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Abstract

In this paper, we re-examine the profitability of technical analysis using the Reality

Check of White (2000, Econometrica) that corrects the data snooping bias. Comparing

to previous studies, we study a more complete “universe” of trading techniques, including

not only simple trading rules but also investor’s strategies, and we test the profitability of

these rules and strategies with four main indices from both relatively mature and young

markets. It is found that profitable simple rules and investor’s strategies do exist with

statistical significance for NASDAQ Composite and Russell 2000 but not for DJIA and

S&P 500. Moreover, the best rules for NASDAQ Composite and Russell 2000 outperform

the buy-and-hold strategy in most in- and out-of-sample periods, even when transaction

costs are taken into account. We also find that investor’s strategies are able to improve

on the profits of simple rules and may even generate significant profits from unprofitable

simple rules.

Keywords: data snooping, investor’s strategies, stationary bootstrap, technical analysis,

trading rules, White’s Reality Check.



1 Introduction

Technical analysis has been widely applied by practitioners to analyze financial data

and make trading decisions for decades. This method relies on mechanical trading

rules and strategies to generate buy and sell signals. Thus, whether these trading tech-

niques indeed result in significant profit has been a long-debated issue since Fama and

Blume (1966). Recent empirical studies, however, find more and more supporting evi-

dences for the profitability of techncial analysis, including, among others, Sweeney (1986,

1988), Brock, Lakonishok, and LeBaron (1992), Blume, Easley, and O’Hara (1994), Chan,

Jegadeesh, and Lakonishok (1996, 1999), Gencay (1996, 1998, 1999), Neely, Weller, and

Dittmar (1997), Brown, Goetzmann, and Kumar (1998), Rouwenhorst (1998), Allen and

Karjalainen (1999), Chang and Osler (1999), Neely and Weller (1999), Chan, Hameed,

and Tong (2000), and Lo, Mamaysky, and Wang (2000). These results suggest that

technical analysis is popular because it can “beat the market.”

On the other hand, Lo and MacKinlay (1990) and Brock, Lakonishok, and LeBaron (1992)

raised a concern about the data snooping bias that may arise in many empirical studies.

Such bias is mainly a consequence of data reuse. In the context of evaluating technical

analysis, it is conceivable that, by repeatedly examining different trading rules using the

same data set, some rules would appear to be profitable, yet such profitability may simply

be due to luck. This concern is shared by academic and market professionals; see, e.g.,

Allen and Karjalainen (1999), LeBaron and Vaitilingam (1999), and Ready (2002). To

avoid spurious inferences resulted from data snooping, White (2000) proposed a formal

test, now also known as White’s Reality Check, on whether there exists a superior model

(rule) in a “universe” of models (rules). Sullivan, Timmermann, and White (1999), hence-

forth STW, and White (2000) applied this test and found that there exists no profitable

simple trading rule for Dow Jones Industrial Average (DJIA) index, S&P 500 index, and

S&P 500 futures. This method has also been applied by Sullivan, Timmermann, and

White (2001) to demonstrate that the well known calendar effect is in fact a statistically

insignificant phenomenon.

It may be too early to declare the obituary for technical analysis, however. To prop-

erly quantify the effect of data snooping, White’s Reality Check requires constructing a

“universe” of the trading rules considered by previous researchers and practitioners. To

this end, STW collected a total of 7, 846 trading rules, drawn from 5 commonly used
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classes of rules in financial markets. Although 7, 846 is a large number, this collection of

rules may not be sufficient for testing the profitability of technical analysis using Reality

Check. First, several well known classes of trading rules, such as momentum strategies

and head-and-shoulders, were not included. Second, STW considered only simple trading

rules but not investor’s strategies. In practice, an investor need not stick to only one

simple rule but may employ a complex trading strategy that utilizes the information from

many rules. Taking these rules and strategies into account should be able to enlarge the

“effective span” of the trading rules studied in STW and hence may affect the result of

Reality Check. Moreover, STW analyzed only the samples of more “mature” markets,

such as DJIA and S&P 500. Since the last decade, small-cap and technology stocks have

played more active roles in contemporary markets. It is therefore also interesting to

find out whether STW’s claim remains valid in the samples of other relatively “young”

markets.

In this paper, we extend the analysis of STW and White (2000) along the following

lines. First, White’s Reality Check is applied to an expanded “universe” of 39, 832

simple trading rules, “contrarian” rules, and investor’s strategies. Second, our study

covers the indices of both “mature” and “young” markets: DJIA, S&P 500, NASDAQ

Composite, and Russell 2000. Third, we consider transaction costs in evaluating the

performance of trading rules. It is found that, similar to Siegel (2002, pp. 290–297),

profitable trading rules and investor’s strategies do exist with statistical significance for

NASDAQ Composite and Russell 2000. On the other hand, the claims of STW and

White (2000) still stand for DJIA and S&P 500. We also find that investor’s strategies

are able to improve on the profits of simple rules. It is even more interesting to observe

that some investor’s strategies constructed from unprofitable simple rules can generate

significant profits. These results show that investor’s learning and decision processes are

important for technical analysis. Therefore, the profitability of technical analysis can

not be properly evaluated without considering investor’s strategies. Further examination

shows that the best rules for NASDAQ Composite and Russell 2000 outperform the buy-

and-hold strategy in most in- and out-of-sample periods, even when transaction costs are

taken into account. Our results are thus in line with the claim that the degree of market

efficiency is related to market maturity.

This paper is organized as follows. White’s Reality Check is briefly discussed in
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Section 2. The trading rules and investor’s strategies included in our expanded “universe”

are described in Section 3. Section 4 presents the empirical results. Section 5 concludes

the paper. The parameter values of the trading rules and strategies are given in Appendix.

