) and β

(j )
m (to) =

1
j ! a

(j )
m (to) are the polynomial coefficients. Since the model

residual ε(t) is assumed to be a zero mean Gaussian process,
the maximum likelihood estimation of β

(j )
m (to) is equivalent to

minimizing a locally weighted least squares criterion as follows:

min
β

N∑
n=1

[
z(tn )−

M∑
m=1

p∑
j=0

β(j )
m (to)(tn − to)j z(tn−m )

]2

Kh(tn − to) (3)

where Kh(tn − to) = 1
h K( 1

h (tn − to)) is a window used to
control the number and weights of neighboring samples around
to on the estimation of β

(j )
m (to). Kh(·) can be obtained by

scaling a basis window K(·) by a bandwidth h.
Next, we rewrite (3) more compactly in matrix form as

min
β

{[y − X(to)β(to)]T W (to)[y − X(to)β(to)]} (4)

where y = [z(t1), z(t2), . . . , z(tN )]T ∈ RN ,

X(to) =

⎛
⎜⎜⎜⎜⎜⎝

zT (t1) (t1 − to)zT (t1) · · · (t1 − to)pzT (t1)

zT (t2) (t2 − to)zT (t2) · · · (t2 − to)pzT (t2)
...

...
. . .

...

zT (tN ) (tN − to)zT (tN ) · · · (tN − to)pzT (tN )

⎞
⎟⎟⎟⎟⎟⎠

∈ RN ×(p+1)M

β(to) = {[β(0)(to)]T , . . . , [β(p)(to)]T }T ∈ R(p+1)M with
β(j )(to) = [β(j )

1 (to), . . . , β
(j )
M (to)]T , and W (to) = diag{Kh

(tn − to)}. Note that β, X , and W are all functions of time
to , but the index to is omitted in the following discussion for
notational simplicity when there is no ambiguity. The weighed
least-squares solution to (4) is

β̂ = (XT WX)−1XT Wy (5)

and â is the first M entries of β̂.
Unlike the KF and basis expansion modeling, which assume

explicit models for the TVAR coefficients, the LPM method
relies on the Taylor expansion to construct local data mod-
els and to describe the coefficient variations. Therefore, LPM
method is a good alternative to conventional KF and basis ex-
pansion modeling especially when the underlying coefficient
model is unavailable. To investigate in-depth the behaviors
of the LPM estimator, asymptotic expressions for the estima-
tion bias and variance of β̂ are derived. (Due to space re-
strictions, the detailed asymptotic analysis is not given here,
but can be found in Appendix I of the supplementary mate-
rial available at http://www.eee.hku.hk/∼zgzhang/publication/
tbme2010_supp.pdf.) The asymptotic expressions show that the
bias is an increasing function of h as b(β̂) ∝ hp+1 , while the
variance is a decreasing function of h as V (β̂) ∝ h−1 . Using
these expressions, the MSE of the TVAR coefficients a can be
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written as

MSE(â) = E{||zT [a − â]||22}
= bT (â)Rzzb(â) + Tr(RzzV (â)), (6)

where b(â) is the first M entries of b(β̂), V (â) is the
matrix consisting of the upper left M×M subblock of
V (β̂), (Rzz )1≤m 1 ,m 2 ≤M = E[z(to − to−m 1 )z(to − to−m 2 )] is
the cross-correlation matrix of z, and Tr(·) denotes the trace
operation.

Consequently, it can be seen that, the bias term
bT (â)Rzzb(â) in (6) increases with h, while the variance term
Tr(RzzV (â)) decreases with h. Hence, there exists a locally
optimal bandwidth hopt(to) that minimizes the MSE of a. How-
ever, as quantities such as b(â) and Rzz in (6) are hard to obtain,
it is difficult to determine the optimal bandwidth in practice. In
the next section, we will introduce an empirical bandwidth se-
lection scheme to approximate this optimal bandwidth.

III. LPM WITH VBS

In the empirical bandwidth selection method, a finite set of
bandwidth parameters in an ascending order is given as

H = {h1 < h2 < · · · < hΓ} (7)

where Γ is the number of bandwidths. The bias, covariance, and
MSE values for each bandwidth in the set H will be approxi-
mated and the optimal bandwidth hopt(to) will be selected as
the one that minimizes the approximated MSE.

