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Abstract—Modeling dependent defaults is a key issue in risk
measurement and management. In this paper, we introduce
a Markovian infectious model to describe the dependent
relationship of default processes of credit entities. The key
idea of the proposed model is based on the concept of common
shocks adopted in the insurance industry. We compare the
proposed model to both one-sector and two-sector models
considered in the credit literature using real default data. A
log-likelihood ratio test is applied to compare the goodness-
of-fit of the proposed model. Our empirical results reveal that
the proposed model outperforms both the one-sector and two-
sector models.

Keywords-Markov chains; one-sector model; two-sector
model; chain reaction of infectious defaults; default risk,
common shock.

I. INTRODUCTION

There has been considerable concerns and interest in
modeling dependent defaults of credit entities. To model
dependent default processes, Copula is one of the major
tools. They have been used to specify dependent structures
of multivariate distributions in statistics, in particular in
survival analysis, (see, for example, [1]). A Copula function
maps marginal distributions of random variables to their
joint multivariate distribution so that the dependence of
these random variables and their marginal behaviors can be
modeled separately. This provides the flexibility in modeling
the dependent relationships of the random variables. Copulas
have been used in modeling dependent relationships of de-
faults and credit qualities of entities in the literature, see for
instance [13]. A comprehensive discussion on Copulas can
be found in [2]. Besides Copulas, other methods have been
proposed in the literature for modeling dependent defaults.
Some examples include the Poisson mixture model in [3],
the correlated default models in [10], Moody’s Binomial
Expansion Techniques (BET) [15], etc.

Davis and Lo [7], [8] introduced an infectious default
model, where a contagion model for concentration risk in
a large portfolio of bonds was adopted. Their model can be
regarded as an extension of Moody’s BET, where defaults
are assumed to be independent. Despite its capability in
modeling dependent defaults, the computational cost of the

infectious default model could be expensive if the number
of bonds in a portfolio is large. In some recent literature,
it has been shown empirically that the default of a bond
causes the widening of credit spreads of other firms, see for
example Das et al. [10]. This provides empirical evidence
and motivation for studying and modeling the impact of
default of a bond on the likelihood of defaults of other bonds.
Indeed, this situation may not be unlike the spreading of
certain infectious diseases, like influenza.

In [5], a Greenwood’s model in [9] was introduced to
model the impact of default of a bond on the likelihood of
defaults of other bonds. The original form of the Green-
wood’s model was a one-factor model. It was then extended
to a two-sector model in [5]. They also derived the joint
probability distribution function for the duration of a default
crisis, (i.e. the default cycle), and the severity of defaults
during the crisis period. Two concepts, namely, Crisis Value-
at-Risk (CRVaR) and Crisis Expected Shortfall (CRES),
were also used to assess the impact of a default crisis.
The Greenwood’s model was also extended to a network
of sectors in [4], [6]. In [14], a common shock model for
correlated insurance losses was discussed. Explicit formulas
for the correlations between pairs of insurance business lines
were derived in terms of the magnitude of the common
shock. Furthermore, the probability distributions for claim
counts and severities were obtained.

In this paper, we adopt the concept of common shocks
and consider the situation that the joint default probability
depends on the current number of defaulted bonds in the
sector. We wish to model explicitly the impact of the current
number of defaulted bonds on the likelihood of defaults of
other surviving bonds. Here we first focus on a one-sector
model where the probability of defaults of other surviving
bonds depends on the current number of defaulted bonds.
Then, instead of considering the two-sector model [4], [5],
we introduce a novel causality relationship to describe the
defaults of two sectors. A set of random variables called
infectious factors are introduced to describe the effect of
the defaults in a sector on the other sector. In this paper, we
give a certain expression of the infectious factor, then we

2011 Fourth International Joint Conference on Computational Sciences and Optimization

978-0-7695-4335-2/11 $26.00 © 2011 IEEE

DOI 10.1109/CSO.2011.185

1196



apply this to develop our two-sector model. This provides
an elegant way to compare the likelihoods of defaults of two
sectors. We then conduct empirical studies on the proposed
model using real default data.

