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Harmonic Analysis of Power System Signals using A New 
Regularized Adaptive Windowed Lomb Periodogram 

z. G. Zhang and s. c. Chan 
Department of Electrical and Electronic Engineering 

The University of Hong Kong, Pokfulam Road, Hong Kong, China 
{zgzhang; scchan}@eee.hku.hk 

Abstract- This paper proposes a new regularized adaptive 
windowed Lomb periodogram (RA WLP) method for time
frequency analysis of non-stationary power signals. It extends 
the conventional Lomb periodogram by estimating the 
periodogram locally using the weighted least-squares (WLS) 
estimator. Instead of employing one constant window in WLS, 
variable window bandwidth is adaptively selected by the 
intersection of confidence intervals (leI) method to achieve a 
better tradeoff between time resolution and frequency resolution. 
Furthermore, regularization techniques are incorporated in the 
A WLP to further improve its performance by reducing the 
variance of the estimator. Simulation results show that the 
proposed RA WLP method has superior performance over 
windowed Lomb periodogram with one constant bandwidth for 
estimating the harmonic and interharmonic frequencies in 
power systems. 

I. INTRODUCTION 

Time-frequency analysis (TF A) techniques aim to discover 
time-variant spectral features of nonstationary signals, and 
they have been extensively studied and successfully applied in 
a wide variety of fields, such as biomedical engineering and 
speech processing [1]-[3]. Recently, there is an increasing 
interest in TF A of voltage and current signals in power 
systems and related energy areas [4]-[7]. TFA techniques can 
effectively reveal useful information and status of power 
systems for stable operation. For example, by estimating the 
time-variant frequency and magnitude of harmonic and 
interharmonic components, the quality can be effectively 
analyzed. Therefore, TF A techniques have been proposed 
recently to address a variety of problems in power quality 
assessment and power system diagnostics [7]. 

Although a number of TF A methods have been proposed 
for analyzing power measurements with different 
performances, the fundamental time/frequency resolution 
tradeoff problem has not been satisfactorily addressed. This 
problem is concerned with the selection of a proper window or 
kernel size to provide the best tradeoff between time 
resolution and frequency resolution in analyzing non
stationary signals. For instance, in short-time Fourier 
transform (STFT), the window size should be appropriately 
chosen to compromise between time resolution and frequency 
resolution. The wavelet transform (WT) addresses the window 
selection problem by applying a short window at high 
frequencies and a long window at low frequencies. However, 
WT suffers from degraded frequency resolution for high
frequency components and a degraded time resolution for low
frequency components. Since the power signals typically 
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consist of a number harmonic/interharmonic components with 
different time-frequency characteristics, it is desirable that the 
window be adaptive in time-frequency domain in accordance 
with the local time-frequency characteristics of the signals to 
be analyzed. For example, a long time window is desirable for 
analyzing slowly-varying harmonics, while a small window is 
preferred for tracking fast-varying harmonics. 

In this paper, we propose a regularized adaptive 
windowed Lomb periodogram (RA WLP) method to address 
the time/frequency resolution tradeoff problem in the 
harmonic analysis of power system signals. The RA WLP 
method is an extension of the Lomb periodogram, which was 
frrst proposed for astronomical data [8], [9]. Lomb 
periodogram has also been successfully adopted for analyzing 
other types of signals, such as heart rate variability [10] and 
genomic data [11]. The basic idea of Lomb periodogram is to 
estimate the amplitude of a given sinusoid with a certain 
frequency based on a least-squares (LS) fitting of the sinusoid 
to the data samples. Since the conventional Lomb 
periodogram is obtained by fitting the whole data block to the 
sinusoidal model, it cannot reveal the time-varying spectrum 
of nonstationary signals. To address the problem, we 
proposed a windowed version of the Lomb periodogram, 
called the windowed Lomb periodogram (WLP) in [12]. The 
WLP method employs a sliding window with appropriate 
sizes to split the signal into short-time segments and 
estimating the Lomb periodogram of each data segment, 
which can be estimated by a weighted least-squares (WLS) 
fitting of the windowed data to the sinusoid. By recognizing 
the fact that the WLP estimator is identical to the 
identification of a time-varying linear regression model with 
the amplitudes of the given sinusoid as the model coefficients, 
the asymptotic bias and variance of WLP for a time-varying 
sinusoid signal can be established. Moreover, it suggests that 
there is an optimal window size or bandwidth which can 
minimize the mean squared error (MSE). 

