
Title Chemical Reaction Optimization for population transition in
peer-to-peer live streaming

Author(s) Lam, AYS; Xu, J; Li, VOK

Citation
The IEEE Congress on Evolutionary Computation (CEC),
Barcelona, Spain, 18-23 July 2010. In Proceedings of the IEEE
CEC, 2010, p. 1-8

Issued Date 2010

URL http://hdl.handle.net/10722/142827

Rights Creative Commons: Attribution 3.0 Hong Kong License

Chemical Reaction Optimization for Population Transition in
Peer-to-Peer Live Streaming

Albert Y.S. Lam, Member, IEEE, Jialing Xu, Student Member, IEEE, and Victor O.K. Li, Fellow, IEEE

Abstract— Peer-to-peer (P2P) live streaming applications are
very popular in recent years and a Markov open queueing
network model was developed to study the population dynamics
in P2P live streaming. Based on the model, we deduce an
optimization problem, called population transition problem,
with the objective of maximizing the probability of universal
streaming by manipulating population transition probability
matrix. We employ a chemical reaction-inspired metaheuristic,
Chemical Reaction Optimization (CRO), to solve the problem.
Simulation results show that CRO outperforms many commonly
used strategies for controlling population transition in many
practical P2P live streaming systems. This work also shows
that CRO also demonstrates the usability of CRO to solve
optimization problems.

I. INTRODUCTION

Peer-to-peer (P2P) streaming has become one of the
killer applications in the Internet. Many companies providing
commercial P2P streaming services have been established,
including UUSee [1], PPStream [2], SopCast [3], etc. For
example, iResearch [4] shows that PPStream services have
access rates of more than 10 million per month. The huge
demand of P2P streaming services creates many research
problems, including scheduling [5], topology control [6], and
QoS support [7].

In addition to traditional video broadcasting, P2P tech-
nology provides a new platform for live streaming with
less stringent geographical constraint and at lower costs.
However, the stringent time requirement of P2P live stream-
ing creates extra challenges. Xu and Li are the first to
analyze the population dynamics for live streaming over P2P
networks [8]. They propose a stochastic model and a new
metric is introduced to evaluate the performance of different
population transition strategies.

In this work, based on [8], we formulate the model as
an optimization problem, entitled the Population Transition
Problem (PTP). Solution of this problem requires exponen-
tially increasing computation time with the problem scale.
Due to its complexity, it can be considered as a black box and
traditional optimization techniques are not effective. There-
fore, we rely on evolutionary approaches. A newly proposed
metaheuristic called Chemical Reaction Optimization (CRO)
[9] is adopted to tackle PTP.

CRO is a chemical reaction-inspired general-purpose op-
timization method and it mimics the collisions of molecules
in chemical reactions. Molecular interactions bring molecules
from high to low energy states. This tendency allows us to

The authors are with the Department of Electrical and Electronic Engi-
neering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
(email: {ayslam, jlxu, vli}@eee.hku.hk).

explore the global optimum of the solution space. CRO has
been shown to be effective in many applications [9], [10].
This motivates us to apply CRO to solve PTP. Simulation
results show that CRO outperforms other commonly used
strategies.

CRO is an evolutionary algorithm. Other evolutionary
algorithms have been applied to P2P, e.g. [11] and [12],
but they do not consider PTP. Instead, [11] focuses on con-
structing decentralized and self-organized P2P information
system in computational grids and [12] addresses the packet
scheduling issue for QoS support in P2P video streaming.
Moreover, P2P has also been used as a platform to operate
evolutionary algorithms, e.g. [13], [14], [15], but this is not
the focus of this paper.

The rest of the paper is organized as follows. In Section II,
we formulate the problem deduced from the model given in
[8]. Section III describes the framework of CRO. We give the
simulation results for performance evaluation in Section IV.
Finally, we conclude the paper and suggest possible future
work in Section V.

II. PROBLEM FORMULATION

In this section, we firstly revise the P2P streaming systems
and the population dynamics model. Then we formulate the
problem in the form of maximization.

