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Investors in Housing Market Search∗

Charles Ka Yui Leung†and Chung-Yi Tse‡ §

May 15, 2011

Abstract

We add specialist investors–agents who attempt to profit from buying low

and selling high–to a canonical housing market search model. These agents

facilitate the turnover of mismatched houses on behalf of end-users and they

may survive even if they face an arbitrarily large cost of financing vis-a-vis

ordinary households. Multiple equilibrium may exist. In one equilibrium, the

participation of investors is extensive, resulting in rapid turnover, a high va-

cancy rate, and high housing prices. In another equilibrium, few houses are

bought and sold by investors. Turnover is sluggish, few houses are vacant, and

prices are moderate. A decline in the rate at which investors finance invest-

ment, can rather paradoxically, lower investors participation and housing prices

in equilibrium.

Key words: Search and matching, housing market, investors, liquidity, flip-

pers

1 Introduction

In many housing markets, the purchases of owner-occupied houses by individuals

who attempt to profit from buying low and selling high rather than for occupation

are commonplace. For a long time, anecdotal evidence abounds as to how the par-

ticipation of these specialist investors, who are popularly known as flippers in the

U.S., in the housing market can be widespread.1 More recently, empirical studies on

∗We thank Kuang Liang Chang, Vikas Kakkar, Fred Kwan, Edward Tang, Min Hwang, and Isabel
Yan for discussions. Angela Mak provides excellant research assistance. Tse grateful acknowledges

financial support from HK GRF grant HKU 751909H.
†City University of Hong Kong
‡University of Hong Kong
§Corresponding author. Address: School of Economics and Finance, University of Hong Kong,

Pokfulam Road, Hong Kong. E-mail: tsechung@econ.hku.hk.
1Out of the five transactions in a large developement in Hong Kong in August 2010, three were

reported to involve investors who buy in anticipation of short-term gains (September 10 2010, Hong
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the housing market have began to more systematically document the extent to which

transactions in the housing market are motivated by a pure investment motive. No-

table contributions include Depken et al. (2009) and Bayer et al. (2011). A related

strand of investigation, which includes Rosen (2007), Shiller (2008), Wheaton and

Nechayev (2008), among others, focuses on the role played by the investment motive

in the housing market “bubble” in the U.S. in the late-1990s to the mid-2000s. A

common theme in the discussion is that housing market flippings are destabilizing.

Indeed, such sentiments are not uncommon among the public and policymakers in

many places. In the U.S. in particular, interest deductibility applies to the first and

second homes only and capital gains tax may only be exempted for properties sold

after the first two years of purchase.2

In contrast, market markers in the financial markets, who buy and sell stocks for

short-term gains and profit the bid-ask spreads in the interim, are often hailed for

their role in providing liquidity to the market.3 If the market makers in the financial

market can help improve market liquidity, there should certainly be ample room for

the flippers in the housing market to do just the same if not more, given that the

housing market is far less liquid than the financial market.

The latter tendency, of course, is due to the fact that houses differ from one another

along a large number of dimensions, and unlike many financial assets, are traded

without the benefit of an organized exchange. Indeed, this recognition has prompted

a sizeable literature on the application of the search and matching framework in

Mortensen and Pissarides (1994) first developed for the labor market to study the

determination of vacancy, turnover, sales volume, price, among other variables, in

the housing market.4 A common feature of the models in this literature is that the

agents are exclusively end-users. A buyer is a household looking for a good match

for occupation. A seller is a household which no longer finds its old house a desirable

place of residence and is trying to sell it to someone who finds it as such. There are

no specialist investors or flippers around.

Kong Economic Times). According to one industry insider, among all buyers of a new develop-

ment in Hong Kong recently, only about 60% are buying for own occupation (November 20, 2010,

Wenweipo).
2In recent times, the Chinese government has put in place severe restrictions on the ownership

of a second home in a number of cities. In Beijing in particular, individuals who have not lived

in the city for up to five years are barred from the purchase of a owner-occupied home altogether,

measures meant to contain the speculative frenzy in the Chinese housing market in the last decade.

See “Beijing’s housing market bubbles,” September 27 2007, The New York Times; “Wenzhou

investors leave Beijing housing market,” February 28 2011, CNTV. Similar measures were also in

effect in Hong Kong, where since November 2010, housing units that are sold within two years of

purchase are subjected to an extra 5-15% ad valorem transaction tax. See “Midland adds to jitters

- over extra stamp duty,” December 3, 2010, The Hong Kong Standard.
3See Coughenour and Deli (2002) and Coughenour and Saad (2004) for empirical studies on how

market makers help provide liquidity in the stock market.
4Arnold (1989), Wheaton (1990), Williams (1995), Krainer (2001), Albrecht et. al. (2007), Diaz

and Jerez (2009), Piazzesi and Schneider (2009), Ngai and Tenreyro (2010), to name just a few.
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In this paper, we add specialist investors to a canonical housing market search

model and study how investors participation affects price, turnover, vacancy, trans-

action volume, and welfare. In our model, the central role played by investors is to

facilitate the turnover of mismatched houses on behalf of households. A crucial as-

sumption is that ordinary households cannot hold more than one house at a time. The

assumption, of course, can be justified by the usual liquidity constraint argument. In

this case, a household which desires to move because the old house is no longer a good

match must first sell it before the household can buy up a new house. In the usual

housing market search model, the household must wait out a buyer who finds the old

house a good match to arrive, which can be a lengthy process, especially in a buyer’s

market, one in which sellers outnumber buyers by a significant margin. This opens up

profitable opportunities for specialist investors to just buy up the mismatched house

at a discount in return for the time spent waiting for the eventual end-user buyer to

arrive on behalf of the original owner. Meanwhile, transaction volume, vacancy, and

housing price all increase with the extent of investors participation, whereas average

Time-On-the-Market (TOM) declines in the interim.

According to Bayer et al. (2011), flippers in the housing market can be novice in-

vestors who buy en masse in an up market in the belief that the market may continue

to go up and sell in panicky in a down market or can be sophisticated middlemen

whose activities help provide liquidity in both up and down markets. Implicit in

both popular discussions and previous studies on the investment motive in the hous-

ing market is that in reality the majority of flippers are more like novice investors

than sophisticated middlemen, and any liquidity the flippers may provide is at best

coincidental. If flippers as novice investors destabilize the market and flippers as so-

phisticated middlemen provide liquidity and help stabilize the market, on the whole,

the pure investment motive in the housing market may only end up serving to facil-

itate the formation of speculative bubbles. Our analysis, however, suggests that the

dichotomy may not be clear-cut. For tractability, we restrict attention to analyzing

the steady state of a housing market and any kinds of timing market movements and

speculative bubbles are ruled out by construction. Even so, wide swings in prices

and transactions are distinct possibilities because multiple equilibrium is a natural

outcome in a frictional housing market with specialist investors. In one equilibrium,

the participation by investors is widespread, prices are high, and turnover is rapid.