Similar to the STFT, the selection of the window length 
poses an important problem for WLP. For slowly-varying 
harmonics, a long time window is suitable because more 
samples can be used to determine their amplitudes and hence 
better accuracy is obtained. The reduced variances of the 
spectral coefficients give a better frequency resolution at the 
expense of a lower time resolution. On the contrary, for fast 
varying harmonic components, a small window can 
effectively reduce the estimation bias introduced by remote 
and uncorrelated data. As a result, a better time resolution is 



achieved for tracking these fast-varying components at the 
cost of a lower frequency resolution. The time-frequency 
resolution tradeoff problem of WLP originates from the bias
variance tradeoff problem of the WLS fitting problem. 
Though there exists an optimal local bandwidth which 
minimizes the MSE, it is difficult to be used in practice since 
some of the quantities are unknown and difficult to be 
estimated. Therefore, we next propose to adopt an intersection 
of confidence intervals (ICI)-based bandwidth selection 
method [12]-[16], which is a popular adaptive bandwidth 
selection method, for adaptively choosing the window size of 
our WLP. This yields a new adaptive windowed Lomb 
periodogram (A WLP). 

Furthermore, to lower the estimation variance of the 
AWLP, we propose a new regularized AWLP (RAWLP) 
method by imposing a regularization term in the WLS 
objective function. Regularization techniques have received 
increasing interest recently in a wide variety of fields, 
because of its effectiveness in reducing the estimation 
variance for automatic model selection. Some regularization 
techniques, such as the L, regularization and the smoothly 
clipped absolute deviation (SCAD) regularization, can also 
possess the sparsity property where small and irrelevant 
coefficients can be shrunk towards zero [17]. This is desirable 
for analyzing power system, where few sinusoids are 
presence, using the A WLP. With regularization, the WLS
based estimator will exhibit a substantially lower variance, 
and so will the resultant time-frequency representation (TFR). 
Several popular regularization techniques, such as L2 
regularization [16], L, regularization [19], and SCAD [17], 
are evaluated and compared in the paper. The SCAD 
regularization is recommended since it is an asymptotically 
unbiased estimator. Simulation results show that the RA WLP 
offers better time and frequency resolution than WLP with a 
fixed window support, and the regularization techniques can 
effectively reduce the variance of the RA WLP estimate. It is 
also shown in our simulation that, the time-varying harmonic 
and interharmonic components can be revealed satisfactorily 
while the noisy components are effectively suppressed by 
means of variable bandwidth and regularization in the 
RA WLP of power signals. 

The paper is organized as follows. In Section II, the Lomb 
periodogram will be reviewed and the windowed Lomb 
periodogram is introduced. Section III is devoted to the 
proposed adaptive varying window selection method for WLP, 
which is followed by the proposed RA WLP in Section IV. 
Simulation results and comparisons are described in Section V. 
Finally, conclusions are drawn in Section VI. 

II. WLS-BASED WINDOWED LOMB PERIODOGRAM 
Suppose a set of discrete-time noisy samples xn , 

n = 1,2,···, N , is acquired by sampling from a continuous
time signal m(t) , 

sinusoid with frequency OJ .  More precisely, the signal xn is 
represented by the local linear regression model: 

Xn = a(a;) cos(llJtn) + b(a;) sin(a;tn) + e(tn) 
=;T (tn' OJ)P(OJ) + e(tn), 

(2) 

where xn is the response variable, 
;(tn,OJ)=[cos(ax-n),sin(ax-n)t is the explanatory variables, 
and P(OJ) = [a(OJ),b(OJ)t is the regression coefficients. 
Assume e(tn) is a zero mean Gaussian process, the 
coefficient vector P(OJ) can be obtained by minimizing the 
MSE of the fitting as: 

A N 
P(OJ) = arg min �>2(tn) 

P n=1 
N 

= arg min �)Xn _;T (tn' OJ)P(OJW 
P n=1 

= arg min II X -fP(OJ)P(OJ) II;, 
P 

where X = [XI'X2,.··,xnt , and 

[cos( ax-I ), cos( ax-2 ), • • •  , cos( ax-N )]T 
fP(OJ) = . .  . sm(ax-I), sm(ax-2), • • •  , sm(ax-N) 
solution to above function is attained as 

P(OJ) = [fPT (OJ)fP(OJ)rlfPT (OJ)X . 