A. Peer-to-Peer Live Streaming Systems

A single-channel P2P live streaming system consists of
a stream source and a group of peers. The stream source
provides real time streaming data (e.g. live video broadcast)
to the peers. The peers may connect to networks with differ-
ent topologies and traffic patterns, and thus, their cumulative
transmission delays (total delay from the moment when the
source sends out a packet to when the peer receives it) vary.
As pointed out in [8], measuring the exact locations of peers
are infeasible. So we differentiate the peers according to
their cumulative transmission delays. Two peers with smaller
and larger delays are called upstream and downstream peers,
respectively. Upstream peers receive streaming data from
the source earlier than downstream peers, act like a source
and provide streaming data to its downstream peers. More
upstream peers help support more downstream peers. There-
fore, the total capacity of the system can improve. This
demonstrates the power of P2P system compared with the
traditional client-server architecture [16].

Many systems have tracker servers which provide system
information to the peers. The most important information is
a list of addresses of upstream peers for a peer to connect

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

...
...

...
...

1
st
 colony

i
th
 colony

n
th
 colony

queue n

queue i

queue 1

1v

iv

nv

(1)sP

(1)sP

(1)sP

1s iPP

1s nPP

1s iPP

s inPP

s niPP

1s nPP

Peer

Arrival

Transition

Departure

server

Fig. 1. Modeling colonies of peers as a Markov open queueing network

with. It is particularly useful when a peer joins a system.
When a peer experiences degraded services, a tracker server
may also provide it a list of recommended peers to re-attach
to. Depending on the system implementation, this may be
automatically completed by the streaming software. Thus, a
system may control the topology of the P2P overlay network
so as to improve the system performance.

B. Population Dynamics Model

We divide the peers into several colonies according to their
cumulative transmission delays. Each peer joins a particular
colony when participating in the streaming system and those
with similar delays are put into the same colony. A peer
may leave its colony and attach to another upon sensing
its accumulative transmission delay has changed1. It may
leave the system forever if it is not interested in the channel
anymore.

The system is modeled as a Markov open queueing
network (see Fig. 1). A peer is just like a customer in
the network of queues. A peer participating in a colony,
sojourning within a colony, shuttling between colonies, and
quitting the system is tantamount to a customer entering a
queue, getting served, transiting to other queues, and leaving
the network, respectively. Here we consider a special case
of the model with Poisson arrivals and exponential service
times. We assume that the queues are M/M/∞ as a peer
immediately gets served without waiting once it joins a
colony. We also assume that there are n colonies and peers
join the i-th colony from outside the system as a Poisson
process with arrival rate vi for i = 1, . . . , n. Peers stay at
any colony for an exponentially distributed time period with
mean 1

µ . After a peer has been served, it may stay in or quit
the system with probability Ps and (1−Ps), respectively. If
it stays, the probability of moving from the i-th to the j-th
colony is Pij . By Theorem 2 of [8], the system has one and

1A peer which participates in an inappropriate colony may degrade the
overall system performance. For example, a peer with high delay is not
suitable to act as a source for transmitting data to peers with lower delay.

only one equilibrium distribution if there exist positive αi’s
satisfying

αiµ = vi + µ
n∑
j=1

αjPsPji, i = 1, . . . , n, (1)

where αi represents the average number of peers in the i-th
colony. Let xi2 be the population size (i.e. number of peers)
of the i-th colony. By Theorem 3 of [8], the probability of
having a population size xi for the i-th colony, πi(xi), are
independent of each other in the equilibrium state, and given
by

πi(xi) = e−xi
αxi
i

xi!
, i = 1, . . . , n. (2)

Thus, the probability of the whole network in equilibrium
state s = (x1, . . . , xn) is given by

π(s) =
n∏
i=1

πi(xi). (3)

A P2P streaming system is considered to be in universal
streaming when all peers in the system can receive sufficient
streaming data. To make the universal streaming condition
tractable, we suppose that peers in the i-th colony can
only get data supply from those in the same colony and
their immediate upstream colony, i.e. the (i − 1)-th colony.
Moreover, the maximum number of peers with sufficient data
supply in the i-th colony is determined by the population size
in the (i − 1)-th colony multipled by a sufficient provision
ratio b3, i.e.,

xi ≤ bxi−1 · bc.