A. Approximation of Bias, Covariance, and MSE

The approximation of the bias, covariance, and MSE for the
proposed TVAR method are developed based on classical tech-
nique of local polynomial regression [14], which have been
proved to be effective in numerous applications. More pre-
cisely, the bias of β̂, which is based on a pth-order LPM, is
estimated using a Taylor expansion with an order higher than p
(say, p + pex , where pex is an excess order) as

b̂(β̂) = (XT WX)−1XT Wτ (8)

where τ is an N × 1 vector with its nth element given by∑pe x
ϑ=1

∑M
m=1 β

(p+ϑ)
m (to)(tn − to)p+ϑz(to−m ), and the higher

order derivatives β
(p+ϑ)
m (to) are estimated by fitting a polyno-

mial of degree p + pex [14]. With this higher order model, the
bias of our degree p model can be approximately estimated.
However, the (p + pex )th-order LPM still requires an initial
bandwidth, called the pilot bandwidth h∗(to), the selection of
which will be discussed later.

For the covariance, we consider the case of local homoscedas-
ticity, from which the covariance matrix of β̂ can be estimated
from (5) as

V̂ (β̂) = (XT WX)−1XT WWX(XT WX)−1σ2(to).
(9)

The variance of residual σ2(to) can be estimated as the nor-
malized weighted residual sum of squares [14]

σ̂2(to) =
∑N

n=1 (zn − ẑn )2Kh∗(tn − to)
tr{W ∗ − W ∗X∗(X∗T W ∗X∗)−1X∗T W ∗}

(10)

where X∗ and W ∗ are, respectively, the design matrix and
weighting matrix in the (p + pex )th-order LPM using the pilot
bandwidth h∗(to).

With the bias and covariance obtained, respectively, by (8) and
(9), the MSE can be computed if an estimate of Rzz is available.
Because z(t) is nonstationary, Rzz is also time-varying and
should be estimated locally. With the pilot bandwidth h∗(to),
Rzz can be estimated as

R̂zz (to) =
∑N

n=1 [Kh∗(tn − to)z(tn )zT (tn )]∑N
n=1 Kh∗(tn − to)

. (11)

Finally, the MSE of β̂ can be approximated by (6) using the
quantities calculated in (8)–(11).

B. Pilot Bandwidth Selection by Intersection
of Confidence Interval

An intersection of confidence intervals (ICI) method is em-
ployed in this study to determine the pilot bandwidth h∗. The ICI
method is an empirical bandwidth selection method, which has
been successfully applied to various areas, including local poly-
nomial regression, image processing, and TFA [15] and [16].
The theoretical background of the ICI method is omitted to save
space, and the reader is referred to [15] and [16] for details.
Here, we only briefly review the algorithm of the ICI method.

Given the bandwidth set H in (7), the ICI method deter-
mines the optimal bandwidth by comparing the confidence in-
tervals of the estimate β̂m (to ;hγ ) with different bandwidths hγ ,
γ = 1, 2, . . . ,Γ, in H . Consider a series of confidence intervals
Dγ = [Lγ , Uγ ] with

Uγ = β̂m (to ;hγ ) + κ · SD(β̂m (to ;hγ )) (12)

Lγ = β̂m (to ;hγ ) − κ · SD(β̂m (to ;hγ )) (13)

where SD(β̂m (to ;hγ ) are the square roots of the diagonal el-
ements of V̂ (β̂(to ;hγ )) in (9), κ is a threshold to adjust the
width of the confidence intervals and can be chosen by the
cross-validation criterion [15]. The ICI method examines the
following quantities from the confidence intervals:

Lγ = max[Lγ−1 , Lγ ], for γ = 2, 3, . . . ,Γ

Uγ = min[Uγ−1 , Uγ ], for γ = 2, 3, . . . ,Γ

L1 = U 1 = 0, for γ = 1. (14)

Lγ is the largest upper bound of the confidence interval for
bandwidth up to hγ , while Uγ is the corresponding lower bound.
The largest γ for which Uγ ≥ Lγ gives the ICI-selected optimal

bandwidth h̃m (to). When h is increased beyond h̃m (to), the bias
will suddenly increase, while the variance will decrease grad-
ually. Hence, the confidence intervals will no longer intersect
above the bandwidth h̃m (to).
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Since the ICI method actually produces an individual band-
width for each tap of the TVAR coefficient vector, h̃m (to) will
be further combined (generally, averaged) to produce the pilot
bandwidth, i.e., h∗(to) = 1

M

∑M
m=1 h̃m (to).

C. LPM With VBS

We now summarize the proposed LPM with VBS (LPM-
VBS) method for identification of TVAR models as follows.

Step 1) At each time instant to , β̂m (to ;hγ ) is calculated as
in (5) by a pth-order LPM with each bandwidth hγ ,
for γ = 1, 2, . . . ,Γ, in the set H .

Step 2) A pilot bandwidth h∗(to) is estimated from
β̂m (to ;hγ ) and its estimated covariance using the ICI
method as in (12)–(14).