2 White’s Reality Check

Data snooping is quite common in empirical economic studies. As economic activities in

the real world are not experimental in general, researchers often have little choice but

rely on the same data set. In testing a model on a given data set, the data snooping bias

may arise when previous test results based on the same data set are ignored. Lo and

MacKinlay (1990) showed that even slight prior information has a dramatic impact on

the resulting statistical inferences.

In the literature, there are basically two different approaches to tackling the data

snooping bias. The first approach focuses on data and tries to avoid re-using the same

data set. This may be done by testing a model with a different but comparable data

set; see e.g., Lakonishok, Shleifer, and Vishny (1994) and Chan, Karceski, and Lakon-

ishok (1998). When such data are not available, one may adopt a large data set and vali-

date the test using several subsamples; see e.g., Brock, Lakonishok, and LeBaron (1992),

Rouwenhorst (1998, 1999), Gencay (1998), and Fernandez-Rodriguez et al. (2000). Such

sample splitting is, however, somewhat arbitrary and hence may lack desired objectivity.

A more formal approach is to consider all possible models and construct a test with

properly controlled test size (type I error). For example, Lakonishok and Smidt (1988)

suggested using the Bonferroni inequality to bound the size of each individual test. Un-

fortunately, this method is not appropriate when the number of hypotheses (models)

being tested is large, as in the case of testing the profitability of technical analysis. The

Reality Check proposed by White (2000) follows the latter approach but does not suffer

from this problem.

Given a performance criterion, let ϕk (k = 1, . . . ,M) denote the performance measure

of the k-th model (rule) relative to the benchmark model (rule). The null hypothesis is

that there does not exist a superior model (rule) in the collection of M models (rules)

under the given performance criterion. That is,

H0 : max
k=1,...,M

ϕk ≤ 0. (1)
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Rejecting (1) implies that there exists at least one model (rule) that outperforms the

benchmark. Testing this hypothesis is cumbersome when all models (rules) are evaluated

using the same data set and also when M is large.

In the current context, ϕk may be the mean return IE(fk), where fk is the return of

the k-th trading rule relative to the benchmark rule. Let yt denote the rate of return of

an asset at time t and sk,t−1 the signal function of the k-th rule based on the information

up to time t − 1. Here, sk,t−1 takes the value 1 for a long position, 0 for no position, or

−1 for a short position. Setting the rule of no position (zero return) at all time as the

benchmark, the t-th observation of fk is fk,t = ln(1+ytsk,t−1), t = 1, . . . , n.1 Thus, when

ϕk = IE(fk), it is natural to base a test of (1) on the maximum of the normalized sample

average of fk,t:

V n = max
k=1,...,M

√
n f̄k, (2)

where f̄k =
∑n

t=1 fk,t/n. When ϕk is the Sharpe ratio of the k-th rule relative to the

risk-free interest rate r:

ϕk =
IE(ηk) − IE(r)

{IE(η2
k) − [IE(ηk)]2}1/2

,

where ηk is such that its t-th observation is ηk,t = ytsk,t−1, we can compute its sample

counterpart as

f̄k =
1
n

∑n
t=1(ηk,t − rt)[

1
n

∑n
t=1 η2

k,t −
(

1
n

∑n
t=1 ηk,t

)2
]1/2

.

Basing on this f̄k, the statistic (2) can still be used to test (1).

White (2000) suggested using the stationary bootstrap method of Politis and Ro-

mano (1994) to compute the p-values of V n. Let f∗
k (j) denote the j-th bootstrapped

sample of fk and f̄∗
k (j) =

∑n
t=1 f∗

k,t(j)/n its sample average. We then obtain the empiri-

cal distribution of V
∗
n with the realizations:

V
∗
n(j) = max

k=1,...,M

√
n(f̄∗

k (j) − f̄k), j = 1, . . . , B. (3)

Corollary 2.4 of White (2000) showed that, under suitable regularity conditions, the

distributions of V
∗
n and V n are asymptotically equivalent. The Reality Check p-value is

1Note that sk depends on unknown parameters and must be evaluated using some parameter estimates.

For notational convenience, we suppress the arguments of sk and still denote the estimated return as fk.
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then obtained by comparing V n with the quantiles of the empirical distribution of V
∗
n.

The null hypothesis is rejected whenever the p-value is less than a given significance level.

3 An Expanded Universe of Trading Rules and Strategies

A crucial step in White’s Reality Check is to construct a “universe” of trading rules and

strategies for evaluation. There are some limitations of STW’s universe, however. First,

it contains only 5 classes of simple trading rules. Second, it ignores investor’s strategies

that embody investor’s decision process based on the information from many simple

rules. Although most studies of technical analysis focus only on simple rules, investor’s

strategies should be practically more relevant. In this paper we expand the universe of

STW to a collection of 39, 832 rules and strategies, including 12 classes of 18, 326 simple

rules, 18, 326 corresponding “contrarian” rules, and 3, 180 investor’s strategies. Note that

not only investor’s strategies but also contrarian rules have not been considered in the

literature. This collection greatly enlarges the “effective span” of the rules in STW. All

the rules and strategies considered in this study are summarized in Table 1 and will be

discussed subsequently.

3.1 Simple Trading Rules

There are 12 classes of simple trading rules in our expanded universe; 5 of them: fil-

ter rules (FR), moving averages (MA), support-and-resistance (SR), channel break-outs

(CB), and on-balance volume averages (OBV) were those originally used to form the

universe in STW. We follow STW to construct 7, 846 trading rules for these 5 classes;

see STW for details. The other classes of simple rules are also well known among mar-

ket professionals, including momentum strategies in price (MSP), momentum strategies

in volume (MSV), head-and-shoulders (HS), triangle (TA), rectangle (RA), and dou-

ble tops and bottoms (DTB), and broadening tops and bottoms (BTB). Momentum

strategies have been widely analyzed in the literature; see e.g., LeBaron (1991), Chan,

Jegadeesh, and Lakonishok, (1996, 1999), Rouwenhorst (1998, 1999), and Chan, Hameed,

and Tong (2000). All other rules were also studied by Lo, Mamaysky, and Wang (2000);

Chang and Osler (1999) focused on the HS rules.
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Table 1: The expanded universe of trading rules and strategies.

