
Title Evolutionary artificial neural network based on Chemical
Reaction Optimization

Author(s) Yu, JJQ; Lam, AYS; Li, VOK

Citation
The 2011 IEEE Congress on Evolutionary Computation (CEC
2011), New Orleans, LA., 5-8 June 2011. In Proceedings of CEC
2011, 2011, p. 2083-2090

Issued Date 2011

URL http://hdl.handle.net/10722/142813

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37964876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Evolutionary Artificial Neural Network Based on
Chemical Reaction Optimization

James J.Q. Yu
Department of Electrical and

Electronic Engineering
The University of Hong Kong

Email: jamesyjq@hku.hk

Albert Y.S. Lam, Member, IEEE
Department of Electrical Engineering

and Computer Sciences
University of California, Berkeley
Email: ayslam@eecs.berkeley.edu

Victor O.K. Li, Fellow, IEEE
Department of Electrical and

Electronic Engineering
The University of Hong Kong

Email: vli@eee.hku.hk

Abstract—Evolutionary algorithms (EAs) are very popular
tools to design and evolve artificial neural networks (ANNs),
especially to train them. These methods have advantages over the
conventional backpropagation (BP) method because of their low
computational requirement when searching in a large solution
space. In this paper, we employ Chemical Reaction Optimization
(CRO), a newly developed global optimization method, to replace
BP in training neural networks. CRO is a population-based
metaheuristics mimicking the transition of molecules and their
interactions in a chemical reaction. Simulation results show that
CRO outperforms many EA strategies commonly used to train
neural networks.

Index Terms—Artificial neural networks, evolutionary algo-
rithm, chemical reaction optimization.

I. INTRODUCTION

ARTIFICIAL neural networks (ANNs) are complex networks
imitating the way human cerebral neurons process in-

formation to realize parallel information transformation and
processing. ANNs have been widely employed to solve real
life problems related to classification, function approximation,
data processing, and robotics. The training algorithm used to
determine various parameters of ANN is one of the key factors
that influence the performance of ANNs. Among all training
algorithms, backpropagation (BP) has been widely used, but
it suffers from the problem that it is easy to get stuck in
the local optima, and its low convergence speed [1][2]. With
the advancement of evolutionary algorithms (EAs), they are
employed to train ANNs. Moreover, an EA can simultaneously
optimize the weights of an ANN and it can also evolve the
structure of the network so as to achieve desirable performance
[3].

With different levels of EA involvement, EA-based ANNs
can be classified into two major types: “noninvasive” and
“invasive”. The former refers to those methods using EA to
evolve network structure in conjunction with BP for weight
adaptation. The latter includes those using EA for both
evolving network structure and weight adaptation [4]. Due to
the tradition of employing BP for network weight training,
“noninvasive” methods have been widely studied and many
algorithms have been developed with outstanding performance
[5][6]. Since they rely heavily on BP, they still suffer from the

problems of getting stuck in local optima and low convergence
speed [7].

The “invasive” methods, however, merely depend on EA for
evolving the network. Thus the computation speed is higher
than “noninvasive” methods since the “invasive” methods
can avoid BP fitness evaluation with direct representation of
networks. In this paper, we propose a new algorithm based
on Chemical Reaction Optimization (CRO) [8] to evolve the
network structure and to tune the weights of networks.

CRO is a novel chemical reaction-inspired general purpose
optimization algorithm. It is a variable population-based meta-
heuristics, mimicking the transition of molecules and inter-
molecular interactions in a chemical reaction. The transitions
and interactions tend to direct molecules toward the lowest
potential energy states on the potential energy surface (PES).
Thus CRO uses the idea of mimicking the objective function
landscape with PES and molecules can explore the solution
space to find the global optimum due to this tendency. CRO
has been proved to be effective in solving many practical
problems [8][9][10] and simulation results show that ANNs
trained by CRO outperform other EAs in many classification
problems.

The rest of the paper is organized as follows. In Section
II, we briefly present the related work of using EA to train
ANNs. In Section III, the problem formulation is presented.
The detailed framework and the algorithm based on CRO is
given in Section IV. Section V presents the simulation results
comparing CRO-based ANNs (CROANN) with other ANNs.
Finally we conclude the paper in Section VI.