Step 3) The quantities β
(p+ϑ)
m (to), σ2(to), and R̂zz (to) are

estimated with the pilot bandwidth h∗(to).
Step 4) For each bandwidth hγ , MSE(β̂(to ;hγ ) is ap-

proximated using (6)–(11), and the optimal
bandwidth hopt(to) is obtained as hopt(to) =
arg min

hγ ∈H
{MSE[β̂(to ;hγ )]}.

Step 5) Finally, a pth-order LPM with hopt(to) is performed
to obtain β̂(to ;hopt(to)).

IV. LPM-VBS TFA FOR ER-EEG

A. TFA of ER-EEG

We now study the application of the proposed LPM-VBS
method to the TFA of ER-EEG. ER-EEG is the stimulus-
evoked or induced electrical activity originated from cortical
neurons and measured on the scalp, and is an effective tech-
nique to disclose brain mechanisms [17]–[25]. Different ex-
perimental investigations have shown that ER-EEG is a very
complex brain activity consisting of a number of components,
including event-related potentials (ERPs), event-related syn-
chronization/desynchronization (ERS/ERD), and other oscil-
lations and potentials [18]–[22]. These components provide
important information on anatomical sources, brain connec-
tivity, sensory and cognitive processes, etc. Generally, the
ERS/ERD and other oscillations are identified by detecting
the concentration and change of the signal power in the time–
frequency distributions (TFDs). As ER-EEG reflects rapidly
changing brain states at a time scale of milliseconds [18]–[22],
good time resolution is essential to the accurate identifica-
tion of the onset and end time of EEG activities. On the
other hand, the ER-EEG activities in different frequency bands
carry distinct physiological significances [18]–[22]. Hence, both
good time and frequency resolution are important to TFA of
ER-EEG.

The most popular TFA method in EEG study may be the
continuous wavelet transform (CWT) [19], [20]. The superi-
ority of the CWT is that it addresses the time–frequency res-
olution tradeoff problem by applying a short window at high
frequency and a long window at low frequency. However, CWT
has degraded frequency resolution for high-frequency compo-
nents and degraded time resolution for low-frequency compo-

nents. Therefore, CWT may not be able to precisely identify
EEG components in a wide frequency range and, in particular,
cannot acquire accurate temporal and spectral information on
rapid changes of ER-EEG. The CWT method is a nonparamet-
ric TFA method that estimates the TFD entirely from the signal.
Other nonparametric TFA methods, such as short-time Fourier
transform [23], matching pursuit [24], windowed Lomb peri-
odogram [25], Hilbert spectrum from empirical mode decom-
position [26], [27], were also proposed for analyzing ER-EEG
but they did not gain the same popularity as CWT.

Unlike the nonparametric TFA methods, the TVAR-based
power spectral density (PSD) estimation is a parametric TFA
method. Provided with an appropriate (e.g., TVAR) model, para-
metric TFA methods can usually achieve higher frequency reso-
lution than nonparametric methods. In EEG studies, the TVAR
model and the KF algorithm are amongst the most popular
parametric models and identification methods respectively [1],
[5]–[8]. As discussed before, the conventional KF is rather sen-
sitive to the selection of model parameters and it often leads
to a long tracking lag or a large estimation variance. The re-
ported applications of KF/KS were mainly focused on EEG
data with long-lasting and stable time–frequency characteristics,
such as eye open/closed EEG [7] and motor-imagery EEG [8].
As far as we are aware, the KF/KS method is still not a well-
accepted option for TFA of highly nonstationary ER-EEG data,
say, recorded in an ERP experiment.

The proposed LPM-VBS method provides a good alternative
for TFA of highly nonstationary ER-EEG data because it can
achieve a good tradeoff between time and frequency resolution
by employing variable bandwidths. By modeling an ER-EEG
signal z(t) by the TVAR model of (1), its time-varying PSD can
be calculated from the estimated coefficients and the variance
of residual as

P (t, f) = σ̂2(t)

/∣∣∣∣∣1 −
M∑

m=1

âm (t)e−j2πf m

∣∣∣∣∣
2

(15)

where the variance σ̂2(t) can be estimated as in (10).

B. Complexity and Parameter Selection

We now discuss several practical issues when applying the
LPM method in ER-EEG study.

1) Computational Complexity: We first consider the arith-
metic complexity of a p-order LPM estimator in (5) at one
time point. If N 	 (p + 1)M , the complexity of LPM is ap-
proximately O(N). The complexity can be simplified by using
windows with finite support. Denote the number of samples in-
cluded in a finite-support window as NK , then the complexity
of the LPM estimator will decrease considerably to O(NK ).
Since NK increases with h, a large bandwidth will increase
the complexity. Because the approximation of MSE requires a
(p + pex )th fitting and the VBS scheme needs to calculate LPM
solutions with a set of bandwidths, the overall complexity of the
LPM method is higher.