Let B be the capacity of the stream source. The probability
of universal streaming is defined as

Pus = Pr{x1 ≤ B, x2 ≤ bx1 · bc, . . . , xn ≤ bxn−1 · bc}.

With the consideration of system state probability given by
(3), Pus can be further expressed as

Pus =
∑
s∈Φ

π(s), (4)

where Φ is the set of all system states satisfying universal
streaming, i.e.,

Φ ={(x1, . . . , xn)|x1 ≤ B,
x2 ≤ bx1 · bc, . . . , xn ≤ bxn−1 · bc}.

Here we only give an overview of the population dynamics
model. For more information about the model, interested
readers may refer to [8].

2xi must be a non-negative integer.
3b usually has a value between one and two in practice.

v1

v2

...
vn

 = µ

(1− PsP11) −PsP21 · · · −PsPn1

−PsP12 (1− PsP22) · · · −PsPn2

...
...

. . .
...

−PsP1n −PsP2n · · · (1− PsPnn)

α1

α2

...
αn

 (6)

C. Population Transition Problem

The system parameters B, b, n, Ps, µ, and vi, i = 1, . . . , n,
characterize the P2P streaming system. Recall that the system
can control the topology of the overlay P2P network for
providing better service. When a peer needs to switch from
a colony to another, the system can determine to which
colony it should connect (by controlling the list of available
upstream peers provided to the peer). One simple imple-
mentation is to control the population transition strategy, i.e.
the population transition probability matrix [Pij]1≤i,j≤n (or
[Pij] in short), so as to maximize the probability of universal
streaming Pus.

Here we try to demonstrate how to compute Pus corre-
sponding to a matrix [Pij]. Recall that Pij is the probability
of a peer transiting from the i-th to the j-th colony. Therefore,
we have

n∑
j=1

Pij = 1, i = 1, . . . , n, (5)

and it is a constraint of PTP. From (1), we have

vi = µ(αi −
n∑
j=1

αjPsPji), i = 1, . . . , n,

which in matrix form gives (6) or

v = µ(I− PsPT)α, (7)

where v is the arrival rate vector [v1, . . . , vn]T , I is an identity
matrix of size n, P is the transition matrix of the Markov
chain [Pij], and α equals [α1, . . . , αn]T . We need to solve
the system of linear equations (7) to get α. Let M and M̃
be the matrix µ(I−PsPT) and the augmented matrix of M ,
respectively, i.e.,

M̃ =

 µ(1− PsP11) −µPsP21 · · · −µPsPn1 v1
−µPsP12 µ(1− PsP22) · · · −µPsPn2 v2

...
...

. . .
...

...
−µPsP1n −µPsP2n · · · µ(1− PsPnn) vn

By the Kronecker-Capelli Theorem [17], (7) has a solution
for α provided that

rank(M) = rank(M̃). (8)

Therefore, (8) is also a constraint of PTP. We use (7) to
compute α from P.

For a particular state s = (x1, . . . , xn), we calculate its
probability with (2) and (3). We determine Pus by summing
the probabilities of all states satisfying universal streaming

with (4). Consider an example when n = 2, B = 5, and
b = 1.5. The feasible states (x1, x2) include:

(5, 0), (4, 0), (3, 0), (2, 0), (1, 0), (0, 0),
(5, 1), (4, 1), (3, 1), (2, 1), (1, 1),
(5, 2), (4, 2), (3, 2), (2, 2),
(5, 3), (4, 3), (3, 3), (2, 3),
(5, 4), (4, 4), (3, 4),
(5, 5), (4, 5),
(5, 6), (4, 6),
(5, 7).

By inspection, the size of the feasible state space Φ is
expressed as

bi0bc∑
i1=0

bi1bc∑
i2=0

· · ·
bin−2bc∑
in−1=0

(1 + bin−1bc), (9)

where bi0bc is equal to B. This shows that the computation
of Pus grows exponentially with n, B, and b.