In another equilibrium, few houses are bought and sold by investors, prices are mod-

erate, and turnover is sluggish. Thus, the participation of specialist investors in the

housing market can be a double-edged sword–on the one hand, the investors help

improve liquidity; on the other hand, when the extent of their participation can be

fickle, the housing market can become more volatile as a result.

Our model has a number of readily testable implications. First, it trivially predicts

a positive cross-section relation between transaction price and TOM–households can

either sell to specialist investors at a discount or to wait for a better offer from an

end-user buyer to arrive–which agrees with the evidence reported in Merlo and
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Ortalo-Magne (2004), Leung et al. (2002) and Genesove and Mayer (1997), among

others.5

Our model also predicts an aggregate positive relation between price and trans-

action volume on the one hand, and a negative relation between transaction volume

and average TOM on the other hand–with greater investors participation, prices and

sales both increase, whereas houses on average stay on the market for a shorter period

of time. Indeed, these relationships have been important motivations behind much

of the recent housing market search and matching literature.6 Notable contributions

include Krainer (2001), Diaz and Jerez (2009), and Ngai and Tenreyro (2010). In

particular, Kranier (2001) shows, in various numerical analyzes, how a positive but

temporary preference shock can give rise to higher prices and a greater volume of

transaction, while Diaz and Jerez’s (2009) analysis implies that an adverse shock to

construction will shorten TOM, and may possibly lead to higher prices and a greater

volume of transaction. The paper by Ngai and Tenreyro (2010) focuses on seasonal

cycles in price and sales and they argue that increasing returns in the matching tech-

nology play a key role in generating such cycles. In all these papers, the increase

in sales should be accompanied by a decline in vacancy–given that when a house is

sold, it is sold to an end-user, who will immediately occupy it, vacancy must decline,

or at least remains unchanged. In our model, however, when a house is sold, it may

be sold to an investor, who will just leave it vacant for the time that it takes for an

end-user buyer to arrive. Vacancy need not decline when sales increases, and in our

model, it will increase instead.

Figure 1 depicts the familiar positive housing price-transaction volume correla-

tion for the U.S. for the 1991-I to 2010-IV time period.7 The usual housing market

search model predicts that vacancy should decline in the housing market boom in

the late-1990s to the mid-2000s and rise thereafter when the market collapses around

2007. Figures 2 and 3, however, show that any decline in vacancy is not apparent in

the boom.8 In fact, if there is any co-movement between vacancy on the one hand

and price and transaction on the other hand in the run-up to the peak of the housing

market boom in 2006, vacancy appears to have risen along with price and transac-

5Albrecht et al. (2007) emphasis another aspect of the results reported in Merlo and Ortalo-

Magne (2004), which is that downward price revisions are increasingly likely when a house spends

more and more time on the market.
6Stein (1995), who explains how the down-payment requirement plays a crucial role in amplifying

shocks, is an early non-search-theoretic explanation for the positive relation between price and sales.

Hort (2000), Leung et al. (2003), among others, provides recent evidence. Ho and Tse (2006) show

that the same relation holds in the cross section.
7Housing Price is defined as the nominal house price divided by the CPI. The nominal

house price is the transaction-based, seaonally-adjusted house price index from OFHEO. See

http://www.fhfa.gov. The CPI is from the Federal Reserve Bank at St. Louis, seaonally-adjusted.

We set Housing Price equal to 100 at 1991-I. Transation is from Moody.com. It is the sales in units

of single-family homes and condominiums, seaonally-adjusted, and normed by the stock.
8Vacancy rate is for owner-occupied homes only and is from the Burean of Census CPS/HVS

database.
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Figure 1: Price and Transaction

tion. While vacancy does not appear to have fallen to follow the market collapse, as

predicted by our analysis, the tendency probably is a combined result of the massive

amounts of bank foreclosures and unsold new constructions in the market bust–two

forces absent in our analysis.

Insofar as the specialist investors in our model act as middlemen between the

original homeowners and the eventual end-user buyers, this paper contributes to the

literature on middlemen in search and matching pioneered by Rubinstein and Wolin-

sky (1987). Previously, it was argued that middlemen could survive by developing

reputations as sellers of high quality goods (Li, 1998), by holding a large inventory

of differentiated products to make shopping less costly for others (Johri and Leach,

2001; Shevchenko, 2004; Smith, 2004), by raising the matching rate in case match-

ing is subject to increasing returns (Masters, 2007), and by lowering distance-related

trade costs for others (Tse, 2011). This paper studies the role of middlemen in the

provision of market liquidity. A simple model of housing market flippers as middle-

men is also in Bayer et al. (2011). The model though is partial equilibrium in nature

and cannot be used to answer many of the questions we ask in this paper. A recent

paper by Wright and Wong (2011) shows that how, like our model, equilibrium in a

search model with middlemen may exhibit bubble-like characters.

The next section presents the model. Section 3 begins with establishing two equi-

librium relations between the extent of investors participation and market tightness.

We next show the existence of equilibrium, followed by analyzes of the necessary and
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Figure 2: Price and Vacancy

Figure 3: Transaction and Vacancy
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sufficient conditions for multiplicity, how changes in investors’ cost of financing influ-

ence the extent of their participation, housing price, and welfare. The results are then

generalized to where the changes in the cost of financing affect both investors and

ordinary owner-occupiers alike. Section 4 concludes. The longer and purely technical

proofs are relegated to the Appendix.

2 Model

The city is populated by a continuum of measure one risk-neutral households, each of

whom discounts the future at the same rate  . There are two types of housing in the

city: owner-occupied, the supply of which is perfectly inelastic at   1 and rental,

which is supplied perfectly elastically for a fixed rental of . A household staying in

a matched owner-occupied house derives a flow utility of   0 whereas a household

either in a mismatched house or in rental housing none. A household-house match

breaks up exogenously at a Poisson arrival rate , after which the household may

continue to stay in the house but it no longer enjoys the flow utility . In the mean

time, the household may choose to sell the old house and search out a new match. A

crucial assumption is that a household cannot hold more than one house at a time.

Then a mismatched homeowner must first sell the old house before she can buy a

new one. The qualitative nature of our results should hold as long as there is a limit,

not necessarily one, on the number of houses a household can own at a time. The

one-house-limit assumption simplifies considerably.

The search market A seller meets a buyer in the search market at a Poisson arrival

rate , while a buyer finds a match in the same market at another Poisson arrival

rate . The flow of matches in the search market is governed by a CRS matching

function  (), where  and  denote, respectively, the measures of buyers and

sellers in the market. Hence,

 = (1 )  (1)

 =



 (2)

where  =  denotes market tightness,9 and that




 0




 0

Prices in the search market are determined by Nash bargaining.

9This definition of market tightness measures the intensity of competition among sellers. Equiv-

alently, one can define market tightness as  to measure the intensity of competition among

buyers. We find the first definition more convenient for this analysis.
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The Walrasian investment market Instead of waiting out a buyer to arrive in

the search market, a mismatched homeowner may sell her old house right away in a

Walrasian market populated by specialist investors–agents who do not live in the

houses they have bought but rather attempt to profit from buying low and selling high.