The rest of the paper is structured as follows. In Section II,
we present a new one-sector model. Section III discusses the
new two-sector model. In section IV, we provide empirical
studies on the proposed models based on real default data.
The final section concludes the paper with some future
research issues.

II. A NEW ONE-SECTOR MODEL

In this section we present an extended version of the
Greenwood’s model to describe the chain reaction of infec-
tious defaults. The key idea of this new one-sector model
is to model the impact of the current number of defaulted
bonds on the joint default probability in a sector.

Let T be the time index set {0, 1, 2, . . . , } of our model.
To model the uncertainty, we consider a probability space
(Ω,F ,P), where P is a real-world probability. Suppose that

X := {Xt}t∈T and Y := {Yt}t∈T

denote two stochastic processes on the (Ω,F ,P), where Xt

and Yt represent the numbers of surviving bonds and the
defaulted bonds at t ∈ T , respectively. We assume that the
initial conditions are given as follow:

X0 = x0, Y0 = y0 where x0 + y0 = N .

Note that for each t ∈ T , the sum of the numbers of the
defaulted bonds and the surviving bonds at time instant t+1
must equal the number of surviving bonds at time t.

Xt+1 + Yt+1 = Xt .

In this new one-sector model, for each t ∈ T , let αt be the
probability that the default of a surviving bond is infected
by the defaulted bonds at time t. Then, under the one-sector
model, the joint probability distribution of {Xt+1, Yt+1}
given {Xt, Yt} is:

pxt,yt(xt+1, yt+1)
= P{(Xt+1, Yt+1) = (xt+1, yt+1) | (Xt, Yt) = (xt, yt)}

=

(
xt

yt+1

)
αt

yt+1(1− αt)
xt+1

=

(
xt

xt − xt+1

)
αt

xt−xt+1(1− αt)
xt+1 .

(1)

Here we consider the situation that the joint default prob-
ability depends on the current number of defaulted bonds.
We assume that

αt =

{
a1 if yt > 0
a0 if yt = 0.

Indeed, the model we considered here is “self-exciting”
in the sense that the joint future default probability law
switches over time depending on which region the current

number of defaults lies, (i.e., yt = 0 or yt > 0). This idea is
not unlike the idea of self-exciting threshold autoregressive
models pioneered by Tong [16], [17], [18].

We now define ht as an indicator function for the presence
of default bonds at time t. Namely,

ht =

{
1 if yt > 0
0 if yt = 0.

Under this one-sector model, the default probability at each
time t depends on the number of defaulted bonds at time
t − 1. We have a two-dimensional Markov chain process
in the state space S = {(x, y) : 0 ≤ x, y ≤ X0} and the
transition probability matrix is of size (X0 + 1)2 × (X0 +
1)2. The recursive formula to evaluate the joint probability
distribution (xt, yt) can therefore be deduced as follows:

pt(m,n)
= P{(Xt, Yt) = (m,n)}

= pt−1(m+ n, 0)

(
m+ n

n

)
an0 (1− a0)

m

+
N−(m+n)∑

i=1

pt−1(m+ n, i)

(
m+ n

n

)
an1 (1− a1)

m.

(2)

Then we employ the maximum likelihood method to
estimate the parameters, based on the observed data
x0, x1, x2, . . . , xN and h0, h1, h2, . . . , hN . The estimation
of the parameters can be obtained as follow:

â0 =

N−1∑
t=0

(1− ht)yt+1

N−1∑
t=0

(1− ht)xt

and â1 =

N−1∑
t=0

htyt+1

N−1∑
t=0

htxt

.

III. A NEW TWO-SECTOR MODEL

In this section, we consider defaults of bonds in two
sectors, say sector A and sector B. In [5], it describes a
causality relationship goes from the defaulted bonds in one
sector to surviving bonds in another sector under its two-
sector model. Here we consider the causality relationship in
another way. We develop the model for the chain reaction
of the infectious defaults in sector A, in which the default
bonds are influenced by the defaults in sector B.