II. RELATED WORK

Using EA to train ANNs has become an active research
topic. Many EAs, e.g. genetic algorithm (GA) [11], simulated
annealing (SA) [12], and particle swarm optimization (PSO)
[13] have been used. Yet relatively few “invasive” methods
have been studied to achieve the best performance of EA-
based neural networks. Sexton et al. used Tabu Search (TS)
for neural network training [14], where TS was used to train
a fixed neural network with six hidden layer neurons. The
TS solution is given in the form of vectors representing
all the weights of the network. The testing data set was
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a collection of randomly generated two-dimensional points
(x, y) where x ∈ [−100, 100] and y ∈ [−10, 10]. The output
data set was generated by simple mathematical functions. The
result demonstrated that TS-based networks could outperform
conventional BP-derived networks. SA and GA were also
implemented for the same data set [15].

Angeline et al. proposed GeNeralized Acquisition of Re-
current Links (GNARL) using hybrid-GA to train ANNs
[17]. Instead of using symmetric topology, GNARL employs
sparse connections of neural networks to represent the net-
work structures. GNARL uses a mutation operation to evolve
the structure and to tune the weights of networks. GNARL
reserves the top 50% individuals in each generation, according
to the user-defined fitness function, and performs reproduction
by two types of mutation methods: parametric mutation and
structural mutation. The former mutation method changes
the network by perturbing the weights with Gaussian noise
controlled by an annealing temperature [16], while the latter
mutation method involves the addition or deletion of hidden
layer nodes or links.

A Constructive algorithm for training Cooperative Neural
Network Ensembles (CNNE), proposed by M. Islam et al.
[18], uses a constructive algorithm to evolve neural networks.
CNNE relies on the contribution of individuals in the popu-
lation and uses incremental learning to maintain the diversity
among individuals in an ensemble. Incremental learning based
on negative correlation could effectively reduce the redun-
dancy generated by individuals searching the same solution
space and thus different individuals could learn different aspect
of the training data, which could result in a final solution of
the ensemble. CNNE is a “noninvasive” method which relies
on proper implementation of BP. Though CNNE minimizes
optimization problems by utilization of ensembles, it suffers
from the “structural climbing problem” [17].

S. He et al. proposed a Group Search Optimizer-based
ANN (GSOANN) [19], which uses Group Search Optimizer,
a population-based optimization algorithm inspired by animal
social foraging behavior, to train the networks with least-
squared error function as the fitness function.

Paulito P. Palmes et al. proposed mutation-based genetic
neural network (MGNN) employing a specially designed mu-
tation strategy to perturb the chromosomes representing neural
networks [4]. MGNN is very similar to GNARL except that
it implements selection, encoding, mutation, fitness function,
and stopping criteria differently. MGNN’s encoding scheme
contributes to a flexible formulation of fitness function and
mutation strategy of local adaptation of evolutionary program-
ming, and it implements a stopping criteria using “sliding
window” to track the state of overfitness.

III. PROBLEM FORMULATION

In this paper, we consider the problem of single-hidden-
layer feedforward neural network (SLFN1) design for data

1SLFN is the original abbreviation used in [1] to refer to a “single-hidden-
layer feedforward neural network”.

Input Layer
Hidden Layer
Output Layer

Fig. 1. Single-hidden-layer Feedforward Neural Network

classification. We use a topological structure, activation func-
tions of nodes, and connection weights to describe an SLFN.
We use l ∈ [0, 1, 2] to distinguish the different layers, where
Layer 0 to 2 are the input layer, the hidden layer, and the output
layer, respectively. nl stands for the number of neurons in
Layer l. wk,pq represents the weight of the connection between
the pth neuron in Layer k − 1 to the qth neuron in Layer k.
bk,p stands for the bias of the pth neurons in Layer k. Fig. 1
depicts an example of SLFN. In the problem dataset S with |S|
samples, the ith sample i is composed of a pattern Si and the
corresponding desired output Ri, where i = 1, 2, ..., |S|. Thus
we use si,m to describe the mth element of the ith pattern,
and ri,q to denote the qth element of the ith desired outputs in
the dataset. With a given SLFN and a pattern Si, the computed
result ci,q can be obtained from the following formula

ci,q = f2(

n1∑
p=1

(w2,pq × f1(

n0∑
m=1

(w1,mp × si,m) + b1,p)) + b2,q)

(1)
where f1 and f2 are the activation functions for hidden layer
neurons and output neurons, respectively. For a trained SLFN,
we can make use of the difference between Ri and Ci to
evaluate the performance of the network.