Because homogeneous investors do not gain by selling and buying houses to and from

one another, the risk-neutral investors may only sell in the end-user search market

and will succeed in doing so at a rate equal to , the same rate that any household-

seller does in the market. We allow for investors to discount the future at a possibly

different rate  than the households in the city.
10 In the competitive investment

market, prices adjust to eliminate any excess returns in real estate investment.

Ours is not the first paper that assumes both a search market and a Walrasian

market in the same model. A well-known paper is Lagos and Wright (2005) in the

money search literature. Like Lagos and Wright (2005), our assumption of the coexis-

tence of both kinds of market is more of a modeling device than is meant for realism.11

Indeed, we recognize that the assumption of a Walrasian investment market seem-

ingly completely contradicts the motivations for applying the search and matching

framework to the study of the housing market. We believe that what we need, as

a bare minimum, is not an investment market that is free of search frictions of any

kind, but one in which the frictions are less severe than in the end-user market. If

investors are entirely motivated by arbitrage considerations and do not care if the

houses to be purchased are good matches for their own occupations, search should

not a particularly serious problem. In reality, we imagine that households who intend

to sell quickly and are willing to accept a lower price will convey their intentions to

real estate agents, who in turn will play the role of market makers to alert investors

the availability of such deals. The competition among investors should then drive

prices up to just enough to eliminate any excess returns to investment. A Walrasian

market assumption captures the favor of such arrangements in the simplest possible

manner.

Asset values for investors Let  be the value of a vacant house to an investor

and  the price she expects to receive in the search market for selling the house. In

the steady state,

 =  ( − )  (3)

10While institutional investors may be able to finance investment at a lower interest rate, banks

in many places charge higher mortgage interest rates for those who are buying a second home and

for those who are not buying a house for occupation. We leave it as an open question as to whether




 is the more empirically relevant case.

11On combining a search market and a Walrasian market also includes the framework introduced

in Duffie et al. (2005) and extended in Lagos and Rocheteau (2007). In this framework, an ordinary

investor seeks out a dealer through random search, who then trades on behalf of the investor in a

competitive market.
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Denote as  the price the investor has paid for the house in the competitive invest-

ment market in the first place. In equilibrium,

 =   (4)

Asset values for households There are three (mutually exclusive) states to which

a household can belong:

1. in a matched house; value  ,

2. in a mismatched house; value  ,

3. in rental housing; value .

The flow payoff for a matched owner-occupier first of all includes the utility she

derives from staying in a matched house . The match will be broken, however,

with a probability  after which the household may sell the house right away in the

investment market at price . Alternatively, the household can continue to stay in

the house while trying to sell it in the search market. In all then,

 =  +  (max { +  }− )  (5)

Let  denote the price a household-seller expects to receive in the search market.

Then the flow payoff of a mismatched owner-occupier is equal to

 =  ( +  − )  (6)

Two comments are in order. First, in (6), the mismatched owner-occupier is entirely

preoccupied with disposing the old house while she makes no attempt to search for a

new match. This is due to the assumption that a household cannot hold more than

one house at a time and the search process is memoryless. Second, under (5) and (6),

the household has only one chance to sell the house in the investment market–at the

moment the match is broken. Thereafter, the household must wait out a buyer in the

search market to arrive. This restriction is without loss of generality in a steady-state

equilibrium, in which the asset values and housing prices stay unchanging over time.

No matter, after the house is disposed of, the household moves to rental housing to

start searching for a new match. Hence,

 = − +  ( − ( + (1− ) )− )  (7)

where  denotes the fraction of houses offered for sale in the search market held by

investor-sellers and 1−  the fraction held by household-sellers.
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Accounting identities Let  ,  , and  denote the steady-state measures of

matched households, mismatched homeowners, and renters, respectively. The popu-

lation constraint reads

 +  +  = 1 (8)

Each owner-occupied house in the city must be held either by a household in the city

or by an investor. Hence,

 +  +  =  (9)

where  denotes both the measures of active investors and houses held by these

individuals.

If each household can hold no more than one house at any moment, the only

buyers in the search market are households in rental housing; i.e.,

 =  (10)

On the other hand, sellers in the search market include mismatched homeowners and

investors, so that

 =  +   (11)

Housing market flows The flows into matched owner-occupied housing are house-

holds in rental housing, who just manage to buy up a house, whereas a fraction  of

matched households become mismatched in each time unit. In the steady state, with

 stationary,

 =   (12)

Households’ whose matches just break up may choose to sell their houses right away

to investors or to wait out a buyer to arrive in the search market. Define

∆ =  +  −  (13)

as the difference in payoff for a household between selling in the investment mar-

ket ( + ) and in the search market (). In the steady state, the fraction of

households who choose to sell in the investment market, given by

 =

⎧⎨⎩ 0

[0 1]

1

∆  0

∆ = 0

∆  0

 (14)

is the same fraction of all houses offered for sale in the search market which is held

by investors. Hence, if the measure of mismatched homeowners () is to stay un-

changing through time,

(1− )  =   (15)

where  gives the measure of mismatched homeowners who just manage to dispose

of their properties in the search market. Next, those who enter rental housing include
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households who just sell their properties to investors and to end users, respectively.

The exits are comprised of households who just find a match in owner-occupied

housing, so that

 +  =  (16)

for  to stay stationary. Finally, the measure of houses held by investors increase by

the measure of houses recently mismatched households decide to dispose right away

in the investment market and decline by the measure of houses investors manage to

sell to end-users. Hence, in the steady state,

 =   (17)

Now, adding (12) and (15) yields exactly (16). Thus, only two of the three con-

ditions constitute independent restrictions. That is, when the flows into and out of

any two states for households are equal, the same must hold true for the remaining

state. Besides, with

 =



= 




= 



 + 


equation (15) becomes

 = (1− ) 
 + 




Combine this equation with (12) and simplify,

 =
1− 


  (18)

Substituting the equation back into (15) yields just (17). Thus, indeed only two of

the four steady-state flow equations are truly independent restrictions.12

Bargaining Prices in the search market fall out of Nash bargaining between a

matched buyer-seller pair. There is only one buyer type in the search market–

households in rental housing. The sellers, however, are either investors or mismatched

homeowners. When a household-buyer is matched with an investor, the division of

surplus in Nash Bargaining satisfies

 −  −  =  −   (19)

whereas when the household-buyer is matched with a household-seller, the division

of surplus in Nash Bargaining satisfies13

 −  −  =  +  −   (20)

12To verify that the fraction of houses offered for sale in the search market which is held by

investors is the same as the fraction of houses sold to investors out of all houses that are offered for

sale in the first instance in the steady state, substitute (18) into  ( + ) 
13With multiple types, the assumption of perfect information in bargaining is perhaps stretching

a bit. We could have specified a bargaining game with imperfect information as in Harsanyi and

Selten (1972), Chatterjee and Samuelson (1983), or Riddell (1981), for instance. It is not clear what

may be the payoffs for the added complications.
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Equilibrium A steady-state equilibrium is made up of (1) matching probabilities

and market tightness {  }, (2) asset values {      }, (3) measures of
households in the various states and investors {     }, (4) measures of buyers
and sellers in the search market {}, (5) the fraction of mismatched households
selling houses in the investment market {}, and (6) housing prices {  }
that satisfy (1)-(20) 

3 Analysis

To proceed analyzing the equilibrium of the model, we divide the equations of the

model into two blocks and derive one independent relation between  and  from

each.