(3) 

. The LS 

(4) 

The Lomb periodogram can then be computed from the LS
based estimate of P(OJ) as 

1 A A 

P(OJ) = - pT (OJ)fPT (OJ)fP(OJ)P(OJ) . 
N 

(5) 

It can be seen that the Lomb periodogram employs all the 
samples in estimating the amplitude P(OJ) . Hence, it is 
unsuitable to analyze signals with time-varying amplitudes. 
To address this problem, we shall extend the conventional 
Lomb periodogram in order to reveal the time-varying 
spectral information. More precisely, at an given time instant 
-r , a time window centered at -r is multiplied to the signal to 
extract the local spectral information. The window can be 
obtained by scaling a basis window function wO by a 
bandwidth factor of h , i.e., Wh(t--r)=�w(�(t--r)) . The 
bandwidth h controls the effective length of the window and 
hence the number of neighboring data around -r used to 
estimate the periodogram. With a given bandwidth h and the 
window support wh(t--r) , the cost function of (3) and its 
solution is modified to 

A N 
P(-r,OJ) = arg min L wh(tn --r)[Xn _;T (tn ,OJ)P(-r, OJ)]2 

P n=1 (6) 
= arg min II W (X -fP(OJ)P(-r, OJ)) II�, 

P 
(1) where P(-r,OJ) = [a(-r,OJ),b(-r,OJ)t is the coefficient vector 

where tn are the sampling time instants, which may possibly 
be non-uniformly distributed, and e(t) is a Gaussian noise 
with zero mean and variance (1'; (t) . The Lomb periodogram 
P(OJ) is computed by a LS fitting of the signal xn by a 
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and W = diag{ [wh(tl --r), Wh(t2 --r),. .. , wh(tn --rW} 
resultant weighted LS (WLS) solution is: 

P(-r,OJ) = [fPT (OJ)WfP(OJ)rlfPT (OJ)WX. 

The 

(7) 
By evaluating the Lomb periodogram at a set of uniformly 



distributed evaluated time instants -r m , m = 1,2, ... ,M , a 
windowed Lomb periodogram (WLP)-based TFR of the 
signal is obtained. A useful property of the WLP is that it is 
proportional to the energy concentration of the signal in the 
time-frequency domain, because it is calculated as the 
squared amplitude of a set of local sinusoids. It can also be 
seen that WLP is more suitable for analyzing harmonic data, 
since the signal is represented by a set of local sinusoids. 

A major issue of the WLP method is the selection of the 
local adaptive bandwidth h. In the next section, we shall 
present an asymptotic analysis of the WLS estimator, and 
hence develop an adaptive window selection for WLP. 

III. ADAPTIVE WINDOW SELECTION IN WLP 
As mentioned before, the WLP estimation is actually a 

WLS estimator of the local linear regression model. In 
particular, the WLS estimator can be viewed as a special case 
of a more general local polynomial modelling (LPM) 
estimator for the time-varying linear regression model 
(TVLRM) in [20] and [21]. In fact, the WLS estimator is a 
LPM estimator with the polynomial order equal to zero. As 
the asymptotic expressions of bias and variance of the LPM 
estimator for the TVLRM have been derived in [20] and [21], 
the asymptotic bias and variance (as Nh � 00 and h � 0 )  of 
the /-th coefficient in the WLP estimation PI (-r, m) , 

( / = 1 or 2 ,  PI = a and P2 = b), can be obtained from those 
in [20] and [21] as follows 

In this paper, we employ the intersection of confidence 
intervals (lCI) method to estimate the optimal bandwidth. The 
ICI method is an empirical adaptive bandwidth selection 
method proposed by Goldenshluger and Nemirovski [12], and 
it has been successfully applied in various areas, such as local 
polynomial regression and image processing [14]-[16]. Given 
a set of bandwidth parameters in an ascending order: 

H={hl <h2 <···<hJ}, (12) 
where J is the number of possible bandwidths, the ICI method 
determines the optimal bandwidth by comparing the 
confidence intervals of the estimates with different 
bandwidths in the set. The algorithm of lCI is omitted to save 
space, and more details can be found in [12]-[16]. 

