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With a sample of (225.2 *+ 2.8) X 10° J/ 4 events registered in the BESIII detector, J/ ¢ — ym™ 7~ 7’
is studied using two 7’ decay modes: ' — 7" 1 and 1’ — yp°. The X(1835), which was previously
observed by BESII, is confirmed with a statistical significance that is larger than 20c. In addition, in the
7" 7~ m' invariant-mass spectrum, the X(2120) and the X(2370), are observed with statistical signifi-
cances larger than 7.2¢ and 6.4¢, respectively. For the X(1835), the angular distribution of the radiative
photon is consistent with expectations for a pseudoscalar.

DOI: 10.1103/PhysRevLett.106.072002

A 77 n' resonance, the X(1835), was observed in

J/ i — yat 7 n decays with a statistical significance of
7.70 by the BESII experiment [1]. A fit to a Breit-Wigner
function yielded a mass M = 1833.7 = 6.1(stat) =
2.7(syst) MeV/c?, a width T = 67.7 = 20.3(stat) *
7.7(syst) MeV/c?, and a product branching fraction
B(J/¢y — vX) - BX — 7t~ n') = [2.2 + 0.4(stat) *
0.4(syst)] X 1074, The study was stimulated by the
anomalous pp invariance mass threshold enhancement,
that was reported in J/ — ypp decays by the BESII
experiment [2] and was recently confirmed in an analysis
of ' = w7~ J/, J/y — ypp decays by the BESIII
experiment [3]. The possible interpretations of the X(1835)
include a pp bound state [4-7], a glueball [8-10], a radial
excitation of the ' meson [11], etc. A high statistics data
sample collected with BESIII provides an opportunity to
confirm the existence of the X(1835) and look for possible
related states that decay to 77+ 77~ %/, and the study of such
states may help us to understand the dynamics of QCD.

PACS numbers: 12.39.Mk, 12.40.Yx, 13.20.Gd, 13.75.Cs

Lattice QCD predicts that the lowest lying pseudoscalar
glueball meson has a mass that is around 2.3 GeV/c? [12].
This pseudoscalar glueball may have properties in com-
mon with the 7., due to its similar decay dynamics that
favor decays into gluons. One of the strongest decay chan-
nels of the n.is w" 7~ . Thus J/ oy — y7* 7~ n’' decays
may be a good channel for finding 0~ glueballs.

In this Letter, we report a study of J/ ¢ — ymw" 7 n’
that uses two =’ decay modes, ' — yp and 7' —
7t 7~ m. The analysis uses a sample of (225.2 = 2.8) X
10% J/4 events [13] accumulated in the new Beijing
Spectrometer (BESII) [14] located at the Beijing
Electron-Positron  Collider (BEPCII) [15] at the
Beijing Institute of High Energy Physics.

BEPCII is a two-ring e " e~ collider designed for a peak
luminosity of 10} cm™2 s™! at a beam current of 0.93 A.
The cylindrical core of the BESIII detector consists of a
helium-gas-based drift chamber, a plastic scintillator time-
of-flight system (TOF), and a CsI(TI) electromagnetic
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calorimeter, all enclosed in a superconducting solenoidal
magnet providing a 1.0-T magnetic field. The solenoid is
supported by an octagonal flux-return yoke with resistive
plate counter muon identifier modules interleaved with
steel. The charged particle and photon acceptance is 93%
of 47, and the charged particle momentum and photon
energy resolutions at 1 GeV are 0.5% and 2.5%, respec-
tively. The time resolution of TOF is 80 ps in the barrel and
110 ps in the endcaps, and the dE/dx resolution is 6%.