3.1 Investors participation, market tightness, and turnovers

The first equation block is made up of the accounting identities and the flow equations:

(1), (2), (8)-(12), and (15)-(18), from which we can derive the first relation between

 and .

Lemma 1 From the accounting identities and the housing market flow equations is

an implicit function for  of : e : [0 1]→ heei  where
e (1−)

1− e −
 − 

³e´ (1−)

 + 
³e´ = 0 (21)

and that e  0. The lower and upper bounds e and e , both of which are
strictly positive and finite, are given by, respectively, the solutions of (21) at  = 1

and  = 0 Specifically, e  1

Proof. In the Appendix.

Given , once  is determined by (21), the steady-state measures of households

in the various states and investors are uniquely determined. The next Lemma sum-

marizes the results.

Lemma 2

a. At  = 0,

 = 0  = 1−  =  −  

whereas  is given by the solution to



1−
− −1

µ


 − 

1− + 

¶
= 0
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b. As  increases from 0,




 0




 0




 0 whereas




 0

c. At  = 1,

 = 0  = 1− +    =  −  

whereas  is given by the solution to



1− + 
− −1

µ


 − 

1− + 

¶
= 0

Proof. In the Appendix.

When no houses are sold to investors ( = 0), trivially  = 0 in the steady state,

whereas when all mismatched houses are sold to investors in the first instance, it

is only reasonable that no household will stay in a mismatched house in the steady

state, so that  = 0 And then as  increases from 0 towards 1,  should only

increase and  decline. Lemma 2 confirms these intuitions. What is less obvious

in the Lemma is that both  and  increase along with the increase in  The

first tendency follows from the fact that if both the city’s population and the housing

stock are given, a unit increase in the measure of houses held by investors must be

matched by a unit decline in the measure of houses occupied by the households in

the city. To follow then is the same unit increase in the city’s households in rental

housing. For the second tendency, with an increase in , fewer households spend

any time at all selling their old houses in the search market before initiating search

for a new match. In the mean time, the decrease in  (Lemma 1), through lowering

, lengthens the time a household spends on average in rental housing before a new

match can be found. By Lemma 2, the first effect dominates, so that more households

are in matched owner-occupied housing in the steady state.

By Lemma 1, an increase in  lowers market tightness, given by

 =



=

 + 




Indeed, the relation also follows from the comparative statics results in Lemma 2.

First, where   0, there will be more buyers to follow an increase in .

Second, given that by (9),

 +  =  −  




=

 [ +  ]


= −


 0

That is, when more households are matched, there must only be fewer houses on the

market. The two tendencies–more buyers () and fewer sellers (+)–reinforce

each other to result in a smaller .

13



In the model economy, the entire stock of vacant house comprises of houses held

by investors. With a given housing stock, the vacancy rate is simply equal to .

A direct corollary of Lemma 2b is that:

Lemma 3 In the steady state, the vacancy rate for owner-occupied houses is in-

creasing in .

Housing market transactions per time unit in the model are comprised of (i) 
houses sold from households to investors, (ii)  houses investors sell to households,

and (iii)  houses sold by one household to another, adding up to an aggregate

transaction volume,

 =  +  +  

Lemma 4 In the steady state, transaction volume is increasing in .

Proof. In the Appendix.

The usual measure of turnover in the housing market is the time it takes for a

house to be sold, what is known as Time-On-the-Market (TOM). Given that houses

sold in the investment market are on the market for a vanishingly small time interval

and houses sold in the search market for a length of time equal to 1 on average, we

may define the model’s average TOM as




× 0 +  + 


× 1


 (22)

Lemma 5 In the steady state, on average TOM is decreasing in .

Proof. In the Appendix.

There is a composition effect (more houses sold to investors for which TOM is

equal to 0) and a “structural” effect (a larger  for houses sold in the search market

given that   0 and   0) reinforcing one another. In sum, Lemmas 4

and 5 confirm that with greater investors participation, sales increase and houses are

sold more quickly on average.

TOM is a measure of the turnover of houses for sale, and as such does not carry

any direct welfare implications. A more household-centric measure of turnover is the

length of time a household (rather than a house) has to stay unmatched. We define

what we call Time-Between-Matches (TBM) as the sum of two spells: (1) the time

it takes for a household to sell the old house, and (2) the time it takes to find a new

match. While the first spell (TOM) on average is shorter with an increase in , the

second is longer where the decline in  to accompany the increase in  causes  to

fall. A priori then it is not clear what happens to the average length of the whole

14



spell. The old house is sold more quickly. But it also takes longer on average to find

a new match in a less tight market–a market with fewer sellers and more buyers. To

examine which effect dominates, write the economy’s average TBM as


1


+ (1− )

µ
1


+
1



¶
=
1


+
1− 




where 1 is the average TBM for households who sell in the investment market14

and 1 + 1 for households who sell in the search market.15

Lemma 6 In the steady state, on average TBM is decreasing in .

Proof. Substituting from (12), (15), and then (8),

1


+
1− 


=
1− 




a decreasing function of  . But where   0, there must be a smaller average

TBM.

Lemma 6 perhaps may be taken as the dual of Lemma 2a (  0). When

matched households are more numerous in the steady state, on average people must

be spending less time between matches.

In the present model, given , equilibrium market tightness  is completely iso-

morphic of the determination of asset values and housing prices. The same conclusion

of course carries over to the determination of vacancy, turnover, and transaction vol-

ume. If not for the inclusion of investors in the model economy,  is identically equal

to 0 and Lemma 1 would have completed the analysis of everything that seems to be

of any interest at all. With the inclusion of investors and their extent of participation

measured by , Lemmas 5 and 6 show how changes in  affect the turnovers of houses

and households, the latter of which can have important consequences on welfare–a

question we shall address in the following . But first  is endogenous and in particular

given by (14), and hence a function of asset values and housing prices in equilibrium.

A complete analysis with investors participation must then also include an analysis

of the determination of asset values and housing prices, to which we next turn.