Simple trading rules 18,326

Filter Rules (FR) 497

Moving Averages (MA) 2,049

Support and Resistance (SR) 1,220

Channel Break-Outs (CB) 2,040

On Balance Volume Averages (OBV) 2,040

Momentum Strategies in Price (MSP) 1,760

Momentum Strategies in Volume (MSV) 1,760

Head and Shoulders (HS) 1,200

Triangle (TA) 720

Rectangle (RA) 2,160

Double Tops and Bottoms (DTB) 2,160

Broadening Tops and Bottoms (BTB) 720

Contrarian trading rules 18,326

Investor’s strategies 3,180

Learning Strategies (LS) 1,404

Vote Strategies (VS) 888

Position Changeable Strategies (PCS) 888

Total 39,832

A momentum strategy adopted by market practitioners is determined by an “oscilla-

tor” constructed from a momentum measure. The momentum measure used in this study

is the rate of change (ROC). Specifically, the m-day ROC at time t is (qt − qt−m)/qt−m,

where qt is the closing price or closing volume at time t. Pring (1991, 1993) recommended

three oscillators: simple oscillator, moving average oscillator, and cross-over moving aver-

age oscillator. The simple oscillator is just the m-day ROC; the moving average oscillator

is the w-day moving average of m-day ROC with w ≤ m; the cross-over moving average

oscillator is the ratio of the w1-day moving average to the w2-day moving average (both

based on m-day ROC) with w1 < w2. An overbought/oversold level k (say 5% or 10%) is
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needed to determine whether a position should be initiated. When the oscillator crosses

the overbought level from below, it is a signal for initiating a long position. On the other

hand, a signal for short position will be issued when the oscillator crosses the oversold

level from above. We set that, once a position is initiated, the investor will hold the

position for fixed holding days f and then liquidate it. There are 1,760 rules in the MSP

class and 1,760 rules in the MSV class; the values of the parameters m, w, k and f are

given in Appendix A.1.

The rules in the HS class are also well known in financial markets. The HS rules

are determined by the top-and-bottom patterns of price movements. For a given sample

period with five equal subperiods, each with n days, a HS pattern is such that the

price sequentially exhibits left shoulder (top), left trough (bottom), head (top), right

trough (bottom), and right shoulder (top) in these subperiods. We require the two

shoulders (troughs) being approximately equal such that their differences are no more

than a differential rate x. To identify this pattern more easily, it is also required that the

maximal price of the head subperiod must be the highest price in all superiods. Moreover,

the minimal prcies in the head and shoulder subperiods must be higher than those of

adjacent trough subperiods, and the maximal prices of two trough subperiods must be

lower than those of the head and shoulder subperiods. Once an HS pattern is completed,

future price movement is expected to decline because it is believed that the falling trend

would prevail after such a struggle of price adjustment. Thus, an HS pattern serves as a

signal of taking a short position. For these trading rules, we considered three liquidation

methods: fixed holding days f , stoploss rate r, and fixed liquidation price (depending on

the parameter d). There are 1,200 rules in the HS class; the values of the parameters in

this class are discussed in Appendix A.2.

The trading rules of the TA class are also based on price movements that exhibit a

series of top-and-bottom patterns. To identify a triangle, we again divide a given period

into five equal subperiods, each with n days, orderly numbered from 1 to 5. Let Mi

and mi denote, respectively, the maximum and minimum in subperiod i. A triangle is

formed when either one of the two patterns below holds: (1) M1,M3,M5 are tops such

that M1 > M3 > M5, and m2,m4 are bottoms such that m2 < m4; (2) m1,m3,m5 are

bottoms such that m1 < m3 < m5, and M2,M4 are tops such that M2 > M4. Moreover,

the minimal closing price of a top subperiod is required to be higher than that of adjacent

7



bottom subperiod(s), and the maximal closing price of a top subperiod is required to be

higher than that of adjacent bottom subperiod(s). The trading rules of the RA class are

determined in a similar fashion. A rectangle is formed when the tops M1,M3,M5 (or

M2,M4) lie near an upper horizontal line and the bottoms m2,m4 (or m1,m3,m5) lie

near a lower horizontal line. By “near a horizontal line” we mean the difference between

the tops (bottoms) are within certain bounds (e.g., ±0.005, ±0.0075). Once a triangle

(rectangle) is completed, it will be a signal for taking a long (short) position if the future

closing price exceeds the latest top (or falls below the latest bottom) by a fixed proportion

x, known as the “trend filter.” We also considered three liquidation methods for the TA

and RA classes: fixed holding days f , stoploss rate r, and day filter d. There are 720

rules in the TA class and 2,160 rules in the RA class; the parameter values of these two

classes are discussed in Appendix A.3 and A.4, respectively.

The DTB class includes two patterns: double-top and double-bottom. Dividing a

given sample period into three equal subperiods, each with n days, a double-top is formed

by two equal tops (maxima) in the first and last subperiods and a bottom (minimum)

in the second subperiod. Similarly, a double-bottom is formed by two equal bottoms

(minima) in the first and last subperiods and a top (maximum) in the second subperiod.

The tops (bottoms) are considered equal if they are within certain bounds of their average

(e.g., ±0.005,±0.0075). To identify the double-top (double-bottom) pattern more easily,

we require the minimal (maximal) closing price of the second subperiod is at least g

percent lower (higher) than the average of two tops (bottoms). Similar to the TA and

RA classes, the minimal closing price of a top subperiod is required to be higher than

that of adjacent bottom subperiod, and the maximal closing price of a top subperiod is

required to be higher than than that of adjacent bottom subperiod. Also, a trend filter

is also needed to determine future price movement. If the closing price in a following day

exceeds the latest top (falls below the latest bottom) by a trend filter x, it is a sign of

long (short) position. We again consider three liquidation methods: fixed holding days

f , stoploss rate r, and day filter d. There are 2,160 rules in the DTB class; the parameter

values of this class are provided in Appendix A.5.