A possible solution ω of the problem is a probability tran-
sition matrix [Pij] and the corresponding objective function
value y is its Pus. The above process, denoted by f , shows
how to compute Pus for a particular [Pij], i.e.,

Pus = f([Pij]). (10)

It is the objective function which we need to maximize. (9)
reveals that f is very computationally intensive when the
scale of the P2P streaming system grows. To summarize,
PTP is mathematically represented by

max Pus = f([Pij])

subject to
n∑
j=1

Pij =1, i = 1, . . . , n,

rank(M) =rank(M̃).

Different system characteristics (e.g. values of µ and v)
imply different problem instances of PTP, and thus, the
optimal solutions corresponding to different instances may
vary. In other words, we need to solve the PTP whenever
the system parameters change. According to [18], the system
characteristics follow similar daily patterns. Therefore, we
can construct several instances of PTP with representative
system parameter settings corresponding to such patterns,
and the computed [Pij]’s can be utilized to optimize the
system performance. We will present an algorithm to solve
PTP in the next section.

procedure InitialSolnGen(n)

for i := 1 to n

Randomly generate Pi1, . . . , Pin ∈ [0, 1]

sum := Pi1 + . . . + Pin

for j := 1 to n

Pij := Pij/sum

end for

end for

ω := [Pij]1≤i,j≤n

return ω

end procedure

Fig. 2. Pseudocode of initial solution generator

III. ALGORITHM DESIGN

There are not many optimization problems which have
right stochastic matrices as solutions. Thus, we introduce
several operators to deal with the solutions satisfying the
constraints posed on PTP. Then we discuss how CRO works.

A. Operators

1) Initial Solution Generator: This operator is used to
generate the initial solutions for CRO to manipulate. Each
call to the operator will generate a right stochastic matrix of
order n. It is done by firstly generating a matrix of order n
with element Pij ∈ [0, 1] randomly. Then we transform the
elements so that the sum of each row is equal to one. For
example, 0.79 0.04 0.68

0.96 0.85 0.76
0.66 0.93 0.74

⇒
 0.53 0.02 0.45

0.37 0.33 0.30
0.28 0.40 0.32

Its pseudocode is given in Fig. 2.

2) Neighborhood Solution Generator: This operator is
used to generate a new solution ω′ in the neighborhood of a
given solution ω. It is done by randomly choosing a row i
(1 ≤ i ≤ n) of ω first. Then we select two distinct elements
Pij and Pik (1 ≤ j, k ≤ n) in row i. Next we divide the sum
of Pij and Pik into two random portions and assign each
of them to P ′ij and P ′ik of ω′, respectively. The rest of the
elements in ω′ are just the same as those in ω. For example,
P12 and P13 are chosen in the following: 0.53 0.02 0.45

0.37 0.33 0.30
0.28 0.40 0.32

⇒
 0.53 0.16 0.31

0.37 0.33 0.30
0.28 0.40 0.32

Its pseudocode is given in Fig. 3.

3) Decomposition: This operator is used to produce two
new solution ω′1 and ω′2 from a given solution ω. For each
row of ω, we assign it to the same row of either ω′1 or ω′2
randomly. For those rows in ω′1 or ω′2 which have not been
assigned with values, we make them rows of random positive
values whose total is equal to one. This mechanism is similar
to that used in the initial solution generator to produce a

procedure Neighbor(ω)

ω′ := ω

Randomly generate an integer i ∈ [1, n]

Randomly generate two distinct integers
j, k ∈ [1, n]

sum := Pij + Pik

Randomly generate a real number t ∈ [0, 1]

P ′ij := sum× t

P ′ik := sum− P ′ij

return ω′

end procedure

Fig. 3. Pseudocode of neighborhood solution generator

procedure Decompose(ω)

for i := 1 to n

Generate a random number t ∈ [0, 1]

if t < 0.5

[P ′(1)i1, . . . , P
′
(1)in] := [Pi1, . . . , Pin]

Randomly generate P ′(2)i1, . . . , P
′
(2)in ∈ [0, 1]

sum := P ′(2)i1 + . . . + P ′(2)in
for j := 1 to n

P ′(2)ij := P ′(2)ij/sum

end for

else

[P ′(2)i1, . . . , P
′
(2)in] := [Pi1, . . . , Pin]

Randomly generate P ′(1)i1, . . . , P
′
(1)in ∈ [0, 1]

sum := P ′(1)i1 + . . . + P ′(1)in
for j := 1 to n

P ′(1)ij := P ′(1)ij/sum

end for

end if

end for

return ω′1 and ω′2

end procedure

Fig. 4. Pseudocode of decomposition

random row of numbers. For example,

 0.53 0.02 0.45
0.37 0.33 0.30
0.28 0.40 0.32

⇒
 0.53 0.02 0.45

0.34 0.62 0.04
0.28 0.40 0.32

 AND

 0.84 0.04 0.12
0.37 0.33 0.30
0.13 0.22 0.65

Its pseudocode is given in Fig. 4.