Let T denote the time index set {0, 1, 2, . . .} of our model.
Again we fix a complete probability space (Ω,F ,P), where
P is a real-world probability. Suppose that X := {Xt}t∈T ,
X(2) := {X(2)

t }t∈T , Y := {Yt}t∈T and Y (2) := {Y (2)
t }t∈T

denote two stochastic processes on the (Ω,F ,P). Here
Xt and Yt represent respectively the numbers of surviving
bonds and the defaulted bonds in sector A at time t ∈ T ,
while X

(2)
t and Y

(2)
t represent respectively the numbers of

surviving bonds and the defaulted bonds in sector B at time
t. We assume the initial conditions are given as follow:

X0 = x0, Y0 = y0 where x0 + y0 = N
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and

X
(2)
0 = x

(2)
0 , Y

(2)
0 = y

(2)
0 where x

(2)
0 + y

(2)
0 = N (2)

To illustrate, we assume that the defaults in sector B at
time t can be described by the infectious factor βt. The
infectious factor βt satisfies three important properties:
(i) βt > 0, at each t ∈ T ;
(ii) Given {X(2)

t−1, Y
(2)
t−1}, E(βt) = 1 at each t ∈ T ;

(iii) When the defaults get severe, its value raises.
And we let αt denote the probability that the default of a
surviving bond is infected by the defaulted bonds at time
t in sector A, where we assume αt = a1, if yt > 0, and
αt = a0, if yt = 0.

Here we present the key idea in this model. For each
t ∈ T , let αtβt denote the probability that the default of
a surviving bond in Sector A is infected by the defaulted
bonds at time t from both sector A and sector B. Both the
chain reaction of infectious defaults in sector A and the
impact of defaults in sector B are considered in this new
two-sector model. Then, the joint probability distribution of
{Xt+1, Yt+1} given {Xt, Yt} is:

pxt,yt(xt+1, yt+1)
= P{(Xt+1, Yt+1) = (xt+1, yt+1) | (Xt, Yt) = (xt, yt)}

=

(
xt

yt+1

)
(βtαt)

yt+1(1− βtαt)
xt+1

=

(
xt

xt − xt+1

)
(βtαt)

xt−xt+1(1− βtαt)
xt+1

(3)

Consequently, property (i) ensures the default probabilities
αtβt > 0. Property (ii) indicates that the default probabilities
βtαt fluctuates in accordance with αt. Property (iii) indicates
how defaults in sector B effect the default of bonds in sector
A.

To model the infectious factor βt, we assume that βt is a
function of x(2)

t−1, y
(2)
t :

βt =
y
(2)
t + ξ

α
(2)
t−1x

(2)
t−1 + ξ

where α
(2)
t , t ∈ T is the default probability defined in

the new one-sector model for sector B and ξ is a positive
constant.

The assumption of βt is reasonable, since it satisfies the
three properties mentioned above: (i) Obviously, βt > 0 and
(ii) Given {X(2)

t−1, Y
(2)
t−1},

p
x
(2)
t−1

,y
(2)
t−1

(x
(2)
t , y

(2)
t )

= P{(X(2)
t , Y

(2)
t ) = (x

(2)
t , y

(2)
t ) | (X(2)

t−1, Y
(2)
t−1) = (x

(2)
t−1, y

(2)
t−1)}

=

(
x
(2)
t−1

x
(2)
t−1 − x

(2)
t

)
(α

(2)
t−1)

x
(2)
t−1

−x
(2)
t (1− α

(2)
t−1)

x
(2)
t .

(4)

Thus E(y
(2)
t ) = α

(2)
t−1x

(2)
t−1 and so

E(βt) = E

(
y
(2)
t + ξ

α
(2)
t−1x

(2)
t−1 + ξ

)
=

E(y
(2)
t ) + ξ

α
(2)
t−1x

(2)
t−1 + ξ

= 1.

(iii) From βt =
y
(2)
t +ξ

α
(2)
t−1

x
(2)
t−1

+ξ
one can see that when the

defaults get severer at time t, y(2)t increases which leads to
the raise of βt. And if the infectious factor βt is a constant
and equals one, this two-sector model reduces to the one-
sector model we discussed above.

In the two-sector model, let ht be a function of yt given
by:

ht =

{
1 if yt > 0
0 if yt = 0.