IV. REGULARIZED A WLP 
In statistics, a regularization term is frequently used to 

reduce the variance in the estimation at the expense of a small 
extra bias. In the context of TF A of harmonic signal analysis, 
we are interested in lowering the variance and MSE of our 
WLS estimator in WLP. In the regularization, a penalty of the 
regression coefficient is added to the cost function to yield 
the following regularized WLS (RWLS) estimator ( 'i  and a; 
are omitted here for notational simplicity) 

jJ = arg m
p
in{ 1 I W(X -f/JP) II; + L:=IPJ(PI)}' (13) 

Bias(P/(-r,m»= 
hj1,. p/(-r,m)+op(h), 
f1,. 

where PJ (-) is the regularization or penalty function with one 
or more regularization parameters A . In practical 
implementation, the regularization parameters can be chosen 
by the generalized cross-validation criterion [17]. 

(8) Some commonly-used regularization functions include the 
A 2V,.o-2(-r) 1 

Var(P/(-r,m» = 2 + op (-), Nhj(-r)f1,. Nh 
L2 regularization P J (PI) = API2 , which leads to a ridge 

(9) regression [17], and the LI regularization PJ (PI) = AI PI, 
where f1w = iw(V)dV, j1,. = ivw(V)dV, v,. = iW2(V)dV, 
PI' is the frrst derivative of PI , f(,!) is the sampling 
density function at 'i , ¢J ( 'i, m) = cos«(tJ'i) and � ('i, m) =sin�n) . 

It can be seen from (8) and (9) that both the estimation bias 
and variance are functions of the bandwidth h . As h 
increases, the squared bias will also increase while the 
variance will decrease. Since the mean squared error (MSE) 
is the sum of squared bias and variance 

MSE(P/(-r,m» = Bias 2 (P/(-r,m»+ Var(P/(-r,m», (10) 
there exists a locally optimal bandwidth h+(-r,m) , which 
minimizes the MSE criterion. 

By setting the derivative of (10) with respect to h to zero, 
the following optimal bandwidth at an evaluated time
frequency point (-r, m) is obtained: 

ht(-r,m) = {4Nf(-r�:':;��)]2 j1; f3 (11) 

However, as some of the quantities in (11), such as PI' (-r, m) , 
are difficult to be calculated directly, the optimal bandwidth 
is difficult to be estimated accurately. We next introduce an 
empirical method to select the optimal bandwidth from a set 
of possible bandwidths. 
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which leads to a least absolute shrinkage and selection 
operator (lasso) [19]. In this paper, the smoothly clipped 
absolute deviation (SCAD) regularization function will also 
be investigated, because of its desirable properties: 
unbiasedness, sparsity, and continuity [17]. The SCAD 
regularization function is given as: 

.41 PI I for I PI 1:5: .4, 
(I PI l-a.4)2 (a + I)A? PJ(PI)= - + for .4<IPII:5:a.4, 2(a -1) 2 

(a + 1).42 
2 

where a > 2 is a tuning parameter. 
for I PI I> a.4, 

(14) 

Ridge, lasso and SCAD estimators all satisfy the condition 
of continuity, which means that P J (PI) is continuous in PI. 
The lasso and SCAD estimators also possess the desirable 
property of sparsity, which means that small coefficients will 
be forced to zero to yield a sparse representation, while the 
ridge estimator does not. In the context of harmonic signal 
analysis, the data under study are sampled from sinusoidal 
signals, and hence sparse estimators are preferred as only few 
nonzero coefficients will be encountered. Unbiasedness 
implies that the modeling bias introduced by the 
regularization term should be zero when the coefficients are 
large enough. Among the three regularization techniques, 
only SCAD has the important property of unbiasedness. As a 
result, the SCAD estimator is a valuable tool for estimating 



the amplitudes of sinusoids in the harmonic analysis. 
In L2 regularization, P A (PI) = 2PI2 , and the resultant 

solution or the ridge estimator to the objective function in (13) 
is given by 

P=[fPTWfP+AlrlfPTWX. (15) 
For lasso and SCAD, the objective functions are 
nondifferentiable and it is difficult to obtain their solutions in 
analytic form. An iteratively re-weighted least-squares (lRLS) 
algorithm for solving this non-differentiable function was 
proposed in [19] and [17]. Due to page limitation, the details 
of the IRLS algorithm are omitted here, and they can be found 
in [19] and [17]. 

We now summarize the proposed regularized A WLP 
(RA WLP) method as follows. 

Step 1. At each evaluated time � and frequency a; , the 
coefficient P(�,ru,h) is calculated by the WLS 
estimator (7) with each bandwidth hj in the set 
H of (12). 

Step 2. A optimal bandwidth h+(�,OJ) is estimated using 
the ICI method based on the estimates P(�,ru,h), 
j=I,···,J. 