2) Selection of Window K: A window with finite support
is desirable because it can reduce the complexity significantly.
In this paper, following the recommendation of [14]–[17], the
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Epanechnikov window is employed

K(u) =

⎧⎨
⎩

3
4
(1 − |u|2), |u| < 1

0, |u| ≥ 1.

(16)

For an Epanechnikov window with bandwidth h, Kh(u) =
1
h K(u/h), only the time points included in the interval (t0 −
h, t0 + h) are included for local estimation, and thus, the ef-
fective window length is 2h. Other types of windows, such as
Gaussian and Hanning windows, can also be used. As their
performances are similar, a detailed comparison of different
window types is not performed in this paper.

3) Selection of Bandwidth Set H: For the LPM estimator in
(5) to be solvable, the minimum bandwidth, h1 or hmin , should
be chosen to ensure that the number of samples in the interval
(to − hmin , to + hmin) is equal to or larger than the number of
variables to be estimated, (p + pex + 1)M . Suppose the signal
is uniformly distributed at a sampling rate of fs , then we get the
following condition for the bandwidth:

h ≥ [(p + pex + 1)M ]/(2fs). (17)

On the other hand, there is no theoretical limit on the max-
imum number of elements in the bandwidth set, hΓ or hmax .
However, too large a window will result in high computational
complexity. In practice, the maximum bandwidth can be deter-
mined from the properties of the signal under study. For exam-
ple, the maximum window size in our EEG study can be chosen
as 120 ms, because previous study on EEG segmentation showed
that the duration of most EEG microstates (defined as data seg-
ments with stable field topography) is less than 120 ms [28]. As
for other bandwidths in H , more bandwidths may lead to more
refined results, but it will also increase the computational load.
To achieve a tradeoff between performance and complexity, we
generally select 2–3 bandwidths between hmin and hmax . From
experimental results, it was found that the proposed bandwidth
setting gave satisfactory results in practice.

4) Selection of Polynomial Order p: Theoretically, a larger
p gives the polynomial more approximation power, and hence,
a smaller bias. However, it also increases the variability of the
estimates because more variables (namely (p + 1)M ) have to
be estimated. On the other hand, the number of variables should
be smaller than the number of measurements NK in the smallest
window so that (8) is solvable. Hence, a large p also requires
a larger window and potentially reduces the time resolution of
the TFD. More details about the selection of p can be found in
the classical text by Fan and Gijbels [14]. Since one of the main
advantages of the LPM-VBS method is its fine time-resolution,
p and pex should be selected as small as possible. In this study,
we set p = 0 and pex = 1, which gave satisfactory results in
the experiments. Although p = 0 implies that the LPM method
is reduced to conventional sliding-window approach using the
Yule–Walker solution, the window size is still variable, and
hence, the bias-variance tradeoff problem can still be satisfac-
torily addressed in the LPM framework.

5) Selection of TVAR Order M : The model order M of the
TVAR is important to the frequency resolution of the PSD es-
timation [11]. A small M discriminate different closely spaced

Fig. 1. Simulation model: (a) locations of four sinusoidal components in the
time–frequency domain; (b) one realization of the simulated signal.

frequency components, while spurious frequency peaks may ap-
pear when M is too large. A number of model-order selection
methods, such as the Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC), are available for choos-
ing an appropriate TVAR model order M . Note that the order
of the TVAR can be made adaptive for each sample or each data
segment, which can also be determined from the above criteria.
Such time-variant order and bandwidth scheme is potentially
a valuable tool for time-variant signal analysis. In this paper,
since our focus is on time-variant signals with time-varying
bandwidth, the TVAR order will be fixed to simplify the imple-
mentation and mathematical analysis.

V. EXPERIMENTAL RESULTS

We first test the LPM-VBS method and compare it with
other conventional methods (including random-walk KF/KS,
and LPM with fixed bandwidths) for identifying simulated
TVAR models. The results are described in [29] and Appendix
II of the supplementary material and they show that the LPM-
VBS method has better performance for TVAR identification
with different extents of coefficient variation.

The performance of the LPM-VBS TFA method is now eval-
uated and compared using simulated and real EEG data.

A. TFA of Simulated Data

Different TFA methods, including CWT-, KS-, and LPM-
based PSD estimation, are compared using simulated EEG sig-
nals. This allows us to quantify the performances of the various
algorithms. The signal, of duration 1 s and sampling frequency
250 Hz, consists of the sum of four distinct sinusoidal com-
ponents with different frequencies and durations (Cθ : 6 Hz,
200–400 ms; Cα : 11 Hz, 600–800 ms; Cβ : 25 Hz, 0–500 ms;
Cγ : 70 Hz, 500–1000 ms), which are meant to emulate respec-
tively the theta, alpha, beta, and gamma bands of EEG signals.
The four sinusoids have the same amplitude of 1 and random
phases between −π and π. An additive white Gaussian noise
with a SNR of 5 dB is added. The simulated signal model in
the time–frequency domain and one realization of the simulated
signal are presented in Fig. 1.