The primary function to evaluate the performance of a
conventional BP network is the mean squared error (MSE)
between Ri and Ci. A small MSE means that the performance
is good and the network is well-trained. However, in order to
concentrate more on the accuracy of the classification result,
here we adopt a new fitness function ffitness (2) consisting of
the normalized mean squared error (NMSE) fNMSE (3) and
the classification percentage error fpercent (4). Their formulas
are given as follows:

ffitness = α× fNMSE + β × fpercent (2)
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fNMSE =
100

n2S
×

|S|∑
i=1

n2∑
q=1

(ri,q − ci,q)
2 (3)

fpercent = 100×
(
1− correct

total

)
(4)

In (2), α and β are user-defined parameters to balance the
weighting on (3) and (4) in the ultimate fitness function and
should be set to a small real value between 0 and 1. For
instance, implementations stressing classification correctness
can set α = 1 and β = 0.7. In this paper, we also use this
setting in the simulation.

For CROANN, we divide the samples in a dataset into
a training set, a validation set, and a testing set. We first
determine the best {w1,mp, w2,pq, b1,p, b2,q} quadlet with the
training set according to (2). Then we use the validation set to
detect and avoid overfitness (See Section IV.D). Since ANNs
should have the ability to process unfamiliar data, we use
the testing set to evaluate the accuracy of classification and
compare the results with other algorithms.

IV. ALGORITHM DESIGN

In this section, we first discuss how CRO works. Then
we introduce the encoding scheme and operators employed
to train the structure and weights of networks for CROANN.
Finally the stopping criteria is given.

A. Chemical Reaction Optimization

CRO is a population-based metaheuristic inspired by chem-
ical reactions, mimicking the process of reactions where
molecules collide with the walls of the container and with
each other. In the process, molecules attempt to reach the
stable state. Imagine we put a certain number of molecules
in a closed container. At the start of reaction, molecules with
excess energy are unstable. Since there is a natural tendency
for a reacting system to stay in a stable state, molecules
change their energy state from high to low through a sequence
of elementary reactions. When the reaction stops, we can
get molecules with the minimum stable state of energy. If
we consider different energy states as an energy surface, the
transition and interaction of molecules can result in a gradual
rolling down process on PES and the lowest point is the
minimum stable state of energy. We call the initial molecules
“reactants” and the final “products”.

In CRO, each molecule has a molecular structure, represent-
ing a solution of the problem, and two kinds of energy, i.e.
potential energy (PE) and kinetic energy (KE). PE stands for
the fitness function value and KE describes the tolerance of a
molecule to an increase of its energy state. Suppose ω and f
are a molecular structure and the fitness function, respectively,
then we compute its PE with PEω = f (ω). If ω′ is the
new structure derived from ω in an elementary reaction, then
PEω + KEω > PEω′ has to be satisfied. Otherwise, the
reaction is invalid and the new structure should be rejected. In
other words, KE represents the ability for a molecule to escape
from a local minimum. This rule can also be easily applied
to intermolecular elementary reactions and changes may be

more vigorous since more KE can be transformed into PE.
A central energy buffer is set up for energy conservation and
convergence.

We define four types of elementary reactions for CRO,
namely, on-wall ineffective collision, decomposition, inter-
molecular ineffective collision, and synthesis. These four el-
ementary reactions are defined to cover all possible reactions
under the framework of CRO. These four types can be
classified into two classes: uni-molecular reactions include
the first two types and inter-molecular reactions include the
latter two. A uni-molecular reaction can be triggered when
a single molecule collides on a wall of the container. An
inter-molecular reaction happens when two or more molecules
collide with each other (for simplicity, only two molecules are
considered in this class of reactions). Interested readers can
refer to [8] for the pseudocode of CRO.