Then we use the maximum likelihood method to estimate the
parameters, based on the observed data x0, x1, x2, . . . , xN

and h0, h1, h2, . . . , hN . The likelihood function is given as
follows:

L(a|x0, x1, . . . , xN , h0, h1, . . . , hN )

=

(
x0

x1

)
(1− ah0β0)

x1(ah0βt)
x0−x1×(

x1

x2

)
(1− ah1

β1)
x2(ah1

β1)
x1−x2 × · · ·×(

xN−1

xN

)
(1− ahN−1

βN−1)
xN (ahN−1

βN−1)
xN−1−xN .

By solving ∂ lnL(a|x0,x1,...,xN )
∂a0

= 0, we have

N−1∑
t=0

(1− ht)
yt+1

a0
+

N−1∑
t=0

(1− ht)
−βtxt+1

1− βta0
= 0,

and

a0 =

N−1∑
t=0

(1− ht)
yt+1

γ0−βt

N−1∑
t=0

(1− ht)
xtβt

γ0−βt

where γ0 = 1
a0

. Since γ0 ≫ βt we estimate a0 as

â0 ≈

N−1∑
t=0

(1− ht)yt+1

N−1∑
t=0

(1− ht)xtβt

.

Using the same techniques, we can also deduce

â1 ≈

N−1∑
t=0

htyt+1

N−1∑
t=0

htxtβt

.

IV. NUMERICAL EXAMPLES

In this section, we present the empirical results for the
two new models, (i.e., one-sector model and two-sector
model), using real default data extracted from the figures in
[11]. We compute the estimation results for the two models
using the techniques presented in Section II and Section III.
Furthermore, we compare the new model with the model in
[4], [5] for both the one-sector and two-sector cases.
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We use real default data from four different sectors. They
include consumer/service sector, energy/natural resources
sector, leisure time/media sector and transportation sector.
Table I shows the default data taken from [11]. From the
table, the proportions of defaults for Consumer, Energy, Me-
dia and Transport are 24.11%, 16.9%, 20.46% and 20.00%,
respectively. The default probabilities of all four sectors are
significantly greater than zero. This means that the default
risk of each of the four sectors is quite substantial.

Sectors Total Defaults
Consumer 1041 251

Energy 420 71
Media 650 133

Transport 281 59

Table I
DEFAULT DATA TAKEN FROM [11]

We first compute the estimation results of the parameters
described in Section II for the one-sector model. From Table
II, we report the estimated parameters a0 and a1. One can
compare the results with the old one-sector model, for which
the estimation result α is shown in Table 2. We observe that
the default probability α is less than a1 but greater than a0
in every sector.

Sectors Consumer Energy Media Transport
Old One-sector Model

α 0.0030 0.0021 0.0025 0.0026
New One-sector Model

a0 0.0009 0.0012 0.0012 0.0020
a1 0.0039 0.0033 0.0036 0.0037

Table II
THE DEFAULT PROBABILITY (ONE-SECTOR MODEL).

To compare the new one-sector model with the one-sector
model in [4], [5], we adopt the Likelihood Ratio Test (LRT)
for the new one-sector model against the one-sector model
in [4], [5]. The test statistic of the LRT is the log-likelihood
ratio, which follows roughly a χ2-distribution with one
degree of freedom. This is a simple and convenient statistical
test for comparing two models. We note that the critical
values are 3.843 and 6.637 at significant levels 95% and
99%, respectively. The log-likelihood ratios are presented in
the Table III. One can observe that all the log-likelihood
ratios, except transport sector, are greater than the critical
value 6.637 (with “+”), while the log-likelihood ratio of the
transport sector are greater than 3.843 but less than 6.637.
We can therefore draw a conclusion that for all the sectors,
the new one-sector model is statistically better than the one-
sector model in [4], [5] at significant level 95%.