4) Synthesis: This operator is used to produce a new
solution ω′ from two solutions ω1 and ω2. For each row
of ω′, we assign it a corresponding row from either ω1 or

procedure Synthesize(ω1, ω2)

for i := 1 to n

Generate a random number t ∈ [0, 1]

if t < 0.5

[P ′i1, . . . , P
′
in] := [P(1)i1, . . . , P(1)in]

else

[P ′i1, . . . , P
′
in] := [P(2)i1, . . . , P(2)in]

end if

end for

return ω′

end procedure

Fig. 5. Pseudocode of synthesis

ω2 randomly. For example, 0.53 0.02 0.45
0.37 0.33 0.30
0.28 0.40 0.32

 AND

 0.34 0.62 0.04
0.84 0.04 0.12
0.13 0.22 0.65

⇒

 0.34 0.62 0.04
0.84 0.04 0.12
0.28 0.40 0.32

Its pseudocode is given in Fig. 5.

B. Chemical Reaction Optimization

CRO is a population-based metaheuristic, inspired by
chemical reactions. Imagine that we have a system of some
unstable molecules in a closed container. They are unstable
because they have excess energy. The energy needs to be
released so that the system becomes more stable. Thus they
interact with each other through collisions and change from
high to low energy states. The initial and final molecules are
called reactants and final products, respectively. The whole
process is what we call a chemical reaction.

Each molecule has a molecular structure with two kinds of
energy, i.e. potential energy and kinetic energy. We mimic a
solution of an optimization problem as a molecular structure
ω. The potential energy (PEω) is the objective function value
corresponding to ω while the kinetic energy (KEω) can be
interpreted as the tolerance of about how much worse (i.e.
more rather less energy) the molecule can change4. Suppose
that the molecule gets changed from ω to ω′. It is allowed
only when the molecule have sufficient energy to support the
change, i.e. PEω + KEω ≥ PEω′ . In other words, the change
is always accepted if PEω > PEω′ , but it is rejected when
PEω′ − PEω > KEω . This explains the solution acceptance
rule of CRO for a change of a single molecule. There are
changes involving two or more molecules. The rule works
similarly but more vigorous changes are possible as more
energy is engaged.

Molecules collide either on the walls of the container or
with each other. The fraction of collisions corresponding to

4Energy must be of non-negative real numbers.

the second kind is CollMole. We define four types of elemen-
tary reactions, i.e. on-wall ineffective collision, decomposi-
tion, intermolecular collision, and synthesis, to characterize
different collisions. The former two can be triggered when
a molecule hits on a wall. The latter two can take place
when molecules collide with each other (we assume only
two molecules are involved in the simulation). We follow
the framework described in [9] to implement the algorithm.
Interested readers can refer to [9] to comprehend how the
whole algorithm works. To make it suitable for solving PTP,
we have several modifications to the operators used in CRO.
We adopt the initial solution generator described in Section
III-A.1 to produce PopSize number of molecules at initializa-
tion. Their initial KEs are assigned a value equal to InitialKE.
The neighborhood solution generator given in Section III-
A.2 is utilized in on-wall and inter-molecular ineffective
collisions to generate new solutions in the neighborhoods of
existing ones. We apply the operators from Section III-A.3
and Section III-A.4 to perform decomposition and synthesis,
respectively.

IV. SIMULATION

In this section, we firstly explain how we handle the
constraints and then compare our solution with a set of
common benchmarks. Next we describe the configuration of
the simulation and finally discuss the results.

