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Frequency-Independent Scattering for the Large Sphere

Wei E.I. Sha #1 and Weng Cho Chew #2
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Pokfulam Road, Hong Kong
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Abstract— The high frequency scattering of a scalar plane
wave from an impenetrable sphere with the diameter of one
thousand wavelength is treated by the saddle-point technique
and the numerical steepest descent method. The far-field solution
for the sphere is computed in the observation angle range of 0
to 180 degree. In particular, a novel numerical steepest descent
method is proposed to overcome the breakdown of the traditional
saddle-point technique in the forward region. Numerical results
show that the CPU time for the far-field calculation is frequency-
independent with controllable error. This work can be used to
benchmark future works in frequency-independent methods.

Index Terms— Saddle-Point Technique; Numerical Steepest
Descent Method; Frequency Independent; High Frequency Scat-
tering of Sphere.

I. INTRODUCTION

Mie series solution for scattering from an impenetrable

sphere has been known for a long time [1][2]. Unfortunately,

the Mie series will become useless at high frequencies due

to its slow convergence. Hence, a large amount of sum-

mation terms must be used to obtain accurate results for

both near-field and far-field analyses. The number of terms

is proportional to β = ka (where k is the wavenumber

and a is the radius of sphere) for plane wave incidence

and k2a2 for spherical or cylindrical wave incidence, which

leads to expensive computational cost as the frequency in-

creases. Although the geometrical optics method used in [3]

is frequency-independent, it will breakdown for the forward

scattering. Nussenzveig developed the uniform approximation

method [4], but the author did not demonstrate the frequency-

independent results. In addition, the numerical solutions for

the scattering by very large sphere could not be found in the

literature. This work can be used to benchmark future works

in frequency-independent methods.

In this paper, we calculate the far-field of the impenetrable

sphere with the diameter of one thousand wavelength. In par-

ticular, the novel numerical steepest descent method (NSDM)

is proposed to solve the forward scattering problem.

II. THEORY

A. Backward Region

For the far-field calculation, we have

Ψt(r, θ) = eikz + fs(k, θ)
eikr

r
(1)

where Ψt is the total field, eikz is the incident field, and

fs(k, θ) is the scattering amplitude, which can be approxi-

mated as [5]

fs(k, θ) ≈ i

k

∫
Γ

H
(2)
λ (β)

H
(1)
λ (β)

Q
(1)
λ−1/2(cos θ)λdλ, θ � 0 (2)

where θ is the observation angle. The integration path Γ
crosses the real axis at the saddle-point λ̄ = kp = β cos(θ/2)
with an angle of −π/4. Using the asymptotic expansions (A-4)

and (A-11) and using the saddle-point technique (SPT), we can

get

fs(k, θ) = −a

2
exp

(
−2iβ sin

θ

2

) (
1 +

i

2β sin3 θ
2

+
2 + 3 cos2 θ

2(
2β sin3 θ

2

)2 + O

[(
2β sin3 θ

2

)−3
]) (3)

According to geometrical optics, the first term of (3) represents

the reflected wave. The high-order terms of (3) represent the

corrections to geometrical optics corresponding to the WKB

approximation. The expression agrees with the well-known

conclusion in electromagnetics and optics that the backward

radar cross section (RCS) of the large sphere is about πa2.

B. Forward Region

However, as the observation angle θ approaches 0, three

things will happen: (1) the saddle-point will move towards the

point λ = β; (2) the reflected ray and the incident ray meet at

the same line called the focal line; (3) the Debye asymptotic

expansions (A-4) are not available for H
(1)
λ (β) and H

(2)
λ (β).

As a result, the expression of reflected wave (3) will diverge.