Step 3. The fmal estimate of the time-varying coefficient 
p(�,ru,Ii+(�,OJ)) is obtained using the RWLS 
estimation (13) with bandwidth Ii + (�, OJ) . 

We now discuss several practical issues of the RA WLP 
method. Firstly, following the recommendation of literature 
[20] and [21], the Epanechnikov window is employed, 
because of its good theoretical performance: 

w(U)={�{l-IUI2) lul<l , (16) 
o lul�1. 

Consequently, for an Epanechnikov window with bandwidth 
h, only the data samples included in interval (�-h, � + h) are 
used and thus the effective length of the window is 2h. 

The next problem is how to select the bandwidth set H 
used in the empirical ICI bandwidth selection method. The 
minimum bandwidth � should be selected to make the WLS 
estimators solvable. More precisely, the number of data 
samples included in the interval (�-hI' � + � ) ,  N w' should 
be equal to or larger than 2 (the number of coefficients). On 
the other hand, the largest element in the bandwidth set, h J , 
should be large enough to include all data points. However, 
too long a window will result in high computational 
complexity. In practical implementation, hI and hJ can be 
determined based on known or interested time-frequency 
properties of the signals. As for other bandwidths in the set 
H , more bandwidths may lead to more refined results, but 
will also increase the complexity. To achieve a tradeoff 
between performance and complexity, we generally select 3-5 
bandwidth parameters between � and h J • From simulation 
results, it was found that the proposed bandwidth setting gave 
satisfactory results. 

v. SIMULATION RESULTS 

A. Simulated Chirp Signals 
We first compare the various TF A methods for a simulated 

uniform data sampled from a chirp signal 
m(t)=A(t) sin(Q(t)+�), (17) 

where A(t) = 1 is the amplitude, � = 1l / 3 is the phase, and 

Q(t) = 21l I f(v)dv is the angular frequency calculated from 
an instantaneous frequency f(t) . Here, f(t) is given as 

f(t) = 25 + 7asinh(8(t -1)), (18) 
where asinh(·) is the inverse hyperbolic sine function. The 
data duration is 2 seconds and the sampling frequency is 
100Hz, resulting in 200 data samples. An additive Gaussian 
white noise with a signal-to-noise ratio (SNR) of 10 dB is 
added. One realization of the uniformly sampled data and the 
instantaneous frequency are shown in Fig. 1. We can see that 
this signal contains both slowly-varying harmonics and fast
varying harmonics, and so it can serve as a good example for 
evaluating the performance of the various Lomb 
periodogram-based TF A methods. 

The WLS-based A WLP and the RWLS (including ridge, 
lasso, and SCAD)-based RA WLP with varying bandwidth is 
compared to WLP with a constant bandwidth. For comparison, 
the WT with Modet wavelet is also tested. In the WLP, the 
bandwidth set used in the ICI method is chosen as 
H = {O. 1,0. 15,0.2,0.25} seconds , which corresponds to 
effective window lengths {0.2,0.3,OA,0.5} seconds . The 
evaluated time instants are set as the sampling time instants, 
and the evaluated frequency instants are from O.5Hz to 50Hz 
with a frequency step of O.5Hz. 

One representative simulation is presented in Fig. 1, where 
the Lomb periodogram based TFRs are shown in the same 
scale (the maximum possible value of these TFRs is 
calculated as max(P(�,OJ))=max(lA(t)12)=I ). It can be 
seen from Fig. 1 that, 
1) If a small bandwidth is used, the WLP can identify the 

fast-varying harmonic satisfactorily, which implies good 
time resolution. But the spectral density of slowly
varying harmonic is dispersed along the frequency 
domain, leading to rather poor frequency resolution. On 
the other hand, if a large bandwidth is used, the 
frequency resolution for slowly-varying harmonic is 
considerably increased. However, the fast-varying 
harmonic is blurred seriously due to the decreased time 
resolution. 

2) The ICI method can adaptively select the bandwidth 
based on the time-frequency localization of the signal. 
The bandwidths for fast-varying harmonics are small, 
while large bandwidths are assigned to slowly-varying 
harmonics. For time-frequency areas where there are no 
meaningful frequency components, the bandwidths are 
given the largest value to restrain the effect of noise. 
With the varying bandwidth, the A WLP achieves a better 
TFR than WLP with a constant bandwidth. The A WLP 
also outperforms the WT, which has bad time resolution 
for low-frequency components and bad frequency 
resolution for high-frequency components. 
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Fig. I. An example of uniformly sampled signal and its time-frequency 
representations using different TF A methods. 