B. Encoding
To accelerate the simulation and to reduce the difficulty

in programming, we use two matrices and two vectors to
represent different weights and thresholds. This scheme is
similar to that described in [4] with one key difference. In
[4], there is an extra element in each solution which controls
the perturbation strength, but we abandon it since CRO uses
one constant parameter to control the Gaussian perturbation.
We call the complete collection of these matrices and vectors
a “solution structure”. Every molecule has a solution structure
representing the network structure and determining the current
energy state the molecule is at.

C. Operators
1) Initial Solution Generator: This operator is designed

to generate a new structure of networks randomly. Each
call will generate a new solution structure. It is achieved
by first assigning random numbers to all elements and then
scaling them to [-1.0, 1.0] linearly. Its pseudocode is given in
Algorithm 1 below:

Algorithm 1 INITIALGEN (ω)
1: for all Matrices and vectors m in ω do
2: for all Elements e in m do
3: Randomly generate a real number n
4: e = n
5: end for
6: for all Elements e in m do
7: e = 2 ∗ (e−min(m))/(max(m)−min(m))− 1
8: end for
9: end for

2) Neighbor Generator: This operator is designed to gener-
ate a new solution ω

′
from a given solution ω. Its main purpose

is to perform a local search for better solutions. It is done
by perturbing one random element in the matrices or vectors
in ω with Gaussian perturbation, whose mean is the original
number and variation is a user-defined value. Its pseudocode is
given in Algorithm 2 where ρ stands for Gaussian perturbation
function and v is a user-defined variance.
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Algorithm 2 NEIGHBOUR (ω)
1: Generate a random integer i smaller than the total number

of elements in a solution
2: Find the ith element e in ω
3: e = e+ ρ(e, v)

3) Decomposition: This operator is used to generate two
different solutions ω

′

1 and ω
′

2 based on a given solution ω.
This operator can help molecules jump out of local minimums
by performing severe perturbation on the solution. It is done
by perturbing every element in the matrices and vectors in
ω with Gaussian perturbation probabilistically, say 50%. If,
though unlikely to happen, nothing is changed during the first
stage of the perturbation, this solution will be perturbed by
the Neighbor Generator function. Its pseudocode is given in
Algorithm 3 and the variables are as defined in the previous
section.

Algorithm 3 DECOMPOSITION (ω)
1: change = false
2: Copy ω to ω

′

1 and ω
′

2

3: for all Matrices and vectors m in ω
′

1 and ω
′

2 do
4: for all Elements e in m do
5: Generate a real r between 0 and 1
6: if r > 0.5 then
7: e = e+ ρ(e, v)
8: change = true
9: end if

10: end for
11: if change ̸= true then neighbour(the original ω

′

1 or
ω

′

2)
12: end if
13: end for

4) Synthesis: This operator is used to generate a new
solution ω

′
based on two given solutions ω1 and ω2. It is done

by randomly choosing elements from both solutions with equal
possibilities to form a new solution. Its pseudocode is given
in Algorithm 4.

Algorithm 4 SYNTHESIS (ω1 , ω2)

1: for all Matrices and vectors m in ω
′

do
2: for all Elements e in m do
3: Generate a real r between 0 and 1
4: if r > 0.5 then
5: e =counterpart in m1

6: else
7: e =counterpart in m2

8: end if
9: end for

10: end for

D. Stopping Criteria

We introduce two stopping criteria to CROANN: maxi-
mum function evaluations (FE) and overfitness detection. The
maximum FE criterion is a hard limit of CROANN and
no simulation could evaluate the fitness function more than
this threshold. The design of the other stopping criterion,
overfitness detection, is based on the observation that good per-
formance with the training samples may not necessarily result
in a good performance with the testing samples. Poor overall
performance might be obtained due to over-training the system
in the training phase. To address this problem, we employ a
“sliding window” to monitor the presence of overfitness in
the network. CROANN measures the validation performance
of the current best network V alF itnessi and compares this
performance with the previous best validation performance
using V alBesti−1 = min(V alF itnessj , ∀j < i) at the
end of ith window. If the previous validation performance
is better, then we say this network is “overfitting” and add
1 to the overfitness counter. When this overfitness counter
reaches a user-defined threshold, CROANN will terminate.
However, once V alBesti is smaller than V alF itnessi−1, the
overfitness counter is reset to zero. The pseudocode describing
the stopping criteria is given in Algorithm 5 below:

Algorithm 5 STOPPING CRITERIA (V alBest, CurrentNet)
1: if Current FE exceeds maximum FE then
2: CROANN stop
3: end if
4: Calculate the validation performance V alF itness
5: if V alF itness < V alBest then
6: overF itCount = 0
7: V alBest = V alF itness
8: Store CurrentNet
9: else

10: overF itCount++
11: if overF itCount > overF itThres then
12: Restore the saved best network
13: CROANN stop
14: end if
15: end if

V. SIMULATION RESULTS

In order to evaluate the performance of CROANN, the
simulation is implemented with C++ and tested with some
famous classification datasets from the UCI repository [20]:
Iris classification dataset, Wisconsin breast cancer classifi-
cation dataset and Pima Indians diabetes dataset. They are
all derived from real-world problems. The Iris dataset is a
standard benchmark for evaluating the performance of ANNs
and has been tested by many neural network algorithms,
including some EA-based ANNs algorithm. The latter two
datasets are used to test the ability of CROANN to recover
from polluted data [2]. The datasets are partitioned based
on the suggestion given by Prechelt [21]. Each of them is
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Fig. 2. Impact of CRO Parameters on Average Error Rate of Classification

separated into three classes: training class, validation class and
testing class with the ratio of 2:1:1 using the simple random
sampling method. First, several tests are conducted to evaluate
the impact of changes in different CRO parameters, using the
Iris classification dataset as benchmark. Then CROANN is
compared with other EA-based ANN algorithms proposed in
the recent literature to evaluate the performance.

A. Analysis of the impact of CROANN parameters

The ratio of occurrence for different elementary reactions
of CRO and the initial size of energy buffer have direct
impact on the final performance of the neural network. So
it is essential to analyze their impact in order to adjust them
for later use. The first experiment includes a set of tests on
different CRO parameter values, based on the Iris dataset, a
benchmark test for machine learning and pattern recognition.
When investigating one parameter, other parameters are set
constant. Results of each test are generated by averaging the
error rate of testing set in 50 trials. The analysis results are
shown in Fig. 2.

Results show that a Gaussian perturbation variance which
is too large makes CRO scan through the solution space in
a relatively large scale but can not explore small regions
carefully while a variance which is too small is likely to
result in getting stuck in local optima. Similarly, a small
population can not let the molecules fully explore the solution
space, while a large population will reduce the possibility

TABLE I
CROANN PARAMETERS

Parameter Value
Iris Cancer Diabetes

Function Evaluation Limit 50 000 50 000 172 800
Max Window Count 300 300 500

Gaussian Perturbation Variance 0.1
Initial Population Size 20

Initial Energy Buffer Size 0.0
Initial Molecular Kinetic Energy 100.0

Molecular Collision Rate 0.1
Kinetic Energy Loss Rate 0.1
Decomposition Threshold 300

Synthesis Threshold 500
Number of Trials 50

Window Size 100

of reaction occurrence of individual molecules. Initial energy
buffer size, initial molecular kinetic energy, and kinetic energy
loss rate control the overall energy in the whole system. They
also cooperate with molecular collision rate, thresholds for
decomposition and synthesis to control the ratio of occurrence
for different elementary reactions of CRO to a proper value.