A. Constraints Handling

We have two types of constraints, i.e. (5) and (8). We try
to confine the search to the feasible solution space. In other
words, we keep generating solutions without violating any
constraints in both initialization and iterations of CRO. To
do this, we handle the two types of constraints separately. For
(5), the initial solution generator ensures that all solutions it
produces are right stochastic matrices. Moreover, the neigh-
borhood solution generator, decomposition and synthesis
operators are specially designed to transform right stochastic
matrices to right stochastic matrices as well. For (8), with
the possible values (non-negative real numbers) assigned to
v, µ, Ps, and P, it is uncommon to generate a [Pij] which
makes the system of linear equations (7) inconsistent5. If it
does happen, we can simply ignore that [Pij] and generate a
new one instead.

B. Benchmark Problems

To have fair comparisons of performance over various
strategies, we need a set of common benchmark problems
in the simulation. Let VT be the overall external arrival rate
to the system, i.e. VT = v1 + v2, . . . , vn. We randomly
generate 60 problem instances with n = 4 and VT =
2, 4, . . . , 20. For each VT , there are 6 problem instances,
each of which is generated by randomly dividing VT into
four parts, representing v1, v2, v3, and v4, respectively. Each
instance is represented by a number formatted in the form

5We seldom encounter [Pij] making (7) inconsistent in the mass simula-
tion.

of “VT case number”. For example, “20 5” means that it is
the fifth instance with VT equal to 20.

C. Implementation Details

The simulation codes are programmed in MATLAB be-
cause MATLAB has powerful and efficient operators to
handle matrices and to solve (7) [19]. In computing (10),
we follow [8] to set the system parameters, i.e. B = 15,
b = 1.5, Ps = 0.6, and µ = 0.5. For all the dynamic
strategies (introduced later), the stopping criterion is when
the maximum number of function evaluations (FEs), set to
1000, is reached. After several trial runs of the simulation, the
parameter values of CRO are set as follows: PopSize = 15;
KELossRate = 0.2; MoleColl = 0.3; InitialKE = 10;
α = 100; and β = 0.5.

PTP is a maximization problem. However, CRO is origi-
nally designed to solve minimization problems and the objec-
tive function value is interpreted as energy, which is of non-
negative value. The typical way of converting a maximization
problem f to a minimization one (i.e. letting −f as the
objective function) may not be appropriate. Instead, we can
consider f ′ = offset − f , where offset is supposed to be
large enough to make every possible f ′ non-negative. After
minimizing f ′, we can compute the corresponding f by
f = offset− f ′. In this simulation, as Pus is upper bounded
by one, we set the offset equal to one accordingly. This also
demonstrates a technique on how to employ CRO to solve
maximization problems.

D. Results

We compare the performance of CRO with other strategies
which also manipulate [Pij] as a solution, i.e. random search
(Random), inert staying (IS), shorter delay (SD), and random
walk (RW). CRO and Random are considered as dynamic ap-
proaches as they produce [Pij] with respect to the problems,
i.e. different [Pij] are produced according to the values of
{v1, . . . , vn}. Random is introduced to serve as a reference
for the dynamic approaches. IS, SD, and RW (introduced
in [8]) are regarded as static strategies since they always
use the same [Pij] for different problems. Despite this, they
still have practical use [8], [20], [21]. All simulations are
performed on the same PC with Intel Core 2 Quad Processor
Q9650 and 3GB of RAM. Each run of CRO and Random
takes approximately 8.45s and 8.20s, respectively, and thus
CRO suffers a little increase in computation time. As IS, SD,
and RW always retain the same solution, one FE is required
and they consume around 8.20

1000 s of computation time in each
simulation run.

The simulation results for all problem instances are shown
in Fig. 6. Each data point of CRO and Random is the
mean of the results of 50 runs6 while the plus and minus
error bars indicate the best and worst results of all 50 runs,
respectively. The upper and lower rows of numbers in each
chart show the standard deviations of the 50 runs for CRO

6CRO and Random are stochastic methods and the result produced in
different runs may vary.