An alternative integral representation can be derived by the

Poisson summation formula [5]

fs(k, θ) ≈ i

k

∫ ∞

0

[1 − S(λ, k)]Pλ−1/2(cos θ)λdλ

− i

k

∫ 0

i∞
S(λ, k)Pλ−1/2(cos θ)λdλ

+
2i

k

∫ 0

i∞

e2iπλ

1 + e2iπλ
Pλ−1/2(cos θ)λdλ

(4)

where S(λ, k) = −H
(2)
λ (β)/H

(1)
λ (β). In the neighborhood

of the forward region, the main contribution to the integral

arises from the neighborhood of λ = β. Thus, we can split

the integral in the following form

fs(k, θ) ≈ fsa + fsb + fsc (5)
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where

fsa + fsb =
i

k

(∫ 0

i∞
+

∫ β

0

)
H

(2)
λ (β)

H
(1)
λ (β)

Pλ−1/2(cos θ)λdλ

+
i

k

∫ ∞

β

(
1 +

H
(2)
λ (β)

H
(1)
λ (β)

)
Pλ−1/2(cos θ)λdλ

(6)

and

fsc =
i

k

∫ β

0

Pλ−1/2(cos θ)λdλ

+
2i

k

∫ 0

i∞

e2iπλ

1 + e2iπλ
Pλ−1/2(cos θ)λdλ

(7)

For fsc, we can use the analytical method to evaluate its

value [4][6], i.e.

fsc = ia

(
θ

sin θ

)1/2 [
J1(βθ)

θ
− 1

8

(
1
θ
− cot θ

)(
1 − J0(βθ)

βθ

)

+
1

24β

(
1 +

31
120

(
θ

2

)2

+
53

1008

(
θ

2

)4

+ · · ·
)]

(8)

For fsa and fsb, we use the Fock transform [7] to find

their steepest descent paths (SDPs). According to (A-5), in

the neighborhood of λ = β, we have

H
(2)
λ (β)

H
(1)
λ (β)

∼ Ai(xe−2iπ/3)
Ai(xe2iπ/3)

e2iπ/3 (λ < β, |λ − β| � β1/3)

(9)

1 +
H

(2)
λ (β)

H
(1)
λ (β)

∼ Ai(x)
Ai(xe2iπ/3)

eiπ/3 (λ > β, |λ − β| � β1/3)

(10)

where

x = γ(λ − β), γ =
(

2
β

)1/3

(11)

According to the asymptotic expansion of the Airy function

(A-1), we know that the SDPs of fsa and fsb leave the real x
axis at the angles of 2π/3 and 0, i.e.

λ = β +
x̃

γ
e2iπ/3, x̃ = xe−2iπ/3 (12)

λ = β +
x̃

γ
, x̃ = x (13)

Along the SDPs, (9) and (10) are exponentially damped as

the form exp
(− 4

3 x̃3/2
)
. Hence the Gauss Legendre method

[8] with the truncated integral interval can be employed to

evaluate the integral. According to the numerical experiments,

the integration intervals are set to x̃ ∈ [0, 8] and x̃ ∈ [0, 3.5],
respectively. By (A-1) and (A-5), we find the approximated

SDPs and set the integration intervals, but the integrands of

fsa and fsb should be numerically evaluated by the uniform

asymptotic expansions (A-2), (A-7) and (A-10).

When the observation angle moves away from 0, the inte-

grand of fsb decreases exponentially but it is not the case for

fsa. The integral fsa can be split as

fsa = f (1)
sa + f (2)

sa =
i

k

∫ β

i∞

H
(2)
λ (β)

H
(1)
λ (β)

Q
(1)
λ−1/2(cos θ)λdλ

+
i

k

∫ β

i∞

H
(2)
λ (β)

H
(1)
λ (β)

Q
(2)
λ−1/2(cos θ)λdλ

(14)

For fsa, the term Q
(2)
λ−1/2 will decrease exponentially along the

original SDP leaving the real x axis at the angle of 2π/3, but

the term Q
(1)
λ−1/2 will increase exponentially along the SDP.