3.2 Which market to sell?

The second equation block of the model is made up of the equations for asset values,

households’ optimization, and housing prices, given by (3)-(7), (13), (14), (19), and

14The household sells the old house instantaneously. Given a house-finding rate , the average

TBM is then 1
15Let 1 denote the time it takes the household to sell the old house in the search market and

2 − 1 the time it takes the household to find a new match after the old house is sold. Then the

household’s TBM is just 2. On average,  [2] =
R∞
0

−1
³R∞

1
2

−(2−1)2
´
1 = 1+1
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(20), from which we shall derive a correspondence for  of  that characterizes house-

holds’ choices between selling in the investment market and in the search market. To

this end, we first solve (3)-(7), (19), and (20) for the three housing prices and four

asset values. For ∆ ≤ 0, so that  ∈ [0 1],

 =
(( + ) ( + 2)− ((1− ) ( + ) + ))  + (2 +  + 2) ( + 2) 

(2 +  + 2) ( +  + 2)


(23)

 =
( + ) (( + 2 − (1− ))  + (2 +  + 2) )

(2 +  + 2) ( +  + 2)
 (24)

 =  =
 (( + 2 − (1− ))  + (2 +  + 2) )

(2 +  + 2) ( +  + 2)
 (25)

 =
( + 2) 

 (2 +  + 2)
 (26)

 =


 (2 + 2 + )
 (27)

 =
(( + 2)  + (1− )  ( − )) −  ( + 2) (2 +  + 2) 

 (2 +  + 2) ( ( + 2) + )
 (28)

On the other hand, for ∆  0, so that  = 1,16

 =
( −  + 2 + 2 + 2)  + (2 + 2 + 2 + 4 + 2) 

( + 2) ( +  + 2 + 2)


(29)

 =
( + ) ( + )

 ( + 2) +  (+ 2)
 (30)

 =  =
 ( + )

 ( + 2) +  (+ 2)
 (31)

 =
( ( + 2) + )  − 2
 ( ( + 2) +  (+ 2))

 (32)

 =


 + 2

( ( + 2) + )  − 2
 ( ( + 2) +  (+ 2))

 (33)

 =
 − ( ( + 2) + 2) 
 ( ( + 2) +  (+ 2))

 (34)

16With ∆  0 and  = 1, no houses will be sold at price  and there will be no mismatched

homeowners around earning a flow payoff  . Equations (29) and (33), respectively, denote the

price at which a deviating household can sell its house in the search market and the asset value for

the household. The two equations are needed to derive the condition for which ∆  0 indeed holds.
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Now, with either (23)-(28) or (29)-(34), one can show that, by means of straight-

forward calculations, ∆ has just the same sign as

S∆ ≡
µ



− 1− 

¶
 + − 2 ( + )  (35)

where  = . The expression S∆ may be interpreted as the incentives for mis-

matched homeowners to sell in the investment market. Such incentives are unam-

biguously weakened at larger  and ; investors may only offer a lower price when

they face a higher cost of financing and it becomes less attractive for households to

switch to rental housing sooner by quickly selling the mismatched house in the in-

vestment market if rental housing is more costly. On the other hand, the incentives

are strengthened at a larger ; it becomes more attractive to shorten Time-Between-

Matches by quickly selling in the investment market if there is a higher reward for

staying in a matched owner-occupied house.

In any case, by virtue of (14), we can define a correspondence b : R+ ⇒ [0 1]

that gives the fraction of households selling in the investment market in equilibrium,

b () =
⎧⎨⎩ 0

[0 1]

1

S∆  0

S∆ = 0
S∆  0

 (36)

Notice that since S∆ does not depend on , for each , S∆ is either negative, equal to 0,
or positive for all . Hence in case S∆ = 0 holds at some , any  on the unit interval
is potentially equilibrium. Which particular  actually qualifies as equilibrium will

depend on which value satisfies the  = e () relation as defined in Lemma 1.
3.3 Equilibrium

We now have two relations between  and : the e () function in (21) and theb () correspondence in (36). A steady-state equilibrium is any { } pair that
simultaneously satisfies the two relations.

3.3.1 Existence

Formally, define  ≡ b³e ()´, a correspondence mapping [0 1] into itself. Equilib-
rium is any fixed point of  .

Proposition 1 Equilibrium exists for all positive {      } tuple.

Proof. To establish existence, we apply Kakutani’s fixed point theorem for cor-

respondence to show that  has a fixed point. First, the unit interval is clearly

a compact, convex, and nonempty subset of the one-dimensional Euclidean space.

Second, since e () is defined for all  ∈ [0 1] and is positive-valued, and that b is
17



Figure 4: The e function
nonempty for all   0,  must be positive-valued and nonempty for all  ∈ [0 1].
Whenever  is multi-valued,  is the entire unit interval. Then it must be convex.

Finally, with e continuous and b possessing a closed graph by virtue of the continuity
of S∆,  must have a closed graph as well. Then by Kakutani’s fixed point theorem,

 has a fixed point.

3.3.2 Multiplicity

To check for uniqueness and multiplicity, we begin with inverting the e function
to define e ≡ e−1, where e :

heei → [0 1]. Given that e  0, likewise,

e  0. That is, e () decreases continuously from 1 at  = e to 0 at  = e .
Figure 4 depicts one possible e () schedule.
To characterize the b correspondence, we ask how the sign of S∆ may change with

.

Lemma 7 Assume that − 2
2

+ 2


¡
 

− 

¢
 0.17 Then, as a function of ,

a. if   b , where b ≡ 

1 + 
 (37)

17The condition holds always if  is isoelastic.
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S∆ is U-shaped, starting out and ending up equal to infinity, in which case

either S∆ stays positive for all  or S∆ = 0 holds at two values for .
b. if  ≥ b , S∆ is upward-sloping throughout, starting out negative and ending
up positive, in which case there is a unique solution of  to S∆ = 0.

Proof. In the Appendix.

Now, by virtue of Lemma 7, for   b , and if S∆ stays positive for all , thenb () = 1 for all  ≥ 0. Panel A of Figure 5 depicts the graph of b () in this case.
On the other hand, if there are two solutions to S∆ = 0, say b1 and b2, where b1  b2,

b () =
⎧⎪⎪⎨⎪⎪⎩

0  ∈
³b1b2´

[0 1]  = b1 and b2
1  ∈

h
0b1´ ∪ ³b2∞´ 

Panels C and D of Figure 5 depict two possible graphs of b () in this case. And then
for  ≥ b ,

b () =
⎧⎨⎩ 0

[0 1]

1

  b
 = b
  b 

where b is the unique root of S∆ = 0. Panels E and F of Figure 5 depict two possible
graphs of b () in this case.
To summarize, for large  = , b () = 1 must hold, whether or not  ≤b–

whereas it can take a long time to sell in a tight search market where sellers outnumber

buyers by a significant margin, mismatched homeowners are better off to just sell

in the investment market at a discount. For small , sellers possess considerable

bargaining power and houses are sold at high prices as a result, as can be verified

by differentiating (23)-(25). In such a market, households can similarly prefer to just

sell right away in the investment market to capitalize on the high price at which

houses are sold. This tendency is particularly pronounced for smaller  under which

investors can afford to pay relatively high prices. For intermediate , neither of the

two incentives to sell in the investment market is strong enough to cause S∆ ≥ 0.
Given the e () schedule in Figure 4 and the b () graphs in Figure 5, equilibrium

is any { } pair at which the two intersect. To proceed, we first define the graph of
the b () correspondence as being:
1. Nondecreasing over a given interval of  if for any two 0 and 00 in the interval,
where 0  00 no element of b (0) is strictly greater than any element of b (00).