The trading rules in the BTB class, similar to those in the TA class, are determined by

the top-and-bottom patterns in five subperiods. The difference is that TA requires “con-

vergence” in shape, whereas BTB corresponds to “divergence” in shape. More specifically,
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again let Mi and mi denote, respectively, the maximum and minimum in subperiod i. A

BTB pattern is formed if one the two conditions below holds: (1) M1,M3,M5 are tops

such that M1 < M3 < M5, and m2,m4 are bottoms satisfying m2 > m4; (2) m1,m3,m5

are bottoms such that m1 > m3 > m5, and M2,M4 are tops satisfying M2 < M4. The

parameters of this class are set as those in the TA class (see A.3), and there are 720 rules

in the BTB class.

3.2 Contrarian Trading Rules

“Contrarian” rules are common in trader’s handbooks (e.g., LeBaron and Vaitilingam,

1999, and Siegel, 2002), but they were rarely inspected in previous empirical studies.

Corresponding to each simple trading rule, a contrarian rule is such that a long signal

of the simple rule suggests a short position and vice versa. Typically, technical analysts

believe that the trading signals of some trading rules are caused by price deviations far

from the current state and hence signify changes in trend. The rationale of contrarian

rules is that such price deviations might still be temporary so that the market will return

to its original state sooner or later. In our study, there are 18, 326 simple trading rules

and hence 18, 326 corresponding contrarian rules.

3.3 Investor’s Strategies

For technical analysts, investor’s strategies are usually more important than simple trad-

ing rules. Although simple rules may be informative in some cases, it is hard to believe

that technical investors stick to only a single rule without incorporating other available

information. Pring (1991) pointed out: “No single indicator can ever be expected to

signal all trend reversals, and so it is essential to use a number of them together to build

up a consensus” (p. 9). Indeed, investor’s strategies are practically useful because they

rely on the information generated from many simple rules and make trading decisions

through a complex evaluation process. Despite their practical relevance, investor’s strate-

gies have not been examined in previous studies of technical analysis. In this paper, we

consider three classes of investor’s strategies: learning strategies (LS), vote strategies

(VS), position changeable strategies (PCS), leading to a total of 3, 180 strategies.

The strategies of the LS class allow investors to switch their positions by following

the best-performed rule within a rule class. In this study, a rule class may be a particular
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class of simple rules or the collection of all simple rules (all 12 classes of rules). There are

another three dimensions in this class: memory span m, review span r, and performance

measure. The memory span specifies the period of time for evaluating the rule perfor-

mance. The review span indicates how often an investor evaluates the performance and

switches the trading rule accordingly. We set r ≤ m. We consider three performance

measures: (1) the sum of m daily returns; (2) the average of m log daily returns; (3)

the average log returns of all position-held days in the past m days. If there are more

than two rules that generate equivalent returns, the investor is set to follow the one that

performs better in the previous evaluation. There are 1, 404 strategies in the LS class;

the details of the parameter values of this class are explicated in Appendix A.6.

The strategies of the VS class are based on the “voting” result of the trading rules

in a rule class. In particular, each rule has one vote based on its suggested position. In

our study, we consider two types of ballot: two-choice ballot for long and short positions

and three-choice ballot for long, no, and short positions. A position is initiated if that

position receives a larger proportion of votes. For the rule class, we consider only 12

classes of simple rules but not the one consisting of all rules. This is to avoid the voting

result being dominated by a class with a large number of rules. There are another two

dimensions in this class: memory span m and review span r, as in the LS class. There are

888 strategies in the VS class; the parameter values of this class are given in Appendix

A.7.

The strategies of the PCS class differ from those in the LS and VS classes in that they

allow for non-integral positions. Typically, a trading rule or strategy issues a signal of a

specific position. Edwards and Magee (1997, pp. 535–540) proposed using an “evaluation

index” to determine how a position can be divided. In this study, the voting results of

the VS class serve as the evaluation index. As there are two types of ballot, there are

also two evaluation indices. Each index is the percentage of the winning votes, and the

resulting position is that suggested by the winning votes. There are also 888 strategies

in the PCS class; the parameter values are the same as those in the VS class (see A.7).
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4 Empirical Results

4.1 Data

In our empirical studies, the trading rules and strategies discussed in the preceding

section are applied to four main indices: DJIA, S&P 500, NASDAQ Composite, and

Russell 2000. Our analysis is based on the daily returns computed using daily closing

prices of these indices. This kind of study makes practical sense because the trading rules

and strategies utilize only public information available after the market closes. Moreover,

as these indices are the targets of numerous index funds, our results would be informative

to those “big players.”

The daily index data from 1989 through 2002 are provided by the Commodity System

Inc. The in-sample period is from 1990 through 2000 with 2779 observations; the data

of 2001 (248 observations) and 2002 (252 observations) are reserved for out-of-sample

evaluation. The data of 1989 (252 observations) are only used to formulate rules and

strategies in 1990 that require the information from previous year. This data set extends

more than a decade and may mitigate potential data snooping to some extent (Lo and

MacKinlay, 1990; STW). Note that the volume data of DJIA are the share volumes of

30 stocks in DJIA; the volume data for NASDAQ Composite are the total share volume

in NASDAQ. Because the exact share volume of S&P 500 is not available, we use the

total share volume of New York Stock Exchange (NYSE) as a proxy because S&P 500

stocks amount more than 3/4 of the market capitalization in NYSE. For Russell 2000,

since neither the exact volume data nor an appropriate proxy is available, we exclude the

rules and strategies that require the information on volume. Therefore, there are only

35, 776 rules and strategies for testing Russell 2000.