The order of TVAR models was determined according to the
BIC. The model orders selected by BIC varied slightly in differ-
ent realizations and for different TVAR identification methods.
Since the standard deviation is less than 2 in 100 realizations for
each TVAR identification method and the mean values are all
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Fig. 2. Time–frequency distributions of one example of simulated signal:
(a) CWT, (b) ARWKS, (c) LPM-VBS, (d) the estimated variance of residual
in LPM-VBS, and (e) the variable bandwidths used in LPM-VBS. The TFDs
of (a)–(c) are shown in a logarithmic scale, and the gray scale is from black
(minimum) to white (maximum).

between 11 and 13, we adopted a model order M of 12 in this
simulation. In the LPM method, p = 0 and pex = 1. The result-
ing minimum bandwidth is hmin = 48 ms, and the bandwidth
set is H = {50, 75, 100, 120} ms.

In the KS method, the state transition matrix is chosen as an
identity matrix to obtain a random-walk model [12]. The co-
variance matrix of the state noise or the observation noise in
the random-walk KS is recursively estimated as a weighted sum
of the previous covariance estimate and the outer product of
the current residual vector [6]. Such adaptive random-walk KS
(ARWKS) coupled with covariance estimation is a commonly
used simplification of the standard KS in practical implemen-
tations where the true parameters of the state-space model are
unknown. The ARWKS framework has been adopted in various
applications including TFA study of EEG [1], [6], [7]. In this
paper, the parameters for estimating the covariance matrices fol-
low the setting in [6]. In addition, the KF method is also tested
but its results are not as good as those of KS, which is consistent
with the conclusions in [7] and [8]. Thus, the results of KF are
not presented in this paper.

In the CWT algorithm, complex Morlet wavelet basis

ψ(t) =
1√
πfb

e2πifc te−t2 /fb

with fb = fc = 1 is adopted. Although other choices of wavelet
basis may lead to better time resolution or frequency resolu-
tion in specific time–frequency regions, they cannot simultane-
ously improve the time and frequency resolution in the whole
time–frequency domain. As shown in the simulation results, the
selected wavelet gives a satisfactory tradeoff between time res-
olution and frequency resolution in a wide frequency range. All
the TFDs are evaluated at each sampling time instant and from
0.5 Hz to 125 Hz (the Nyquist frequency) with a frequency step
of 0.5 Hz.

Fig. 3. Averages of time–frequency distributions of 100 trials of simulated
signals: (a) CWT, (b) ARWKS, (c) LPM-VBS, (d) the average of estimated
variance of residual in LPM-VBS, and (e) the average of variable bandwidths
in LPM-VBS. The TFDs of (a)–(c) are shown in a logarithmic scale, and the
gray-scale is from black (minimum) to white (maximum).

The TFDs of one representative simulation are presented in
Fig. 2. It can be seen that the CWT has low time resolution
for low-frequency components (Cθ and Cα ), and low frequency
resolution for high-frequency components (Cγ ). The ARWKS
method exhibits considerable variability in estimating the sinu-
soidal components and it also produces a number of artificial
time–frequency components. The poor performance of ARWKS
is due to its inability to accurately estimate the model parame-
ters. In contrast, the LPM-VBS method gives a TFD with good
time resolution and few artificial time–frequency components.

In TFA of signals with low SNR, such as ER-EEG, if a num-
ber of signal trials repeatedly measured for one specific event are
available, it is common to calculate the average of TFDs of all
the trials so that the components having stable time–frequency
characteristics can be enhanced, while the artificial components
can be smoothed out [19], [20]. In this simulation, the averaged
TFDs across 100 simulated trials are presented in Fig. 3. It can
be seen that, the LPM-VBS method has better representations
for the four sinusoidal components than the other two methods.
CWT is unable to attain good time resolution and frequency res-
olution simultaneously, and ARWKS has large variability when
estimating stable time–frequency components. Fig. 3(e) showed
the average of variable bandwidths used in 100 LPM-VBS sim-
ulations and it can be seen that LPM-VBS employs a small
bandwidth when the time–frequency characteristics are stable
(i.e., the TVAR coefficients are slowly varying in 200–400 and
600–800 ms) and a large bandwidth when the time–frequency
characteristics change rapidly (i.e., the TVAR coefficients are
fast-varying around 200, 400, 500, 600, and 800 ms).