3) Regularization techniques can further lower the variance 
of the estimator and the three RWLS-based RA WLPs 
have better time-frequency resolution than the WLS
based A WLP. However, it can also be seen that the ridge 
and lasso estimators produce considerable bias to the 
large spectral coefficients, and that the resultant ridge 
and lasso-based RA WLP have lower peak values than 
the WLS-based A WLP. The SCAD-based RA WLP has 
peak values comparable to the WLS-based A WLP. 

We next select a set of time-frequency points, which have 
different but representative time-frequency features for a 
more quantitative comparison between different TF A 
methods. These time-frequency points are labeled as pI to p5 
in the upper left panel of Fig. 2. The values of the 
periodogram at these five time-frequency points are collected, 
and the amplitudes of sinusoids at these points are estimated 
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Fig. 2. Comparison of amplitude estimates using different Lomb
periodogram-based TF A methods. The box has lines at the lower quartile, 
median (red), and upper quartile values. Whiskers extend from each end of 
the box to the most extreme data values. 

as A( T, OJ) = � P( T, OJ) . The true amplitudes at time
frequency points from pI to p5 are respectively: A= 1, 1, 1, 0, 
O. The results of 100 Monte-Carlo simulations are presented 
in box plots of Fig. 2 with the following observations. 
1) By comparing the WLP results at pI, p2 and p3 using 

h=O.1 and h=0.25, we can see that a small bandwidth 
results in a large variance and a small bias, while a large 
bandwidth leads to a large bias and a small variance. The 
good bandwidth selected by the ICI method can achieve 
a compromise between bias and variance. 

2) Compared with the WLS-based A WLP, the ridge, lasso 
and SCAD-based RA WLPs all exhibit extra bias for 
large amplitudes (at pI, p2 and p3). Among the three 
regularized estimators, lasso has the largest variance 
while SCAD has the smallest bias because SCAD is an 
asymptotically unbiased estimator. 

3) As for the variance, both ridge and lasso estimators have 
a lower variance than the WLS-based A WLP, and the 
variance of the ridge estimator is lower than that of lasso. 
However, SCAD estimator shows a slightly increased 
variance, which may be due to the difficulty in choosing 
the right regularization parameters. 

4) For small coefficients caused by noise components (p4 
and p5), the lasso and SCAD estimators can shrink them 
to zero, which is desirable. Ridge estimator can also 
reduce the estimation variance to some extent. 

B. Interharmonic Estiamtion in Power Systems 
Next, we apply the proposed RA WLP method to the 

estimation of the interharmonics in a simulated power supply 
system. A 200-ms data sequence with a sampling rate of 200 
kHz and a SNR of 15 dB was generated to simulate the 
current signals from a fluorescent lamp with a high-frequency 



ballast. The waveform and its interharmonic frequency are 
respectively shown in Fig. 3. In the WLP, the bandwidth set is 
chosen as H = {O.05, O.1,0.2, O.5} ms . The evaluated time 

instants are set as the sampling time instants, and the evaluated 
frequency instants are from 1 kHz to 10KHz with a frequency 
step 1 kHz. Similarly to our observation in the previous 
simulation, Fig. 3 shows that, a small window lead to poor 
frequency resolution while a large window results in poor 
time resolution. The A WLP method is able to achieve good 
tradeoff between time and frequency resolution. Moreover, 
the SCAD-based RA WLP can identify the interharmonic 
frequency more accurately due to its important properties of 
unbiasedness and sparsity. 

VI. CONCLUSION 

A new regularized adaptive windowed Lomb periodogram 
(RA WLP) method for TF A of non-stationary harmonic 
signals is presented. Firstly, the conventional Lomb 
periodogram is extended to an adaptiv� �indo.wed Lo�b 
periodogram (A WLP) by means of a slI�mg-wmdow wIth 
variable bandwidths. Secondly, the wmdow length or 
bandwidth is adaptively selected by the ICI method to adapt 
to local time-frequency characteristics of the signals. Thirdly, 
the regularization techniques are incorporated to . further 
improve the performance of the A WLP by reducmg the 
variance of the estimator. Simulation results show that the 
propose RW ALP method is an �ffective TF A �et�od f?r 
analyzing harmonic signals and It can fmd applIcatIOns m 
power signal processing. The proposed method can also be 
extended to the analysis of mUlti-component signals [22] and 
the results will be reported elsewhere. 
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