Charged-particle tracks in the polar angle range
| cos@| < 0.93 are reconstructed from hits in the helium-
gas-based drift chamber. Tracks that extrapolate to be
within 20 cm of the interaction point in the beam direction
and 2 cm in the plane perpendicular to the beam are
selected. The TOF and dE/dx information are combined
to form particle identification confidence levels for the r,
K, and p hypotheses; each track is assigned to the particle
type that corresponds to the hypothesis with the highest
confidence level. Photon candidates are required to have at
least 100 MeV of energy in the electromagnetic calorimeter
regions |cosf| < 0.8 and 0.86 < |cosf| <0.92 and be
isolated from all charged tracks by more than 5°. In this
analysis, candidate events are required to have four
charged tracks (zero net charge) with at least three of the
charged tracks identified as pions. At least two photons
(three photons) are required for the n'— yp (n'—
7r" 7~ 1) channel.

For J/¢ — ymt 7 7n/(n' — yp), a four-constraint
(4C) energy-momentum conservation kinematic fit is
performed to the yyw" 7~ 7" 7~ hypothesis. For events
with more than two photon candidates, the combination
with the minimum 2 is used, and x7. <40 is required.
Events with [M.,,, — m | <0.04 GeV/c?, M, — m,| <
0.03 GeV/c?, 0.72 GeV/c* <M, <0.82 GeV/c?, or
M+ - — my| <0.007 GeV/c? are rejected to suppress
the background from 7’7 7 7 7, nortm wt @,
o(w— ym)ata ata, and yrtm p(n— yrt o),
respectively. A clear 7’ signal with a 5 MeV/c? mass
resolution is evident in the mass spectrum of all selected
y7 7~ combinations shown in Fig. 1(a). Candidate p and
1’ mesons are reconstructed from the 7+ 7~ and y7w" 7~
pairs with [M .+~ —m,| <0.2 GeV/c? and M+, —
m,| <0.015 GeV/c?, respectively. If more than one
combination passes these criteria, the combination with
M, .+ .- closest to m,, is selected. After the above selec-
tion, the X(1835) resonance is clearly visible in the
7+ 7~ ' invariant-mass spectrum of Fig. 1(b). Also, addi-
tional peaks are evident around 2.1 and 2.4 GeV/c? as well
as a distinct signal for the 7.

For J/ — yat 7w~ n'(n' — 7" 7 n), a 4C kinematic
fit to the yyym "~ w7~ hypothesis is performed. If
there are more than three photon candidates, the combina-
tion with the minimum x?. is selected, and x3. <40 is
required. In order to reduce the combinatorial background
events from 70— yy, [M,, —m_|>0.04 GeV/c? is
required for all photon pairs. The 1 candidates are selected
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FIG. 1 (color online). Invariant-mass distributions for the se-
lected candidate events. Panels (a) and (b) are the yw 7~
invariant-mass spectrum and the 77+ 7~ 1’ invariant-mass spec-
trum for n’ — yp, respectively. Panels (c¢) and (d) are the
7t 7~ 7 invariant-mass spectrum and the 77~ %’ invariant-
mass spectrum for n’ — 777~ n, respectively. The histograms
in (b) and (d) are from J/ — ym" 7~ 7’ phase-space MC
events (with arbitrary normalization) for n' — yp and n' —
77 m, respectively.

by requiring |M,, —m,| <0.03 GeV/c*. A five-
constraint fit with an 1 mass constraint is used to improve
the mass resolution from 8 MeV/c? (4C) to 3 MeV/c2, as
shown in Fig. 1(c) where x2. < 40 is required. To select 7’
mesons, |M ., — my| <0.01 GeV/c? is required. If
more than one combination passes the above selection,
the combination with M+ ,-, closest to m,, is selected.
After the above selection, structures similar to those seen
for the »’ — yp channel in the 77 7’ invariant-mass
spectrum can be seen in Fig. 1(d), namely, peaks near 1.8,
2.1, and 2.4 GeV/c? as well as the ...