We next compare the three TFA methods in a more quan-
titative manner. The instantaneous PSD values at 6, 11, 25,
and 70 Hz were extracted from TFDs of 100 realizations for
comparison. Because the PSD values obtained from CWT are
calculated as the squared magnitude of the CWT coefficients
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Fig. 4. Instantaneous normalized PSD extracted from time–frequency distri-
butions of 100 trials of simulated signals using CWT, ARWKS, and LPM-VBS
at frequencies of: (a) 6 Hz, (b) 11 Hz, (c) 25 Hz, and (d) 70 Hz. The black
triangles under the time-axis mark the onset and end time of the sinusoidal
component at the frequency.

and they are not in the same scale as the ARWKS- and LPM-
based PSDs calculated using (15), the instantaneous PSD values
from different TFA methods are normalized for the purpose of
comparison. The normalized instantaneous PSD PN (t, f) is ob-
tained by dividing by the sum of all the PSD values in one TFD,
i.e., PN (t, f) = P (t, f)/

∑
t

∑
f P (t, f). The mean values of

PN (t, f) at f = 6, 11, 25, and 70 Hz calculated from 100 real-
izations are plotted in Fig. 4.

The time resolution of the three TFA methods was evaluated
by checking whether the onset and end times of the four com-
ponents were accurately identified. It can be seen from Fig. 4
that, the CWT has poor time resolution for the low-frequency
component Cθ . But the time resolution of CWT is improved
with the increase of frequency, so that the onset time for Cγ

can be accurately identified. On the other hand, the time res-
olution of ARWKS or LPM-VBS is very consistent in a wide
frequency range and it is better than that of CWT for low-
frequency components. In addition, as we can see from Fig. 3(b)
and Fig. 4(d), the ARWKS-based TFD shows an artificial
high-frequency (>70 Hz) component before 200 ms, because
ARWKS needs some time to reach convergence, and thus, it has
a large estimation error shortly after the onset of event. Such
error is a big disadvantage of ARWKS, because it will con-
siderably contaminate meaningful short-latency high-frequency
components in ER-EEG.

The frequency resolution was evaluated by comparing the
instantaneous PSD values of the four sinusoidal components.
Because the four components have identical amplitudes of 1,
they should have identical PN . Moreover, the better the fre-
quency resolution, the smaller will be the frequency leakage,
and vice versa. It can be seen from Fig. 4 that the PN ’s of
the four components estimated by CWT decrease with the fre-

quency (log10(PN ) is over –4.0 for Cθ from 200 to 400 ms, and
is around –4.5 for Cγ from 500 to 1000 ms). This verifies that
the CWT has decreased frequency resolution for high-frequency
components. In contrast, the ARWKS and LPM-VBS methods
have relatively stable PN for the four components (log10(PN )
is around –0.4 in LPM-VBS and around –0.5 in ARWKS). The
higher PSD value of LPM-VBS over ARWKS suggests that the
LPM-VBS-based TFDs have better frequency resolution, which
is also observed from Fig. 3.

We further investigate the phenomenon of frequency leakage
in different TFA methods. It is often necessary to calculate
the power in one given frequency range in EEG study, and
thus, small frequency leakage (i.e., high frequency resolution)
is highly desirable. As Cθ ,Cα , and Cβ are closely spaced in the
frequency domain, it is possible that the PSD value leaks out
to other frequencies. In Fig. 4(b), for example, PN is evidently
high between 200 ms and 400 ms at 11 Hz for all the TFA
methods, which is actually due to the leaking PSD from Cθ at
6 Hz. In CWT of Fig. 4(b), log10(PN ) from Cα between 600
and 800 ms is slightly larger than –0.4 and log10(PN ) leaking
from Cθ between 200 ms and 400 ms is slightly larger than
–0.5, and hence, the difference is around 0.1. Such differences
of PN at 11 Hz in Fig. 4(b) are around 1.5 and 0.5 for LPM-
VBS and ARWKS, respectively, and similar observations can be
made in Fig. 4(a) and (c). These results indicate that the LPM-
VBS method has less frequency leakage and better frequency
resolution than CWT and ARWKS.

B. Real ER-EEG

Next, the LPM-VBS method is evaluated using real ER-EEG
data. The ER-EEG data in a visual oddball paradigm are used
because this experiment has been extensively studied and the
time–frequency characteristics of such ER-EEG data have been
revealed by various means. Therefore, we can validate our LPM-
based results by comparison with previous findings.