4.2 Implementing White’s Reality Check

We apply White’s Reality Check to the rules and strategies in our expanded universe

based on two performance criteria: mean return and Sharpe ratio. It must be mentioned

that the rules in the HS, TA, RA, DTB and BTB classes generate much less trading

signals than do the other trading rules during the sample period. The resulting mean

returns and Sharpe ratios therefore may not be directly comparable with the results of

other rules. As such, we adopt a modified approach to computing the returns of these
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five classes: the investor holds double positions when there is a long signal, one position

when there is no signal, and no position when a short signal is issued.2

The Reality Check statistic V n is computed according to (2), where n = 2, 779 for in-

sample evaluations. To compute the Reality Check p-values, 1000 bootstrapped samples

are obtained by resampling the n × M return matrix {ηk,t = ytsk,t−1}, t = 1, . . . , n,

k = 1, . . . ,M . Each resampled return matrix is computed as follows.

1. Randomly select a row (ηt,1, ..., ηt,M ) of the original return matrix as the first re-

sampled row η∗1,1, ..., η
∗
1,M .

2. The second resampled row (η∗2,1, ..., η
∗
2,M ) is randomly selected from the original

return matrix with probability q, or it is set to the next row of the previously

resampled row, i.e., (ηt+1,1, ...,Xt+1,M ), with probability 1-q.3

3. Repeat the second step to form an n × M resampled return matrix.

From the j-th resampled return matrix, it is easy to compute f̄∗
k (j) and hence V

∗
n(j) in

(3). The significance of V n is determined by the empirical distribution of V
∗
n.

In this study, all programs were written in S-plus 2000. To verify our programs,

we follow the setting in STW and check the best rules, their mean returns, and the

Reality Check p-values using the data in two periods: 1987–1996 and 1988–1996. The

results are very close to theirs. We also conduct checks based on Brock, Lakonishok,

and LeBaron (1992) and get similar outcomes. Similar to STW, we found that the

probability parameter q = 0.01, 0.1, and 0.5 in stationary bootstrap yield similar results.

We therefore report only the results under q = 0.01.

4.3 Profitable Rules and Strategies

We first find that, for the data from 1990 through 2000, profitable trading rules and

strategies do exist for NASDAQ Composite and Russell 2000 but not for DJIA and S&P

500. We summarize the best rules and their p-values in Table 2 based on mean returns

and Sharpe ratios. Note that throughout this study, the significance level in Reality

Check is 1%.

2We are indebted to A. Timmermann for helpful suggestions on this issue.
3We adopt “wrap-up” resampling such that the first row (η1,1, ..., η1,M ) is treated as the next row of

the last row (ηn,1, ..., ηn,M ) in resampling.
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Table 2: Annual returns and Sharpe ratios of the best rules and strategies in 1990–2000.

Index Best Rule Annual Best Rule Annual

(Strategy) Returns (Strategy) Sharpe ratio

DJIA MSVa 14.67% (0.39) PCS in OBVe 1.31 (0.27)

S&P 500 Contrarian OBVb 15.38% (0.22) PCS in OBVf 1.19 (0.36)

NASDAQ 2-day MAc 38.19% (0.00∗∗) 2-day MAc 1.96 (0.00∗∗)

Russell 2000 2-day MAd 47.10% (0.00∗∗) 2-day MAc 2.71 (0.00∗∗)

Notes: Numbers in parentheses are Reality Check p-values; ∗∗ labels significance at 1% level.

a: Momentum strategy in volume based on a moving average oscillator: 5-day moving average of

250-day ROC, 20% overbought/oversold rate, and 50 fixed holding days;

b: 10–5 day cross MA;

c: MA rule with multiplicative band 0.001;

d: simple MA rule without multiplicative band;

e: Position changeable strategy based on the OBV class: 250-day memory span, 125-day review

span, and three-choice ballot;

f : Position changeable strategy based on the OBV class: 250-day memory span, 250-day review

span, and two-choice ballot.

From Table 2 we can see that, in terms of mean returns, the best rules for DJIA

and S&P 500 are, respectively, a momentum strategy in volume and a contrarian rule in

the OBV class. Neither of these rules yields statistically significant return based on the

Reality Check p-values.4 The same conclusion also holds when the performance measure

is Sharpe ratio. On the other hand, the profits of the best rules for NASDAQ Composite

and Ruseell 2000 are statistically significant at 1% level. For the former, the best rule is

the 2-day MA rule with 0.001 multiplicative band, yielding average daily return 0.00152

(or 38.19% annually); for the latter, the best rule is the 2-day simple MA rule that

gives average daily return 0.00186 (or 47.1% annually). In terms of Sharpe ratio, the

best rules for NASDAQ Composite and Ruseell 2000 are also the 2-day MA rule with

0.001 multiplicative band. This rule yields the daily Sharpe ratios 0.1084 (1.96 annually)

and 0.1923 (2.71 annually) for NASDAQ Composite and Russell 2000, respectively. It is

noteworthy that the best rules for NASDAQ Composite and Russell 2000 are both short-
4For DJIA, the best rule yields the average daily return 0.00058 (or 14.67% annually). For S&P 500,

the best rule gives the average daily return 0.00061 (or 15.38% annually).
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term MA rules. This is consistent with STW’s finding for DJIA in 1915–1996, where the

best rules were also found to be short-term (2-day or 5-day) MA rules.