Potential background processes are studied with an in-
clusive sample of 2 X 108 J/ s events generated according
to the Lund-Charm model [16] and the Particle Data Group
(PDG) decay tables [17]. There are no peaking back-
grounds at the positions of the three resonances. To ensure
further that the three peaks are not due to background, we
have studied potential exclusive background processes us-
ing data. The main background channel is from J/¢ —
7’7t 7~ x'. Non-n/ processes are studied with 7’ mass-
sideband events. Neither of these produce peaking
structures.

The 7" 77~ n' invariant-mass spectrum for the combined
two 1’ decay modes is presented in Fig. 2. Here a small
peak at the position of the f;(1510) signal is also present.
Fits to the mass spectra have been made using four
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efficiency-corrected Breit-Wigner functions convolved
with a Gaussian mass resolution plus a nonresonant
7t 7~ n' contribution and background representations,
where the efficiency for the combined channels is obtained
from the branching-ratio-weighted average of the efficien-
cies for the two n’ modes. The contribution from non-
resonant yw 7 n' production is described by
reconstructed Monte Carlo (MC)-generated J/ i —
ym o~ ' phase space decays, and it is treated as an
incoherent process. The background contribution can be
divided into two different components: the contribution
from non-7n’ events estimated from %’ mass sideband,
and the contribution from J/¢ — 7’7" 7~ 5. For the
second background, we obtain the background 7" 7~ 7’
mass spectrum from data by selecting J/ ¢ — 707t 7~ n’
events and reweighting their mass spectrum with a weight
equal to the MC efficiency ratio of the y7* 7 7' and
mata ' selections for J/¢ — 707wt mx'. The
masses, widths, and number of events of the f;(1510),
the X(1835) and the resonances near 2.1 and
2.4 GeV/c?, the X(2120) and X(2370), are listed in
Table 1. The statistical significance is determined from
the change in —21InL in the fits to mass spectra with and
without signal assumption while considering the change of
degree of freedom of the fits. With the systematic
uncertainties in the fit taken into account, the statistical

@
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FIG. 2 (color online). (a) The " 7~ n' invariant-mass distri-
bution for the selected events from the two 5’ decay modes.
(b) Mass spectrum fitting with four resonances; here, the dash-
dotted line is contributions of non-n’ events and the 77" 7~ »’
background for two 7’ decay modes, and the dashed line is
contributions of the total background and nonresonant 7" 7~ 7’
process.

TABLE 1. Fit results with four resonances for the combined
two 1’ decay modes

Resonance M(MeV/c?) F'(MeV/c?) Nevent
f1(1510) 1522.7 = 5.0 48 = 11 230 + 37
X(1835) 1836.5 = 3.0 190.1 £9.0 4265 *+ 131
X(2120) 21224 £ 6.7 83+ 16 647 =103
X(2370) 2376.3 £ 8.7 83 =17 565 = 105

significance of the X(1835) is larger than 200, while those
for the f,(1510), the X(2120), and the X(2370) are larger
than 5.70, 7.20, and 6.40, respectively. The mass and
width from the fit of the f,(1510) are consistent with
PDG values [17]. With MC-determined selection efficien-
cies of 16.0% and 11.3% for the ' — yp and 7' —
7t 7~ n decay modes, respectively, the branching fraction
for the X(1835) is measured to be B(J/y — yX(1835))
B(X(1835)— w7 1')=(2.87+0.09) X 10~*. The con-
sistency between the two 1’ decay modes is checked by
fitting their 77 77~ %’ mass distribution separately with the
procedure described above.

For radiative J/ i decays to a pseudoscalar meson, the
polar angle of the photon in the J/ ¢ center of mass system,
6, should be distributed according to 1+ 005267. We
divide the | cosf, | distribution into 10 bins in the region
of [0, 1, 0]. With the same procedure as described above,
the number of the X(1835) events in each bin can be
obtained by fitting the mass spectrum in this bin, and
then the background-subtracted, acceptance-corrected
| cosd, | distribution for the X(1835) is obtained as shown
in Fig. 3, where the errors are statistical only. It agrees with
1+ cos2¢97, which is expected for a pseudoscalar, with
x%/d.o.f =11.8/9.