TABLE I
AVERAGE % IMPROVEMENT OF CRO OVER OTHER METHODS

VT Random IS SD RW MSS

2 37.03 234.82 120.65 131.69 1.61
4 31.21 640.37 175.51 197.60 13.84
6 15.14 1421.87 175.82 186.66 24.28
8 6.29 1167.58 81.67 102.77 24.04

10 10.01 1004.38 90.29 140.53 16.84
12 1.42 664.41 9.37 101.11 19.89
14 6.40 12948.37 92.18 596.64 19.10
16 45.31 5604870.26 123.75 898.28 -0.42
18 22.57 25371.29 70.47 1221.48 19.26
20 51.33 96047.50 169.53 6372.97 13.48

and Random, separately. For some instances (e.g. 8 6, 10 6,
12 1, etc.), CRO performs almost the same as Random
because these instances are particularly hard to solve, and
thus, CRO does not show superiority over Random on the
average. We can see that, in general, dynamic approaches can
produce better results than the static ones. Moreover, CRO
is superior to the others in most cases with less fluctuations
across the instances of the same VT . This reveals that CRO is
more reliable to generate good solutions when solving new
problem instances.

We also study the average percentage (%) improvement of
CRO over other strategies, which is computed by

ResultCRO − Resultξ
Resultξ

× 100%,

where ξ is any algorithm other than CRO. In Table I, each
value is computed with the mean for all instances with
respect to the same VT . Although the “more streaming
supply” (MSS) strategy [8] does not manipulate [Pij] and
thus it does not fit into the framework of PTP, we also
include it in the table for completeness, as MSS is similar
to the coolstreaming scheme [22]. CRO is obviously much
better than IS and RW and it also outperforms the rest on
the average.

For the dynamic approaches, we also give their conver-
gence curves in Fig. 7, which shows the traces of best
solutions found in a particular run. We only show the curves
for the cases where CRO has best (20 5), median (2 4), and
worst (12 1) performance over Random. We record one data
point every 50 FEs. At the beginning (from 1 to 100 FEs,
CRO may be inferior to Random because the performance
at this stage highly depends on the initial solution. However,
CRO gradually improves the solutions and get better ones
after 100 FEs. Fig. 7 also shows that the stopping criterion
used in the simulation is appropriate.

V. CONCLUSION

P2P live streaming is one of the killer applications in
the Internet and the increasing size of P2P live streaming
systems creates many challenging problems. Thus a Markov
open queueing network model was developed to study the

Fig. 6. Simulation results

(a) Best case : 20 5

(b) Median case : 2 4

(c) Worst case : 12 1

Fig. 7. Convergence curve

population dynamics [8]. From the model, we deduce an
optimization problem, i.e. PTP, for maximizing the proba-
bility of universal streaming by manipulating the population
transition probability matrix. Due to its complexity, we use
evolutionary approaches to tackle PTP, instead of traditional
optimization techniques. We employ a newly proposed chem-
ical reaction-inspired metaheuristic CRO. Simulation results
show that CRO outperforms many strategies for controlling
population transition in existing P2P live streaming systems.
Our contribution includes: 1) proposing PTP for P2P live
streaming and 2) successfully applying CRO to solve the
problem. This work also demonstrates the capability of CRO
in solving optimization problems. In the future, we will
design better operators for CRO and compare CRO with other
evolutionary algorithms (e.g. genetic algorithm, simulated
annealing, particle swarm optimization, etc) in solving PTP.
We will also try to apply CRO to solve other problems in

P2P systems.

ACKNOWLEDGMENT

This work is supported in part by the Strategic Research
Theme of Information Technology of The University of Hong
Kong.

REFERENCES

[1] UUSee. [Online]. Available: http://www.uusee.com/
[2] PPStream. [Online]. Available: http://www.pps.tv/
[3] SopCast. [Online]. Available: http://www.sopcast.com/
[4] China Internet Reserach Center. [Online]. Available:

http://english.iresearch.com.cn/
[5] C. Liang, Y. Guo, and Y. Liu, “Is random scheduling sufficient in P2P

video streaming?,” Proc. 28th IEEE Int. Conf. Distrib. Comput. Syst.
(ICDCS), Beijing, China, June. 2008, pp. 53–60.