We summarize the top 10 rules and strategies that generate significant returns in

Table 3. It can be seen that there are 6 investor’s strategies for NASDAQ Composite and

8 for Russell 2000; these strategies are all learning strategies. In particular, the second

and third best rules for NASDAQ Composite are, respectively, the learning strategy

based on the MSV class and the learning strategy based on the collection of all rules. For

Russell 2000, the second and third best rules are both the learning strategies based on

the MA class. The average daily returns of these strategies are close to those of the best

rules. It is interesting to note that learning strategies may outperform the simple rules

that are used to construct these strategies. For example, the 5th best rule for NASDAQ

Composite is a learning strategy based on the OBV class, yet it outperforms all simple

OBV rules (the best OBV rule is the 9th best among all rules). Also, the 7th and 8th

best rules for Russell 2000 are learning strategies based on the FR class but outperform

simple filter rules.

We also summarize the number of rules and strategies that yield significant mean

returns in Table 4. From this table we observe the following. First, most of profitable

rules and strategies for NSADAQ Composite and Russell 2000 are based on filter rules

and moving averages rules. Second, no contrarian rule is significantly profitable. Third,

there are much more profitable investor’s strategies than simple rules (27 strategies vs. 6

simple rules for NASDAQ Composite and 161 vs. 35 for Russell 2000). In fact, the prof-

itable investor’s strategies are all learning strategies. A complete table summarizing all

profitable rules and strategies is available upon request. Fourth, and more interestingly,

there exist profitable strategies based on non-profitable simple rules. For example, no

simple momentum strategy in volume is profitable for NASDAQ Composite, but there

are 7 profitable investor’s strategies constructed from this class of rules. For Russell 2000,

profitable strategies can also be constructed from the classes of support and resistance,

channel break-outs and momentum strategies in price, even though there is no profitable

simple rule in these classes.

The fourth finding above further strengthens what we have observed from Table 3:

investor’s strategies may improve on the profits of the simple rules on which they are
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Table 3: Top 10 rules and strategies and their average daily returns in 1990–2000.

NASDAQ Composite Russell 2000

Rules Daily Rules Daily

(Strategies) Returns (Strategies) Returns

simple-MA 0.001516 simple-MA 0.001864

LS-MSV 0.001510 LS-MA 0.001775

LS-all 0.001508 LS-MA 0.001775

LS-MSV 0.001476 simple-MA 0.001756

LS-OBV 0.001458 LS-MA 0.001749

LS-MA 0.001453 LS-MA 0.001749

LS-MA 0.001453 LS-FR 0.001749

simple-MA 0.001448 LS-FR 0.001749

simple-OBV 0.001448 LS-MA 0.001736

simple-OBV 0.001435 LS-MA 0.001736

Notes: We list only the class titles of the rules and strategies but not their parameter values

(details of the best rules are given in Table 2). For example, simple-MA stands for a simple

rule in the MA class; LS-MA stands for a learning strategy based on the MA class. Note

that LS-all is a learning strategy based on the collection of all 12 classes of simple rules.

based. An implication of this finding is that the profitability of technical analysis can not

be evaluated solely based on simple rules. Technical investors are able to make higher and

significant profits by intelligently utilizing the information from available simple rules.

After all, it is the investor, not the simple rule, who makes trading decisions. This may

also explain why technical analysis remains vivid in financial markets even when the

profitability of simple rules are rejected in some empirical studies.

4.4 Comparison with the Buy-and-Hold Strategy

To confirm the profitability of technical analysis, we compare the returns of the best

rules identified in the preceding subsection with that of the buy-and-hold strategy. Many

studies had carried out such comparison, e.g., Fama and Blume (1966), Jensen and

Benington (1970), Sweeney (1986, 1988), Levich and Thomas (1993), and Fernandez-
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Table 4: Summary of significantly profitable rules and strategies in 1990–2000.

NASDAQ Composite Russell 2000

Class Simple Contrarian Investor’s Simple Contrarian Investor’s

Rules Rules Strategies Rules Rules Strategies

FR 2 0 2 22 0 50

MA 2 0 14 13 0 50

SR 0 0 0 0 0 7

CB 0 0 0 0 0 5

OBV 2 0 2 0 0 0

MSP 0 0 0 0 0 7

MSV 0 0 7 0 0 0

LS-all N/A N/A 2 N/A N/A 42

Total 6 0 27 35 0 161

Notes: We list only the classes of significant profitable rules and investor’s strategies, where

LS-all is the class of learning strategies based on the collection of all 12 classes.

Rodriguez et al. (2000). It is quite surprising to note that such comparisons were usually

made without taking transaction costs into account. As we find that the best rules for

NASDAQ Composite and Russell 2000 are short-term rules, the transaction costs resulted

from frequent trading should not be overlooked. Without transaction costs, the profits

of technical trading rules may not be reliable, as discussed in Bessembinder and Chan

(1998). We therefore also consider transaction costs in evaluating the returns of the best

rules identified in the preceding section.

The exact transaction costs of large institutional investors are difficult to measure

after the deregulation in 1970s. Fama and Blume (1966) used the floor trader cost as the

minimal transaction cost, which is estimated as 0.05% for each one-way trade. Whether

this cost rate is completely appropriate is still debatable. While Sweeney (1988) argues

that this rate is overstated for the market after 1976, the other studies indicate the

opposite. For example, Chan and Lakonishok (1993) estimate the commission cost for

institutional traders in the largest decile of NYSE to be 0.13%. Knez and Ready (1996)

also obtain similar estimates for the average bid-ask spread actually paid in one-way
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trades for Dow Jones securities. In this paper, we follow Fama and Blume (1966) and

deduct 0.05% from transaction price for each one-way trade. Such a cost rate is applicable

for market-makers and may also be possible for large institutional investors.5

We summarize the comparison results in Table 5. When there is no transaction cost,

it can be seen that the best rule for NASDAQ Composite outperforms the buy-and-

hold strategy in all in-sample periods except 1998 and 1999 (the best rule nevertheless

generates positive profit in these two years). The best rule for Russell 2000 also results in

higher returns in all 11 years. When transaction costs are taken into account, the best rule

for NASDAQ Composite has superior performance only in 7 out of 11 in-sample periods,

yet the best rule for Russell 2000 still dominates in all in-sample periods. In terms of

the average return over 11 years, the best rules for both indices beat the buy-and-hold

strategy, regardless of the presence of transaction costs. In out-of-sample periods 2001

and 2002, the buy-and-hold strategy yields large negative annual returns for both indices,

except for Russell 2000 in 2001 where the annual return (1%) is barely positive. The

best rule for NASDAQ Composite outperforms the buy-and-hold strategy, with positive

returns in 2001 and smaller negative returns in 2002. The best rule for Russell 2000, on

the other hand, generates larger positive returns in 2001 but larger negative returns in

2002. Although the best rules do not uniformly dominate the buy-and-hold strategy in

all periods, it is fair to say that the best rules developed in-sample compare favorably

with the buy-and-hold strategy in both in- and out-of-sample periods.