2. Decreasing at some 0 if there exists an nonempty interval (0 00] where at least
one element of b (0) is greater than all elements of b () for some  ∈ (0 00].
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Figure 5: The b () correspondence
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Proposition 2 For  ≥ b and for arbitrarily small  , the graph of b () is non-
decreasing throughout, in which case equilibrium is unique. Otherwise, where there

are two solutions of  to S∆ = 0, so that the graphs of b () is decreasing at b1, there
exist multiple equilibrium if and only if b1 ∈ heei.
Proof. First, if  ≥ b , the b () graph, as depicted in either Panel E or F of Figure
5, is nondecreasing throughout. Then there can be one and only one { } pair at
which the downward-sloping e () in Figure 4 can meet a nondecreasing b (). Next,
by (35), lim→0 S∆ = ∞. Hence for arbitrarily small  , S∆ stays positive for all

 and the b () graph is as depicted in Panel A of Figure 5. Clearly, the unique

equilibrium is  = 1and  = e.
Otherwise, the b () graph must be like the two depicted in Panels C and D in

Figure 5. In this case, by construction, for all  ≤ b1, S∆ ≥ 0, so that 1 ⊂ b () for
all  ≤ b1. Thus if e ≤ b1,  = 1 and  = e is equilibrium. Given that e ≥ b1,
either that e ∈ hb1b2i or that e  b2. In the first case, since 0 ⊂ b () for all
 ∈

hb1b2i where S∆ ≤ 0,  = 0 and  = e is equilibrium. Next, consider the case
of e  b2. But if e ≤ b1, e  b2  b1 ≥ e; i.e., b2 ∈ ³ee´. Then there exists
an  ∈ (0 1) that satisfies  = e³b2´. At  = b2, any  ∈ [0 1] ⊂ b³b2´. Thus,
 = e³b2´ and  = b2 is equilibrium. This proves that b1 ∈ heei is sufficient for
multiplicity given an b () graph as depicted in either Panel C or D in Figure 5. To
show that it is also necessary, notice that if b1 ∈

heei, the point at which b ()
is decreasing, b () is nondecreasing throughout heei, and as in where  ≥ b ,
there can be just one point at which b () and e () intersect.
The graph of the b () correspondence must be nondecreasing for large . Propo-

sition 2 says that if it possesses a point
³b1´ at which it is decreasing and if the point

lies within
heei, there can be multiple equilibrium. Figures 6 and 7 illustrate the

situations covered by the condition. In both figures, there are three equilibria, at (i)

 = 1 and  = e, (ii)  = e³b1´ and  = b1, and for Figure 6, (iiia)  = e³b2´
and  = b2, whereas for Figure 7, (iiib)  = 0 and  = e . Intuitively, for small ,
under which houses are sold at relatively high prices, households find it advantageous

to sell their old houses quickly in the investment market. And then if all mismatched

houses are sold in the investment market in the first instance, there will be more

rapid turnover and fewer houses are for sale in the search market to cause a small .

Thus,  = 1 and  = e is equilibrium in the situations depicted in Figures 6 and

7. For moderate values for , households’ incentives to sell in the investment market

are weakened. On the other hand, if fewer or none mismatched houses are sold in
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Figure 6: Multiple equilibrium — b2 ≤ e
the investment market at all, turnover slows down and more houses are for sale in

the search market to cause a larger . As a result, a smaller  and a larger  is also

equilibrium in Figures 6 and 7.

The b1 equilibrium in Figures 6 and 7 is unstable, however, in the sense that any
small perturbation should cause the economy to move to either the e equilibrium or
to the b2 equilibrium in Figure 6 and the e equilibrium in Figure 7. Consider for

instance, a small increase in  from where  = b1. Then S∆ becomes negative; no
mismatched homeowners will sell in the investment market immediately thereafter.

To follow the decrease in  is a further increase in . Eventually, the economy should

settle on the e2 steady-state equilibrium in the environment depicted in Figure 6

and on the e equilibrium in the environment depicted in Figure 7. There can be

catastrophic declines in the extent of investors participation then when the economy

is hit by some seemingly unimportant shocks to . With the existence of multiple

steady-state equilibrium, the extent of investors participation can be fickle, especially

when the economy happens to be at an unstable equilibrium initially. In the following,

we shall show that to accompany such discrete declines in the extent of investors

participation are discrete declines in housing prices. The economy is thus prone

to apparent periodic boom-bust cycles–episodes usually attributed to the rise and

bursting of speculative bubbles.
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Figure 7: Multiple equilibrium — b2  e
3.4 Cost of financing and investors participation

A natural question to ask is how the extent of investors participation depends on

the rate at which investors finance investment. A not unreasonable conjecture is

that when investors face a lower cost of financing, they can offer higher prices to

mismatched homeowners, and then in equilibrium more houses should be sold in the

investment market. But such a conclusion must be qualified given that equilibrium

may not be unique. For instance, a small decline in  may possibly result in agents

coordinating to a low  equilibrium from a high  equilibrium. Furthermore, the

equilibrium effects of the incentives to sell in the investment market could turn out

to be rather perverse. In particular, in Figures 6 and 7, for  ∈
h
0b1i, b () =

1–housing prices are high with a low  and as such just selling right away in the

investment market may dominate waiting out in the search market. Now, think of a

decline in  ; housing prices rise at each , which may well cause an expansion of theh
0b1i interval. If equilibrium is at b1, the increase in b1 is a movement down e (),
giving rise to a smaller . To more systematically investigate the effects of  on ,

we begin with:

Lemma 8

a. For   b , S∆ is U-shaped, with a well-defined minimum. Write S∗∆ =

min S∆.
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i. For small  , S∗∆  0.

ii. S∗∆  0. As  increases, before  reaches b , S∗∆ = 0 at some  = b∗.
iii. Thereafter, as  continues to increase, S∗∆ falls below 0, and that the two

roots of S∆ = 0, b1 and b2 diverge as b1  0 but b2  0.
iv. As  → b , b1 → 0 and b2 → b for some limiting value b.

b. For  ≥ b , S∆ becomes upward-sloping throughout.
i. At  = b , the unique root of S∆ = 0, b = b, the limiting value of b2.
ii. Thereafter, b  0; while as  becomes arbitrarily large, b → b for
some finite b  1.

Proof. In the Appendix.