According to (9), (12), (A-1), and (A-11), the integrand of

f
(1)
sa is dominated by the factor

exp

(
−4

3
x̃3/2 +

√
3

2
θ

γ
x̃

)
exp

(
i

θ

2γ
x̃

)
(15)

The integrand has the peak x̃ ∼ (θ/γ)2 and oscillates as ∼
exp

(
i θ
γ x̃

)
. According to the numerical experiments, we need

to change the SDP when θ > 2γ. The integration path can be

deformed as shown in Fig. 1. Obviously, the integration path

will pass through the end point x = 0 and the saddle-point

x̄ = γ(λ̄ − β).
When the observation angle θ is closed to 2γ, the integrand

cannot be damped to a very small value as we expected. As θ
increases, the vertical integration path from the end point x =
0 can be seen as a “local” SDP. So the integration intervals for

the saddle-point and the end point can be taken as, respectively,

x ∈
[
max

{
−C3,− C4

cos (π/4)

}
, C3

]
e3iπ/4 (16)

and

x ∈
[
0,min {C4, C5}

]
e3iπ/2 (17)

where C3 = 3.8(θ/γ)1/2, C4 = |x̄|, and C5 = 1.9(θ/γ)1/2.

As the frequency increases, the integration intervals will be

slightly extended for a fixed observation angle. Fortunately,

the available range of the forward region solution (3) will be

extended to smaller angles also. Thus we need not increase

the number of integration nodes as the frequency increases.

III. NUMERICAL RESULTS

We assume that a = 500 and k = 2π. Fig. 2 shows

the forward region solution by the NSDM. The solution is

accurate between 0◦ to 50◦. Fig. 3 compares our solution

with the original solution proposed in [4]. The number of the

integration nodes is uniform for the two solutions. The original

integration path proposed in [4] goes along the real x axis from

x = 0 to x = x̄ and the integrand will become very oscillatory

as the observation angle increases. Fig. 4 shows the backward

region solution by the SPT. The solution is accurate between

40◦ to 180◦. Hence, the NSDM solution and the SPT solution

can overlap with each other. Fig. 5 shows the total CPU time

for the far-field calculation as a function of the electrical size
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Fig. 1. The integration paths of f
(1)
sa . When the observation angle

θ ≤ 2γ, the path (dotted) leaves the real axis at the angle of 2π/3
and goes to the end point x = 0. When the observation angle θ > 2γ,
the revised path (solid) goes through the left saddle point related to
the reflected wave and to the end point x = 0. For the numerical

implementation, we integrate f
(1)
sa along the opposite direction and

reverse the sign of the summation.
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Fig. 2. The forward region solution of the scattering amplitude. The
NSDM is adopted.
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Fig. 3. The forward region solution of the scattering amplitude.
The NSDM is proposed in this paper, and the original solution by
Nussenzveig was proposed in [4].

of the radius. Here, we did not add any integration nodes. As

the frequency increases, the SPT solution will become more

accurate in the forward direction. Beacuse the analytical SPT is

faster than the NSDM, the total CPU time is slightly decreased.

Fig. 6 shows the relative two-norm error defined by

Err =
‖Num − Mie‖2

‖Mie‖2
(18)

where Mie denotes the Mie series solution and Num denotes

the solution by the NSDM and SPT. It can be seen that the

error decreases as the frequency increases.
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Fig. 4. The backward region solution of the scattering amplitude.
The SPT is adopted.
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Fig. 5. The total CPU time for the far-field calculation. The NSDM
and the SPT are used respectively for the forward region and the
backward region.
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Fig. 6. The relative two-norm error for the far-field calculation. The
Mie series solution is used as reference solution.

IV. CONCLUSION

The high frequency scattering of a scalar plane wave from

a very large impenetrable sphere is computed. For the far-

field calculation, the NSDM and the SPT are adopted for the

forward and backward regions. The two solutions can overlap

with each other. The total CPU time is frequency-independent

and the numerical error can be controlled compared to the Mie

series solution.

APPENDIX

In this Appendix, we will review the asymptotic expansions

for special functions [5][6][9][10].