Before we consider the new two-sector infectious model,
we need to pair up the sectors. That is to say, for each sector,
we have to find its partner (with the highest correlation).
We adopt correlation as a measure as in [4], [5], [6] for

Sectors Consumer Energy Media Transport
Log-likelihood Ratio 65.1+ 17.1+ 34.0+ 5.7

Table III
THE LOG-LIKELIHOOD RATIO: OLD ONE-SECTOR MODEL TO NEW

ONE-SECTOR MODEL.

Transport Media

Energy Consumer

�
?

6

@
@

@
@

@
@

@
@

@
@

@
@I

Figure 1. THE PARTNER RELATIONS AMONG TEH SECTORS
USING CORRELATIONS.

the correlation between any two sectors. Table IV reports
the correlations of the default data from each pair of the
sectors. The asterisk “∗” in the table indicates the pair of
sectors which has the largest correlation. Figure 1 gives the
partner relations among the four sectors according to the
correlations of defaults. For each row (sector A) in Table
IV, its partner (sector B) is identified by finding the sector
with the largest correlation with sector A in magnitude. We
remark that the relation is not necessarily symmetric. This
relation is only found symmetric for the sectors media and
consumer.

Consumer Energy Media Transport
Consumer - 0.0224 0.6013∗ 0.3487

Energy 0.0224 - 0.1258∗ 0.1045
Media 0.6013∗ 0.1258 - 0.3708

Transport 0.3487 0.1045 0.3708∗ -

Table IV
CORRELATIONS OF THE SECTORS (TAKEN FROM [4]).

We then construct the two-sector model according to Table
IV and Figure 1. We present the estimates of a0, a1 with
the constant taking values ξ = 2, 3. Again we consider the
Likelihood Ratio Test (LRT) for the new two-sector model
against the existing one-sector model. We compute its log-
likelihood ratio, which follows roughly the χ2-distribution
with one degree of freedom. We then compare it with the
log-likelihood ratio for the existing one-sector model against
existing two-sector model presented in [4], [5]. Those log-
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Sector A Consumer Energy Media Transport
Sector B Media Media Consumer Media

Old Two-sector Model
α0 0.0013 0.0018 0.0005 0.0013
α1 0.0043 0.0023 0.0033 0.0036

Log-likelihood Ratio 69.0+ 1.2 43.4+ 12.8+

New Two-sector Model
ξ = 2
a0 0.0011 0.0012 0.0015 0.0022
a1 0.0036 0.0034 0.0031 0.0032

Log-likelihood Ratio 88.6+ 11.1+ 59.5+ 7.9+

ξ = 3
a0 0.0010 0.0012 0.0014 0.0021
a1 0.0037 0.0033 0.0032 0.0032

Log-likelihood Ratio 92.7+ 14.7+ 60.1+ 9.1+

Table V
THE LOG-LIKELIHOOD RATIO.

likelihood ratios greater than the critical value 6.637 are
signified with a “+” in Table V. We remark that for all the
sectors, except Energy sector, the existing two-sector model
is statistically better than the existing one-sector model at
both significant levels 99% and 95%. For the Energy sector,
however, we find no evidence that the old two-sector model
is statistically better. We also remark that the new two-
sector model is statistically better than the existing one-
sector model for all the four sectors at both significant levels
99% and 95%, when the constant ξ equals 2 or 3. This
provides evidence for the use of proposed two-sector model.

To compare the proposed two-sector model with the
existing two-sector model, we adopt the usual Bayesian
information criteria (BIC). From the experimental results, we
remark that for the all sectors, except the transport sector, the
log-likelihood ratio for the existing two-sector model against
the proposed two-sector model is positive at ξ = 2, 3, which
means the proposed two-sector model is better. However,
in the transport sector, no evidence is found to prove the
proposed two-sector model is better.

V. CONCLUDING REMARKS

In this section, we discuss some future research issues.
In the two models, (i.e., one-sector model and two-sector
model), one can then derive the joint probability distribution
function (p.d.f.) for the duration of the default crisis, namely,
the default cycle (represented by the random variable T ) and
the severity of defaults during the crisis period (represented
by the random variable WT ). One then apply the proposed
models to study default data and calculate the CRVaR and
CRES discussed in [5]. Furthermore, the idea of infectious
factor can be extended to the case of a network of sectors
[4], [6].
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