5 Conclusions

In this study, we follow STW to re-examine the profitability of technical analysis but

consider a more complete set of trading rules and strategies. Using White’s Reality Check,

we find that significantly profitable simple rules and investor’s strategies are available for

the samples of relatively “young” markets (NASDAQ Composite and Russell 2000) but

not for those of more “mature” markets (DJIA and S&P 500). Comparing with the

buy-and-hold strategy, it is found that such profitable rules can generate higher returns
5Nevertheless, it is understood that this cost is underestimated for non-floor traders because other

costs, such as brokerage commissions and bid-ask spreads, are inevitable. We are indebted to C. Jones

and B. Lehmann for helpful discussions on this point.
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Table 5: Annual returns of the best rules and the buy-and-hold strategy.

NASDAQ Composite Russell 2000

Year Best Rule Best Rule Buy-and- Best Rule Best Rule Buy-and-

w/o TC with TC Hold w/o TC with TC Hold

1990 67.6% 58.6% −17.8% 53.7% 44.3% −21.5%

1991 66.3% 56.6% 56.9% 68.0% 58.6% 43.7%

1992 35.1% 25.0% 15.5% 37.7% 27.7% 16.4%

1993 40.6% 30.8% 14.8% 47.9% 39.2% 17.0%

1994 33.2% 23.7% −3.2% 41.4% 31.2% −3.2%

1995 42.1% 32.4% 39.9% 38.4% 29.7% 26.2%

1996 40.9% 30.3% 22.7% 30.1% 19.7% 14.8%

1997 56.4% 45.8% 21.6% 52.4% 43.1% 20.5%

1998 27.1% 15.9% 39.6% 82.7% 72.9% −3.4%

1999 8.9% −3.1% 85.6% 34.5% 23.5% 19.6%

2000 3.1% −8.7% −39.3% 31.5% 19.8% −4.2%

11-yr avg 38.2% 27.9% 21.5% 47.1% 37.2% 11.4%

2001 27.9% 18.1% −21.7% 21.4% 11.7% 1.0%

2002 −22.3% −32.4% −41.2% −34.4% −44.0% −21.7%

Notes: w/o TC: without transaction costs; with TC: with transaction costs; 11-yr avg: the average

annual return of 11 years of the in-sample period; 2001 and 2002 are out-of-sample periods.

even when transaction costs are taken into account. These findings are consistent with

Siegel (2002, pp. 290–297), and they may be used to support the claim that weak market

efficiency has not yet formed in those “young” markets. Another interesting finding of

our study is that technical investors are capable of constructing superior strategies from

simple rules. Investor’s strategies may improve on the profits of simple rules and even

generate significant profits from unprofitable simple rules. This result shows that merely

rejecting the profitability of simple trading rules does not necessarily negate the usefulness

of technical analysis. Investor’s strategies are indispensable elements in technical analysis

and should not be ignored.

After completing this paper, we are aware the recent works of Peter R. Hansen.
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In particular, Hansen (2004) points out that the null hypothesis (1) is an inequality

constraint and that White’s Reality Check is a test based on the least favorable con-

figuration to the alternative. This property affects the asymptotic distribution, and the

Reality Check test would be less powerful if there are many irrelevant alternatives models

(rules). Nonetheless, we are able to reject the null (find significantly profitable rules) for

NASDAQ Composite and Russell 2000 in our empirical study. These results are thus

likely to be further confirmed (rather than reversed) even if the test of Hansen (2004)

were used. On the other hand, our finding of no profitable rules for DJIA and S&P 500,

as in STW, may be due to power deficiency of White’ Reality Check. It would be very

interesting to re-examine the profitability of technical analysis using Hansen’s test. This

is a future research direction.
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Appendix A: The Parameter Values of the Trading Rules

and Strategies

A.1 Momentum Strategies in Price and in Volume

The parameters of the momentum strategies are:

m (m-day ROC) = 2, 5, 10, 20, 30, 40, 50, 60, 125, 250 (10 values);

w (w-day moving average) = 2, 5, 10, 20, 30, 40, 50, 60, 125, 250 (10 values);

k (overbought/oversold level) = 0.05, 0.10, 0.15, 0.2 (4 values);

f (fixed holding days) = 5, 10, 25, 50 (4 values).

There are 10 m values and hence 10 simple oscillators. There are 10 w values. Setting

w less than or equal to m, we have 55 moving average oscillators. For cross-over moving

average oscillators, there are 45 ratios of moving averages when w1 < w2. We set m = w2

and compute the moving averages of w2-day ROC. Thus, there are 45 cross-over oscil-

lators. We also set the overbought/oversold levels k no higher than that recommended

by Pring (1993, Chap. 3). We consider 4 fixed holding days (f), as in STW. The total

number of rules in the MSP class is thus (10 + 55 + 45)× 4× 4 = 1, 760. Similarly, there

are 1,760 rules in the MSV class.