B. Comparing CROANN with other EA-based ANN algorithms

For comparison, we employ six EA-based training algo-
rithms, namely simple genetic algorithm (SGA) ANNs [22],
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TABLE II
ERROR RATE (%) OF CROANN AND OTHER ANNS OF THE IRIS DATASET

Algorithm Training Set Validation Set Testing Set
Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max

CROANN 2.00 3.68 0.00 5.33 4.32 2.16 2.70 8.10 1.31 1.77 0.00 7.89
SGAANN 16.24 5.92 7.21 30.23 - - - - 14.20 8.82 0.00 36.00

EPANN 18.54 6.47 7.69 29.77 - - - - 12.56 8.42 0.00 32.00
ESANN 14.47 5.25 6.97 27.43 - - - - 7.08 6.40 0.00 26.00

PSOANN 13.27 5.39 7.38 25.84 - - - - 10.38 9.36 0.00 32.00
GSOANN 12.03 1.60 8.63 15.36 - - - - 3.52 2.27 0.00 8.00

MGNN - - - - - - - - 4.68 - - -

TABLE III
COMPARISON BETWEEN CROANN AND OTHER MACHINE LEARNING ALGORITHMS OF THE IRIS DATASET

Algorithm CROANN GANet-best [27] SVM-best [28] CCSS [29]
Error Rate 1.31 6.40 1.40 4.40

TABLE IV
ERROR RATE (%) OF CROANN AND OTHER ANNS OF THE WISCONSIN BREAST-CANCER DATASET

Algorithm Training Set Validation Set Testing Set
Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max

CROANN 3.89 0.72 3.21 5.61 3.54 0.42 2.86 4.00 1.06 0.67 0.00 2.29
SGAANN 3.88 0.63 3.04 5.63 3.86 1.14 2.59 7.82 1.50 0.72 0.00 2.85

EPANN 3.58 0.63 3.03 6.18 3.30 1.45 1.85 8.99 1.54 1.16 0.57 6.29
ESANN 2.98 0.11 2.73 3.16 2.70 0.39 2.14 3.52 0.95 0.66 0.00 2.86

PSOANN 3.26 0.24 2.92 3.80 2.37 0.43 1.37 3.35 1.24 2.02 0.00 11.43
GSOANN 3.35 0.09 3.26 3.56 2.17 0.21 1.93 2.89 0.65 1.42 0.00 1.14

MGNN - - - - - - - - 3.05 - - -

TABLE V
COMPARISON BETWEEN CROANN AND OTHER MACHINE LEARNING ALGORITHMS OF THE WISCONSIN BREAST CANCER DATASET

Algorithm CROANN GANet-best [27] SVM-best [28] CCSS [29] COOP [30] CNNE [18] EPNet [2] EDTs [31]
Error Rate 1.06 1.06 3.10 2.72 1.23 1.20 1.38 2.63

evolutionary programming (EP) ANNs [23][24], evolutionary
strategies (ES) ANNs [25], particle swarm optimizer (PSO)
ANN [26], mutation-based neural networks (MGNN) [4], and
group search optimizer (GSO) ANNs [19]. We also compare
CROANN with some other sophisticated or hybrid machine
learning algorithms further to check whether CROANN can
be competitive with them. Since there is no agreement on
the maximum number of FEs in the previous literature, the
maximum number of FEs for the first two datasets is set to 50
000 according to the average maximum FEs given in [4], while
for the third dataset, it is set to 172 800 according to [19].
Other CRO parameters are determined based on the analysis in
the previous section. Table I gives the collection of CROANN
parameters in the simulation.

1) Iris Dataset: The Iris dataset is the most widely-used
benchmark for machine learning and pattern recognition. The
whole dataset can be divided into three different classes of
iris species: Setosa, Versicolour and Verginica. The species of
iris can be determined by four attributes of the plants: sepal
length, sepal width, petal length and petal width. The dataset

is divided into three parts: 75 training samples, 37 validation
samples and 38 testing samples.

Results generated by CROANN, averaged over 50 trials,
and those of six other ANNs are displayed in Table II. It is
easy to see that CROANN outperforms all other EA-based
ANNs dramatically, in both training error and testing error.
The comparison with recent machine learning algorithms in
the literature is listed in Table III. CROANN also generates
the best result among these algorithms.

2) Wisconsin Breast Cancer Dataset: The Wisconsin Breast
Cancer dataset contains 699 samples, each of which has
real-valued attributes and can be classified into two classes:
458 benign and 241 malignant. To test the performance of
CROANN, all samples are divided into three parts by simple
random sampling method: 349 training samples, 175 validation
samples and 175 testing samples.