By characterizing how S∆ behaves as a function of  , the results of Lemma 8 help
trace out the evolution of the b () correspondence as  increases. In particular, by
a(i), for small  , b () = 1 as depicted in Panel A of Figure 5. And then by a(ii),
when  has reached a certain level, S∗∆ falls just equal to 0, at  = b∗ ≡ argminS∆
for the given  . At  = b∗, b () = [0 1], whereas b () remains equal to 1 for all
other , as depicted in Panel B of Figure 5. Thereafter, as  continues to increase, by

a(iii), the b () correspondence becomes like the one in Panel C. Any further increase
in  lowers b1 and raises b2; the b () correspondence in Panel C turns into the one
in Panel D. As  → b , by (a.iv), b1 → 0 and b2 tends to some limiting value b. By
(b.i), this limiting value is the unique root of S∆ = 0 when  ≥ b first holds; Panel
D turns into Panel E. Eventually, as  rises to an arbitrarily large value, by (b.ii), b
tends to some finite limiting value b ; Panel E gradually turns into Panel F.
Granted that e () is independent of  , the effects of an increase in  on equilib-

rium  and  can then be read off by superimposing the same given e () successively
into Panels A to F of Figure 5. We can conclude from this exercise the following.

Proposition 3

a. For small  , equilibrium is  = 1 and  = e. For large  , in equilibrium,
  1 and   e. Specifically, if b ≥ e , as  becomes large,  = 0 and

 = e . Otherwise,  stays positive for arbitrarily large  .
b. If  = 1 and  = e is not equilibrium at  , the pair is not equilibrium at

0   . If  = 0 and  = e is equilibrium at  , the pair is equilibrium at

0   .

c. Any b2 or b equilibrium is increasing in  , and therefore the accompanying 

is decreasing in  .
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d. Any b1 equilibrium is decreasing in  , and therefore the accompanying  is

increasing in  .

Proof. Given that for small  , the b () correspondence is given by the one in
Panel A of Figure 5, the first part of (a) follows immediately. For large  , the b ()
correspondence tends to the one in Panel F. In this case,  can remain equal to e
only if the entire e () schedule lies to the right of b ; i.e., e ≥ b . Given thate  1 (Lemma 1) and b  1 (Lemma 8), the condition cannot hold. Hence, for

large  , in equilibrium,   1 and   e. Next, if b ≥ e , in the limit when 
becomes arbitrarily large, the downward-sloping e must meet the horizontal axis at
where b () = 0, in which case equilibrium is  = 0 and  = e . Otherwise, the
downward-sloping e must meet the vertical segment of b, yielding a b equilibrium,
where   0. For (b), note that as  increases, the set of  over which 1 ⊂ b ()
shrinks and the set of  over which 0 ⊂ b () expands. Parts (c) and (d) are direct
corollaries of (a.iii) and (b.ii) of Lemma 8, given that e is downward-sloping.
Parts (a)-(c) conform to the intuitive notion that an increase (decrease) in 

should have a negative (positive) effect on investors participation. Still, it is surprising

that  can remain strictly positive even for arbitrarily large  , for which investors

can only finance investment at a huge disadvantage vis-a-vis households. In the

model economy, the central role investors play is to facilitate the rapid disposal of

mismatched houses on behalf of households. By (a), investors can carry on playing

the role even at a very high cost of financing. The condition for this to be the case,b  e , holds for large e . By (50) in the proof of Lemma 1, e is increasing in 

and becomes arbitrarily large when  → 1 In general, we can show that e =  is

increasing in  for each . Intuitively, with a larger stock of owner-occupied houses,

fewer households would stay in rental housing, causing a decline in  = , whereas

more houses would be for sale in the search market, giving rise to a larger . If e
becomes large enough, a role for investors can remain no matter what, if mismatched

homeowners find it too difficult to sell in the end-user search market.

Notice that Part (d) of the Proposition corresponds to the discussion preceding

Lemma 8–a decline in  causes an expansion of the
h
0b1i interval through the

positive effect of a lower  on housing prices. Then any b1 equilibrium will involve

a smaller . On the contrary, by Part (c), a decline in  will result in an increase

in  in any b2 or b equilibrium. Recall that b2 and b are the smallest  in the
respective intervals

hb2∞´ and hb∞´, over which mismatched homeowners find it
advantageous to sell in the investment market because it takes too long to sell in

the search market. A decline in  , by raising the price investors are able to offer to

mismatched homeowners, enlarge these intervals. Where the declines in b2 and b are
movements up the downward-sloping e, in equilibrium  increases.

On the whole, one can conclude that a given decline in  does give rise to a

greater level of investors participation if one is willing to dismiss any b1 equilibrium
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on stability grounds and the possibility that agents may coordinate to a smaller 

equilibrium in case there exist multiple equilibrium. However, we are of the opinion

that the analysis does not, strictly speaking, allow us to reach any such unambiguous

conclusion and we cannot rule out occasions, admittedly rare, in which a decline in

 can, rather perversely, cause a lower level of investors participation.

3.5 Housing prices and asset values

3.5.1 S∆  0

In a steady-state equilibrium in which S∆  0,  = 0, and  = e , houses will be
sold at just one price   as given by (23) evaluated at  = 0,

 =
( +  − )  + (2 +  + 2) 

(2 +  + 2) 
 (38)

As long as S∆ is not strictly positive, asset values  and  remain given by (26)

and (27), respectively, whereas  in (28) simplifies to

 =
 − (2 +  + 2) 

 (2 +  + 2)


In this case, of course, prices and asset values are independent of  in the complete

absence of investors participation. A decline in  will lead to higher housing prices

but market tightness, vacancy, turnover, and transaction volume will just stay at the

given levels entirely determined by the level of the housing stock, the rate matched

households becomes mismatched, and the matching technology in the search market,

as described in Lemmas 1-6 with  = 0.

3.5.2 S∆  0

In a steady-state equilibrium in which S∆  0,  = 1, and  = e, houses will
be sold at two prices, from households to investors at , given by (31), in the

investment market and at , given by (30), from investors to households in the

search market, where   . In the model economy, houses sold from households

to investors stay on the market for a vanishingly small time interval, whereas houses

sold from investors to households in the search market stay on the market for on

average 1  0 units of time. A positive relation between price and TOM in the

cross section then emerges, a relation that matches an important stylized fact in the

real estate literature. Besides, with   , the model trivially implies that houses

bought by flippers are at lower prices than are houses bought by non-flippers. Depken

et al. (2009) indeed find the tendency to hold in their hedonic price regressions.

Not surprisingly, both  and  are decreasing in  , as can be readily verified

by differentiating (31) and (30). The same negative effects are felt on  and  as
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well–when housing prices are lower, there can only be lower asset values for matched

homeowners and investors. The effect on , however, is positive as would-be buyers

benefit from the lower housing prices. On the whole, aggregate welfare, defined as

 =  +  +  

is decreasing in  , where the negative effect on  alone suffices to dominate

the positive effect on .
18 Hence, any decline in  , while causing housing prices

to increase and making would-be home buyers worse off as a result, has an overall

positive effect on welfare, whether or not investors’ interests are taken into account.