A.2 Head-and-Shoulders

There are 6 parameters in the HS class. In addition to n, x and f that are clear from the

text, there are 3 more parameters: k, r and d. An investor will not initiate a position

until the closing price in following days falls below the right trough by a multiplicative

constant k, known as multiplicative band. An investor will liquidate the short position

when the the closing price in following days exceeds the right trough by a multiplicative

constant r, known as the stoploss rate. The fixed liquidation price is the closing price

that declines by an amount equal to d times the head-trough difference, where the head-

trough difference is calculated as the difference between the head and the average of two

troughs. The parameters of the HS class are:

n (days of each subperiod) = 5, 10, 20, 50 (4 values);
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x (differential rate of shoulders or troughs) = 0.005, 0.01, 0.015, 0.03, 0.05 (5

values);

k (multiplicative band) = 0, 0.005, 0.01, 0.02, 0.03 (5 values);

f (fixed holding days) = 5, 10, 25, 50 (4 values);

r (stoploss rate) = 0.005, 0.0075, 0.01, 0.015 (4 values);

d (parameter for fixed liquidation price) = 0.25, 0.5, 0.75, 1 (4 values).

Given 4 values of n, 5 values of x, and 5 values of k, there are 100 combinations of

(n, x, k), and for each combination, there are 12 liquidation methods. The total number

of rules in the HS class is thus 100 × 12 = 1, 200.

Note: Lo, Mamaysky, and Wang (2000) recommended the differential rate x = 0.015;

Edwards and Magee (1997, p. 81) recommended the multiplicative band k = 0.03; Chang

and Osler (1999) recommended the stoploss rate r = 0.005, 0.01 and the fixed liquidation

price parameter d = 0.25. These parameter values are all included in our setup.

A.3 Triangle

There are 5 parameters in the TA class. The parameters n, x, f and r are as in the

HS class. The trend filter x = 0 means a position will be initiated upon completing a

triangle. The investor will liquidate his/her position after the buy or sell signal lasts for

d days; the values of d are set as STW. The parameters of the TA class are:

n (days of each subperiod) = 5, 10, 20, 50 (4 values);

x (trend filter) = 0, 0.001, 0.003, 0.005, 0.0075, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,

0.07, 0.08, 0.09, 0.1 (15 values);

f (fixed holding days) = 5, 10, 25, 50 (4 values);

r (stoploss rate) = 0.005, 0.0075, 0.01, 0.015 (4 values);

d (day filter) = 2, 3, 4, 5 (4 values).

Given 4 values of n and 15 values of x, there are 60 combinations of (n, x), and for each

combination, there are 12 liquidation methods. The total number of rules in the TA class

is 60 × 12 = 720.
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A.4 Rectangle

There are 6 parameters in the RA class. The parameters n, x, f , r and d are as in the TA

class. The parameter that determines whether the tops (bottoms) are near a horizontal

line is k (so that the bounds are ±k). The parameters of the RA class are:

n (days of each subperiod) = 5, 10, 20, 50 (4 values);

k (parameter of bounds) = 0.005, 0.0075, 0.01 (3 values);

x (trend filter) = 0, 0.001, 0.003, 0.005, 0.0075, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,

0.07, 0.08, 0.09, 0.1 (15 values);

f (fixed holding days) = 5, 10, 25, 50 (4 values);

r (stoploss rate) = 0.005, 0.0075, 0.01, 0.015 (4 values);

d (day filter) = 2, 3, 4, 5 (4 values).

Given 4 values of n, 3 values of k, and 15 values of x, there are 180 combinations of

(n, k, x), and for each combination, there are 12 liquidation methods. The total number

of rules in the RA class is 180 × 12 = 2, 160.

A.5 Double Tops and Bottoms

There are 7 parameters in the DTB class. The parameters x, f , r and d are similar to

those in the RA class. Following Lo, Mamaysky, and Wang (2000), each subperiod (n)

is at least 20-day (about 1 month). The parameter of bounds k determines whether the

tops (bottoms) are approximately equal; that is, each top (bottom) does not differ from

the average of two tops (bottoms) for more than ±k. For the gap rate g, the minimal

(maximal) closing price of the second subperiod is below (above) the average of two tops

(bottoms) with range g. Note that Edwards and Magee (1997) recommended the gap rate

g to be 0.15–0.2 (pp. 159–160) and the trend filter x to be 0.03 (p. 161). The parameters

of the DTB class are:

n (days of each subperiod) = 20, 40, 60 (3 values);

k (parameter of bounds) = 0.005, 0.01, 0.015, 0.03, 0.05 (5 values);
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g (gap rate) = 0.1–0.15, 0.15–0.2, 0.2–0.25 (3 values);

x (trend filter) = 0, 0.01, 0.02, 0.03 (4 values);

f (fixed holding days) = 5, 10, 25, 50 (4 values);

r (stoploss rate) = 0.005, 0.0075, 0.01, 0.015 (4 values);

d (day filter) = 2, 3, 4, 5 (4 values).

There are 180 combinations of (n, k, g, x) and 12 liquidation methods. Thus, the total

number of rules in the DTB class is 180 × 12 = 2, 160.

A.6 Learning Strategies

There are 13 rule classes (12 classes of simple rules and the collection of all rules) and 3

performance measures. The other parameters of the LS class are:

m (memory span) = 2, 5, 10, 20, 40, 60, 125, 250 days (8 values);

r (review span) = 1, 5, 10, 20, 40, 60, 125, 250 days (8 values).

As r ≤ m, there are 36 combinations of (m, r). The total number of strategies in this

class is 13 × 3 × 36 = 1, 404.

A.7 Vote Strategies

The parameters of the VS class are:

m (memory span) =1, 2, 5, 10, 20, 40, 60, 125, 250 days (9 values);

r (review span) = 1, 5, 10, 20, 40, 60, 125, 250 days (8 values).

Given that r ≤ m, there are 37 combinations of (m, r). With 12 rule classes and 2 types

of ballots, the total number of strategies in this class is 12 × 2 × 37 = 888.
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