[6] A. Auvinen, T. Keltanen, and M. Vapa, “Topology management in un-
structured P2P networks using neural networks,” Proc. IEEE Congress
on Evol. Comput. (CEC), Singapore, Sept. 2007, pp. 2358–2365.

[7] M. Wang, L. Xu, and B. Ramamurthy, “Providing statistically guaran-
teed streaming quality for peer-to-peer live streaming,” Proc. 18th ACM
Int. Workshop on Netw. and Operating Syst. Support for Digit. Audio
and Video (NOSSDAV), Williamsburg, VA, Jun. 2009, pp. 127–132.

[8] J. Xu and V. O. K. Li, “A stochastic model of the population dynamics
in P2P live streaming,” submitted for publication. (Also available as
Tech. Rep. TR-2010-001, Dept. of EEE, The Univ. of Hong Kong,
Hong Kong, Jan. 2010)

[9] A. Y. S. Lam and V. O. K. Li, “Chemical-reaction-inspired metaheuristic
for optimization,” IEEE Trans. Evol. Comput., accepted for publication.
(Also available as Tech. Rep. TR-2009-003, Dept. of EEE, The Univ.
of Hong Kong, Hong Kong, Apr. 2009)

[10] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Chemical reaction optimization
for the grid scheduling problem,” Proc. IEEE Int. Conf. Commun. (ICC),
Cape Town, South Africa, May 2010.

[11] A. Forestiero and C. Mastroianni, “A swarm algorithm for a self-
structured P2P information system,” IEEE Trans. Evol. Comput., vol.
13, no. 4, pp. 681–694, Aug. 2009.

[12] Y. H. Jung, H.-S. Kim, and Y. Choe, “Ant colony optimization based
packet scheduler for peer-to-peer video streaming,” IEEE Commun.
Lett., vol. 13, no. 6, pp. 441–443, Jun. 2009.

[13] I. Scriven, A. Lewis, and S. Mostaghim, “Dynamic search initialization
strategies for multi-objective optimization in peer-to-peer networks,”
Proc. IEEE Congress on Evol. Comput. (CEC), Trondheim, Norway,
May 2009, pp. 1515–1522.

[14] J. L. J. Laredo, P. A. Castillo, A. M. Mora, and J. J. Merelo, “Exploring
population structures for locally concurrent and massively parallel
evolutionary algorithms,” Proc. IEEE World Congress on Comput.
Intell. (WCCI), Hong Kong, Jun. 2008, pp. 2605–2612.

[15] I. Scriven, A. Lewis, D. Ireland, and J. Lu, “Decentralised distributed
multiple objective particle swarm optimization using peer to peer
networks,” Proc. IEEE World Congress on Comput. Intell. (WCCI),
Hong Kong, Jun. 2008, pp. 2925–2928.

[16] A. S. Tanenbaum, Computer Networks, 4th ed. Upper Saddle River,
NJ: Prentice Hall PTR, 2003, pp. 4.

[17] A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for
Engineers and Scientists, Boca Raton, FL: Chapman & Hall/CRC, 2007,
pp. 198.

[18] C. Wu, B. Li, and S. Zhao, “Diagnosing network-wide P2P live
streaming inefficiencies,” Proc. 29th IEEE Conf. Comput. Commun.
(INFOCOM), Rio de Janeiro, Brazil, Apr. 2009, pp. 2731–2735.

[19] Left or right matrix division - MATLAB. [Online]. Available:
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/mrdivide
.html/

[20] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Hetero-
geneous Unstructured Tree-Based Peer-to-Peer Multicast,” Proc. 14th
IEEE Int. Conf. Netw. Protocols (ICNP), Santa Barbara, CA, Nov. 2006,
pp. 2–11.

[21] Y.-H. Chu, S. G. Rao, and H. Zhang, “A Case for End System
Multicast,” Proc. 2000 ACM Int. Conf. Meas. and Modeling of Comput.
Syst. (SIGMETRICS), Santa Clara, CA, Jun. 2000, pp. 1–12.

[22] S. Xie, B. Li, G. Y. Keung, and X. Zhang, “Coolstreaming: design,
theory, and practice,” IEEE Trans. Multimedia, vol. 9, no. 8, pp. 1661–
1671, Dec. 2007.