The ER-EEG data were recorded using a 128-channel
EEG/ERP system manufactured by Electrical Geodesic, Inc.,
and referenced to vertex. The standard stimulus is a character
“O” with 80% occurrence, while the target visual stimulus is a
character “X” with 20% occurrence. A total of 250 stimuli were
presented, and thus, 200 were standard stimuli and 50 were tar-
get stimuli. The duration of each stimulus was 500 ms, and the
interstimulus interval was 1500 ms. The stimuli were presented
on a CRT monitor with a refresh rate of 60 Hz.

Ten subjects (eight males and two females) aged 19–32 years
(mean ± SD: 25 ± 4) were recruited in this study. The subject
was asked to press the correct button immediately after he/she
recognized the stimulus. The sampling rate was 250 Hz. The data
were high-pass filtered at 0.1 Hz. Automatic artifact correction
for EEG by blind source separation was further performed to
attenuate the artifacts [30].

The LPM-VBS method will be compared to the CWT, which
contributed most of findings of time–frequency features in such
paradigm. The ARWKS method is not used for comparison
because it is seldom used in study of ER-EEG due to its limi-
tations such as slow convergence. The orders of TVAR models
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Fig. 5. Grand averages of ER-EEG trials (recorded at Pz): (a) trials with
correct responses to standard stimuli, and (b) trials with correct responses to
target stimuli. The bold dashed lines denote the response time.

are selected by the BIC. The BIC-selected orders are different
from trial to trial. Since it is time consuming to determine an
individual order for each trial in a total of 250 × 10 trials
recorded at one electrode, we randomly select 100 trials and ob-
tain their optimal orders using BIC. The 100 BIC-based orders
have a mean value of 14.7 and a SD of 1.2. Thus, we employ
a TVAR model order of M = 15. In the LPM method, p = 0
and pex = 1. The minimum bandwidth is hmin = 60 ms, and
the bandwidth set is H = {60, 80, 100, 120} ms. Other param-
eters for the LPM and CWT methods are the same as those in
previous simulations.

The performances of CWT and LPM-VBS methods are com-
pared using EEG activities produced by the two types of stimuli:
standard or target. Single-trial ER-EEG signals recorded at Pz
in correct responses to standard and target stimuli are presented
in Fig. 5, and they are sorted by the response time. The mean
response time is respectively 315 ms and 425 ms for standard
and target stimuli. The grand averages across trials and subjects
are also given in Fig. 5 and we can see that P300 and other early
ERP components (such as N100 and P200 [17]) are apparent in
the grand average of correct responses to target stimuli.

Figs. 6 and 7 show the grand averages of stimulus-locked and
response-locked TFDs across trials and subjects, respectively.
To observe the changes in power of the TF components caused
by the events, the log-transformed LPM- or CWT-based TFDs
are baseline-corrected by subtracting the average power of the
signal in a pre-stimulus interval (–50 to –300 ms), which is
similar to the usual approaches in [19]–[21]. Furthermore, as
suggested in [20], all these TFDs are expressed as Z-scores to
make the comparison between different TFA methods possible.
For each time–frequency point, a t-test is used to determine
whether the power spectra of responses to standard and target
stimuli are significantly different, resulting in a p-value map in
the time–frequency domain. It has been shown in [31] that the
log-transformed TFD can be regarded as normally distributed,
and thus, the t-test is applicable. The significance threshold α+

is corrected by the false discovery rate (FDR) procedure [32] to
address the problem of multiple comparisons.

We searched all meaningful time–frequency components in
TFDs or statistical contrast maps of Figs. 6 and 7, and their
locations in the time–frequency domain are indicated by a series
of regions of interest (ROIs). Some of the ROIs (A, C, D, E, F,
G, I, and J, shown as solid boxes in Figs. 6 and 7) are identified

Fig. 6. Grand averages of TFDs of ER-EEG (time-locked to the stimulus,
recorded at Pz) with correct responses to standard or target stimuli: (a) CWT of
standard stimuli, (b) LPM-VBS of standard stimuli, (c) CWT of target stimuli,
(d) LPM-VBS of target stimuli, (e) CWT-based contrast between standard and
target stimuli (FDR-corrected α+ = 0.008), and (f) LPM-VBS-based contrast
between standard and target stimuli (FDR-corrected α+ = 0.008).

Fig. 7. Grand averages of TFDs of ER-EEG (time-locked to the response,
recorded at Pz) with correct responses to standard or target stimuli: (a) CWT of
standard stimuli, (b) LPM-VBS of standard stimuli, (c) CWT of target stimuli,
(d) LPM-VBS of target stimuli, (e) CWT-based contrast between standard and
target stimuli (FDR-corrected α+ = 0.004), and (f) LPM-VBS-based contrast
between standard and target stimuli (FDR-corrected α+ = 0.004). The time
instant 0 of the time axis denotes the response time.
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by significant differences found in the statistical contrast maps,
while others (B, H, K, and L, shown as dashed boxes in Figs. 6
and 7) are identified by significant power increases or decreases
(t-test, p < 0.05; results not shown here) found in the LPM- or
CWT-based TFDs.