The asymptotic expansion of the Airy function is

Ai(z) ∼ exp(− 2
3z3/2)

2
√

πz1/4
, |z| � 1 |arg(z)| < π (A-1)
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The uniform asymptotic expansion of the Hankel function

is given by

H
(1)
λ (λz) ∼ 2e−πi/3

(
4ξ

1 − z2

)1/4
{

Ai
(
e2πi/3λ2/3ξ

)
λ1/3

+

e2πi/3Ai′
(
e2πi/3λ2/3ξ

)
λ5/3

[
−ξ−1/2

1∑
s=0

Vsξ
−3s/2U1−s((

1 − z2
)−1/2

)]}
(A-2)

where V0 = 1, V1 = 5/48, U0(t) = 1, U1(t) = (3t− 5t3)/24,

and Ai and Ai′ are the Airy function and its derivative. The

expansion for H
(2)
λ (λz) can be obtained by changing the sign

of i in (A-2). Here, we use the first two terms to obtain more

accurate asymptotic representations. In (A-2), the important

parameter ξ should be treated carefully and the branch is

chosen so that ξ is real when z is positive, i.e.

2
3
ξ3/2 = ln

(
1 +

√
1 − z2

z

)
−

√
1 − z2, |z| ≤ 1

2
3
(−ξ)3/2 =

√
z2 − 1 − arccos

(
1
z

)
, |z| > 1

(A-3)

The Debye expansions for the Hankel functions are given

by

H
(1,2)
λ (ρ) ∼ (2/π)1/2(ρ2 − λ2)−1/4 exp

{
±i

[
(ρ2 − λ2)1/2

−λ cos−1 λ

ρ
− π/4

]}
×

[
1 ∓ i

8(ρ2 − λ2)1/2
×

(
1 +

5
3

× λ2

ρ2 − λ2

)]
, −ρ < λ < ρ, |λ − ρ| > |ρ|1/3

(A-4)

The Debye expansions are not available when |λ − ρ| be-

comes comparable with |λ|1/3; we must employ the following

expansions

H
(1,2)
λ (ρ) ∼ 2 exp (∓iπ/3) (2/λ)1/3

· Ai
[
exp (±2iπ/3) (2/λ)1/3 (λ − ρ)

] (A-5)

Moreover, when ρ → ∞, (A-4) reduces to the large augment

expansion of the Hankel functions

H
(1,2)
λ (ρ) ∼

(
2
πρ

)1/2

exp
[
±i

(
ρ − λ

π

2
− π

4

)]
, ρ → ∞

(A-6)

The Szegö-Olver uniform asymptotic expansion for the

Legendre function of the first kind is given by

Pλ−1/2(cos θ) ∼
(

θ

sin θ

)1/2 {[
1 +

1
128λ2

(
1 − 9

sin2 θ

−6
cot θ

θ
+

15
θ2

)]
J0(λθ) − 1

8λ

(
1
θ
− cot θ

)
J1(λθ)

}
(A-7)

For |λ|θ � 1, (A-7) becomes

Pλ−1/2(cos θ) ∼
( 2

πλ sin θ

)1/2

·
[
cos

(
λθ − π

4

)]
, |λ|θ � 1

(A-8)

The Legendre function of the first kind can be represented

as

Pλ−1/2(cos θ) = Q
(1)
λ−1/2(cos θ) + Q

(2)
λ−1/2(cos θ) (A-9)

The uniform asymptotic expansions for Q
(1,2)
λ−1/2(cos θ) are

Q
(1,2)
λ−1/2(cos θ) ∼

( θ

sin θ

)1/2
{

1
2

[
1 +

1
128λ2

(
1 − 9

sin2 θ

− 6
cot θ

θ
+

15
θ2

)]
H

(2,1)
0 (λθ) − 1

16λ

(1
θ
− cot θ

)
H

(2,1)
1 (λθ)

}

(A-10)

For |λ|θ � 1, (A-10) becomes

Q
(1,2)
λ−1/2(cos θ) ∼ exp [∓i(λθ − π/4)]

(2πλ sin θ)1/2
, |λ|θ � 1 (A-11)
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