Results from CROANN and six other ANNs are listed in
Table IV. CROANN performs superior to SGAANN, EPANN,
PSOANN, GSOANN, and MGNN, and it has a similar
performance with ESANN. As compared with GSOANN,
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TABLE VI
ERROR RATE (%) OF CROANN AND OTHER ANNS OF THE PIMA INDIAN DIABETES DATASET

Algorithm Training Set Validation Set Testing Set
Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max

CROANN 16.55 2.73 15.89 18.23 16.04 3.01 14.58 17.71 19.67 5.38 17.19 23.44
SGAANN 17.73 0.96 16.05 20.67 16.48 1.23 14.61 19.44 24.46 3.75 20.31 35.94

EPANN 18.38 1.56 16.28 21.34 17.18 1.87 14.75 20.55 25.75 4.89 18.23 36.46
ESANN 15.85 0.28 15.32 16.37 14.26 0.35 13.34 16.51 20.93 1.76 17.19 25.52

PSOANN 16.25 0.19 15.76 16.77 14.74 0.47 14.20 16.51 20.99 1.47 18.23 23.96
GSOANN 16.43 0.21 15.97 16.80 14.82 0.21 14.37 15.21 19.79 0.96 17.19 21.88

TABLE VII
COMPARISON BETWEEN CROANN AND OTHER MACHINE LEARNING ALGORITHMS OF THE PIMA INDIAN DIABETES DATASET

Algorithm CROANN GANet-best [27] SVM-best [28] CCSS [29] COOP [30] CNNE [18] EPNet [2] EENCL [32]
Error Rate 19.67 24.70 22.70 24.02 19.69 19.60 22.38 22.1

CROANN can give a better standard derivation. There are
also comparisons with recent published results listed in Table
V. We also compare CROANN with other machine learning
algorithms and the results are given in Table V. We can see that
CROANN performs very well and shares the best performance
with GANet-best.

3) Pima Indian Diabetes Dataset: The Pima Indian Dia-
betes dataset contains 768 samples, 500 of which are indicated
with sign of diabetes and 268 are without such sign. There
are eight real-valued attributes that can be used to determine
whether a patient has the sign of diabetes or not. This dataset
is known as a difficult problem for machine learning for its
scarcity of samples and heavy noise pollution. This dataset is
partitioned into 384 training samples, 192 validation samples
and the 192 testing samples.

Table VI shows the comparison between CROANN and
five other EA-based ANNs (MGNN is not included because
there is no simulation data provided for this dataset in [4]).
CROANN again outperforms the rest in terms of the testing
set mean error. Results from other machine learning algorithms
are tabulated in Table VII, which demonstrates that CROANN
achieves a performance that is comparable with the best, i.e.
CNNE, and greatly outperforms the others.

VI. CONCLUSION

In this paper, we propose a novel EA-based ANNs called
CROANN, to train ANNs, based on CRO. We have shown
that CROANN can optimize the structure as well as the
weights of ANNs simultaneously using stochastic processes.
In CROANN, the structure and weights of a network is
encapsulated in one solution, which is considered as a point
in the solution space. In this way, CROANN searches the
global minimum, which represents the network configuration
providing the best performance. Since there are no restrictions
on the evolution of the network structure and on the weight
adaptation, CROANN does not suffer from the ”structural hill-
climbing” problem observed in the constructive and prun-
ing approaches of ANN [4]. Simulation results show that
CROANN can outperform other existing EA-based ANN

algorithms. In the Iris dataset and the Pima Indian Diabetes
dataset, CROANN provides the best testing error rate among
all representative EA-based ANNs. Although CROANN is
not the best in the test with the Wisconsin Breast Cancer
dataset, the gap between the result generated by CROANN
and the best one is indeed very small. In the comparisons
with other sophisticated machine learning algorithms on the
three classification problems, CROANN can always provide
the best performance. To summarize, CRO is well suited to
be incorporated in ANN to solve classification problems. In the
future, we will conduct a systematic analysis of variance on the
parameters and perform Student’s t-test to show significance
of the results. Moreover, we can further explore the ability of
CROANN to solve some real-world classification problems,
and other types of problems including function approximation,
data processing, and robotics.
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