In Fig. 6, the ROI A reaches its maximum from 100 to 450 ms
in the theta and alpha bands for target stimuli. This predomi-
nated maximum should be contributed by the P300 and other
early ERP components elicited or enhanced by the target stim-
uli. In Fig. 7(d), the maximal value in G, which should be caused
by the P300 component, can be easily distinguished from the
later theta-band component in K, which should be caused by eye
artifacts or error detection [22]. However, the power peaks in G
and K can hardly be separated in the CWT result of Fig. 7(c) due
to the coarse time resolution of CWT in low-frequency range.
It can also be observed that a long-duration of high-frequency
(around 60 Hz) component in B exists in the LPM-based TFDs
for both standard and target stimuli, while this 60-Hz component
looks like some intermittent responses in the gamma band from
the CWT results. In addition, this 60-Hz component does not
show significant difference for different stimuli. All these obser-
vations (stable frequency around 60 Hz, long-lasting duration,
similar responses to different stimuli, duration around 500 ms)
suggest that the 60-Hz component in B is very likely to be the
steady-state visual evoked potential (SSVEP) in response to the
refresh rate (60 Hz) of the computer monitor [33]. We further ob-
served from the LPM-based TFDs that, a gamma-band activity
in C is significantly increased in response to target stimuli, which
should be the induced gamma-band response (iGBR) reported
in [10], [34], [35]. However, the frequency resolution of the
high-frequency component in C is rather poor in CWT. Similar
differences between the CWT and LPM results can be observed
for other high-frequency (especially gamma-band) components.
A summary of time–frequency components discovered in the
experiments and their properties are given in Table I.

Overall, our LPM-based results (in theta, alpha, and beta
bands) are in high accordance with previous findings in the vi-
sual oddball paradigm [22]. However, the CWT-based findings
in [22] were observed only up to around 40 Hz. Gamma-band ac-
tivities revealed by CWT or other TFA methods were reported
in many other studies, but their observations were generally
limited in the high-frequency range. It should be noted that all
the previous studies focus only on specific and rather limited
time–frequency areas due to the limited TF resolution of con-
ventional TFA methods. On the other hand, the proposed LPM-
VBS based TFD can reveal a complete (from theta to gamma
bands) and clear (with good time and frequency resolution)
time–frequency characteristics of ER-EEG, which is consistent
with the findings obtained in the somewhat scattered literature.
Therefore, it offers a convenient framework for analyzing EEG
and other biomedical signals without the need for user interven-
tion through trial and error selection of model parameters. The
proposed method may facilitate further analysis, such as statisti-
cal analysis, source location, etc., so as to provide more thorough
interpretation of the disclosed time–frequency components, and
hence, reveal the underlying physiological and psychological
mechanisms.

TABLE I
TIME–FREQUENCY COMPONENTS IDENTIFIED BY THE LPM-VBS METHOD

AND THEIR CHARACTERISTICS IN THE VISUAL ODDBALL PARADIGM

VI. DISCUSSION AND CONCLUSION

A novel LPM approach and a data-driven VBS scheme for
identification of TVAR models were presented, with emphasis
on its application to TFA of ER-EEG data. The experimental re-
sults showed that the LPM-VBS method can reveal a complete
and clear picture of time–frequency components in ER-EEG.
The proposed LPM-based TFA method is expected to find vari-
ous clinical and research applications in EEG study of cognitive
neuroscience, neurophysiology, and psychology.

Although one major application of LPM method is to inves-
tigate the time–frequency distribution of biomedical data (in
particular, ER-EEG data), the potential applications of the LPM
method, as an effective TVAR identification method, has yet
to be fully explored. For instance, since another important ap-
plication of TVAR modeling is the tracking and prediction of
time-varying biomedical signals [3], the LPM method may also
find its usage here. Furthermore, it is shown in [17] that the
LPM-VBS method can be further extended for identification of
time-varying systems with mild nonlinearity by means of ap-
propriate linearization. As shown in [36] and [37], nonlinear
dynamics are commonly exhibited in biomedical signals or sys-
tems, and therefore the effectiveness of LPM for identification
of nonlinear biomedical systems is a potentially fruitful area for
future work.

Finally, it is worth noting that, the polynomial order p is
chosen to be zero in the current TFA study but a higher order can
be employed to further explore the advantages of LPM in other
applications. A higher polynomial order implies a decreased
estimation bias, but it will also lead to increased computational
complexity and larger variability. Therefore, proper selection
and comparison of polynomial order is a potential research area
for future applications of the LPM method.
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