The systematic uncertainties on the mass and width are
mainly from the uncertainty of background representation,
the mass range included in the fit, different shapes for
background contributions, and the nonresonant process
and contributions of possible additional resonances in the
1.6 GeV/c? and 2.6 GeV/c? mass regions. The total sys-

tematic errors on the mass and width are *3¢ and

5000 F
4000 |
< 3000F
o
= N ]
'E B 4
Z. 2000 -]
o L 4
1000 {
0 E ! ! ! ! ]
0.0 02 04 06 0.8 1.0
cos8,|
FIG. 3. The background-subtracted, acceptance-corrected

| cos, | distribution of the X(1835) for two 1’ decay modes
for J/ o — yatm 7.
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38 MeV/c? for the X(1835), *37and *31 MeV/c? for the

X(2120), 23 and "% MeV/c? for the X(2370), respec-
tively. For the systematic error of the branching
fraction measurement, we additionally include the uncer-
tainties of the MC generator, charged track detection effi-
ciency, particle identification efficiency, photon detection
efficiency, kinematic fit, the ' decay branching fractions
to w77~ m and yp [17], the requirement on the y7y
invariant-mass distribution, signals selection of p, 7, and
1’ and the total number of J/¢ events [13]. The main
contribution also comes from the uncertainty in the back-
ground estimation, and the total relative systematic error
on the product branching fraction for the X(1835) is {27

In summary, the decay channel J/¢ — 7" 7 n' is
analyzed using two n’ decay modes, ' — yp and o' —
7"~ . The X(1835), which was first observed at BESII,
has been confirmed with a statistical significance larger
than 200. Meanwhile, two resonances, the X(2120) and the
X(2370) are observed with statistical significances larger
than 7.20 and 6.40, respectively. The masses and widths
are measured to be

X(1835)
M = 1836.5 = 3.0(stat) *3$(syst) MeV/c?
I' = 190 =+ 9(stat) *32(syst) MeV/c?

X(2120)
M = 2122.4 + 6.7(stat) *47 (syst) MeV/c?
I' = 83 =+ 16(stat) 31 (syst) MeV/c?

X(2370)
M = 2376.3 + 8.7(stat) *33(syst) MeV/c?
I' = 83 * 17(stat) T¢*(syst) MeV/c?.

For the X(1835), the product branching fraction is
B[J/y — vX(1835)] - B(X(1835) — w7 n') =[2.87+
0.09(stat) *58 (syst)] X 1074, and the angular distribution
of the radiative photon is consistent with a pseudoscalar
assignment. The mass of the X(1835) is consistent with the
BESII result, but the width is significantly larger. If we fit
the mass spectrum with one resonance as BESII, the mass
and width of the X(1835) are 1841.2 = 2.9 MeV/c? and
109 + 11 MeV/c?, where the errors are statistical only.

In the mass spectrum fitting in Fig. 2(b), possible inter-
ferences among different resonances and the nonresonant
process are not taken into account which might be a source
of the large y? value for the fit (y?/d.o.f = 144/62). The
dips around 2.2 GeV/c? and 2.5 GeV/c? may not be fitted
well due to the neglect of such interferences. In the absence
of knowledge of the spin parities of the resonances and
their decay intermediate states, reliable fits that include
interference cannot be done.

It is intriguing that it is the first time resonant structures
are observed in the 2.3 GeV/c? region in the 7" 7 7/

mode and in J/ 4 radiative decays which a 0~ glueball
may favor to decay to and to be produced from. To under-
stand the nature of the X(1835), X(2120), and X(2370), it
would be crucial to measure their spin parities and to
search for them in more decay modes and in more produc-
tion mechanisms. To determine their spin parities, and to
measure their masses and widths more precisely, a partial
wave analysis must be performed, which will be possible
with the much higher statistics J/ ¢ data samples planned
for future runs of the BESIII experiment.
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