3.5.3 S∆ = 0
In a steady-state equilibrium in which S∆ = 0,  ∈ (0 1), and  ∈

³ee´, houses
can be sold for three prices. In addition to the two prices  and  for transactions

between an investor and a household, with  ∈ (0 1), there will also be transactions
between two households, carried out at price  . Now, solving S∆ = 0 for  and

substituting the result into (23), (24), and (25), respectively, yield

 =  =
( + ) 

(2 +  + 2) 
 (39)

 =


(2 +  + 2) 
 (40)

With  =  in equilibrium, there will, however, be just two distinct prices at

which houses are sold–at  in the investment market and at  =  in the

search market. Just as in the case of S∆  0, the model implies a positive relation

between TOM and price and that houses bought by flippers are at lower prices. Also,

just as in the case of S∆  0,  (= ), as well as , are decreasing in  .

If  and  were not already settled at their respective boundary values, housing

prices, as given by (39) and (40), can also change in response to movements in 

associated with any change in ; any decrease in  caused by an increase in  (Lemma

1) will result in higher housing prices. Investors participation, by itself, has a positive

impact on housing prices. If there exist multiple equilibrium,  can increase just

by itself when the economy, for whatever reason, moves to a high  equilibrium

from an initial low  equilibrium or vice versa, without any change in parameter

values. Alternatively, a seemingly insignificant shock to  can result in catastrophic

changes in housing prices–tendencies that usually are attributed to the formation

and bursting of speculative bubbles.

Along any b2 or b equilibrium, a decline in  will lead to an increase in  and a

decrease in  (Proposition 3c). In this case, by (39) and (40), the direct and indirect

effects of an interest rate decrease reinforce each other to raise housing prices. A more

18Substituting from (32), (34), (31), (53), (54), and (56) and differentiating verify the claim.
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intriguing scenario is when a decline in  shall cause  to decrease instead either

because the economy moves to a low  equilibrium from an initial high  equilibrium

in case there exist multiple equilibrium or because the economy is moving along ab1 equilibrium (Proposition 3d). In what direction housing prices will move cannot

be unambiguously read off from (39) and (40) as the direct effect of the interest rate

decline and the indirect effect through a supposedly lower  and therefore a higher

 affect housing prices differently. To proceed, we solve S∆ = 0 for  and substitute
the result into (39) and (40), respectively,

 =  =
( +  − )  + (2 +  + 2) 

 (2 +  + 2)
 (41)

 =
( − )  + (2 +  + 2) 

 (2 +  + 2)
 (42)

The two equations are independent of  ; whatever effects a given change in  will

have on housing prices are subsumed through the effects of changes in  that follow

the change in  obtained from holding S∆ = 0.

Proposition 4 Holding S∆ = 0, changes in  , whether positive or negative, will

cause housing price to increase (decrease), as long as to follow the interest rate change

is an increase (decrease) in .

Proof. By straightforward differentiation of (41) and (42) with respect to  and

noting that e  0.

By Proposition 4 then, the indirect effect of a decline in  on housing prices

through changes in  and  always dominates the direct effect shall the two effects

be of opposite tendencies. A surprising implication then is that a given decline in in-

vestors’ cost of financing can, rather paradoxically, lead to decreases in housing prices,

if to follow the interest rate decrease is also a decrease in investors participation.

A direct corollary of Lemmas 3-5 and Proposition 4 is that:

Proposition 5 Holding S∆ = 0, changes in  will cause a positive relation between
housing price and transaction volume. In the mean time, average TOM and TBM

decline, whereas vacancy rate increases.

Now, if the greater level of investors participation has the effects of raising transac-

tion volume and housing price, while lowering average TOM, our model then provides

a plausible explanation for the well-known positive time series relation between the

first two variables and the negative relation of the two with TOM. Besides, the present

model also predicts a rising vacancy rate amidst the increase in price and sales and

the decrease in average TOM, a prediction which is unique among housing market

search models. Figures 1-3 in the Introduction show that the predictions are at the
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very least not obviously inconsistent with the data. A prediction of a negative cor-

relation between vacancy on the one hand and price and transaction on the other

hand, an implication that follows naturally from housing market search models in

which the agents are exclusively end-users, appears to be considerably more difficult

to reconcile with the data.

Asset values  and  , as given by (26) and (27), do not depend on  as such,

as long as S∆ ≤ 0, while  = , given by (40), is decreasing in  . As to , first

substitute the solution for  from S∆ = 0 to yield,

 =
 ( − ) 

(2 +  + 2) 
 (43)

which is increasing in  . In sum, investors are worse off and would-be home buyers

benefit from the lower housing prices that result from any increase in  at each .

Just as for housing prices, to fully account for the effects of a given change in 
on asset values, we should also check how asset values change in response to the

changes in  and  triggered by the change in  . To this end, note that  and  ,

given by (26) and (27), respectively, as well as  , given by (40), are decreasing in ;

household-homeowners and investors are better off when a less tight housing market

gives rise to higher housing prices. Asset values for households in rental housing, ,

as given by (43), can increase or decrease with a given decline in , depending on

whether 



 . Furthermore, changes in  will also result in changes in the measures

of investors and households in the various states as described in Lemma 2. Aggregate

welfare,

 =  +  +  + 

= 
( + 2) 

 (2 +  + 2)
+ 



 (2 + 2 + )
+ 

 ( − ) 

(2 +  + 2) 

+


(2 +  + 2) 


can then depend on  in a complicated manner.

To proceed, we substitute for  ,  , , and  , respectively from (53)-(56) in

the Appendix and the solution for  from S∆ = 0,

 =

µ
 (2 +  + )

(2 +  + 2) ( + )
− (1−)

(1 +  − )  + 2 ( + ) 

(2 +  + 2)

¶



 (44)

Just as in (39) and (40) for housing prices, this expression for  is independent of

 , where any effect  will have on  is subsumed in how changes in  to follow the

interest rate change affect  .

Proposition 6 Holding S∆ = 0, changes in  , whether positive or negative, will

cause aggregate asset values to rise (fall), as long as to follow the interest rate change

is an increase (decrease) in .
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Proof. Differentiating (44) with respect to  and noting that e  0.

Together, Propositions 4 and 6 say that whenever housing prices rise in response

to a given change in  , negative or otherwise, aggregate asset values will rise, even if

households in rental housing can be worse off and that they must be more numerous

in a housing market in which more houses are held by investors.

3.6 A general change in interest rate

So far, we have restricted attention to analyzing the effects of an increase in  alone

on investors participation and housing prices. Many of the implications, however,

survive for a general change in interest rate that affects both investors and ordinary

households alike. Specifically, write  for  in (35),

S∆ = (− 1− )  + − 2 ( + )  (45)

Then equiproportionate increases in  and  , while leaving  unchanged, lower S∆.
A general increase in interest rate thus weakens mismatched homeowners’ incentives

to sell in the investment market, just as an increase in  , holding fixed  , does.

Analogous to Proposition 3 is that:

Proposition 7 Holding constant  at some given level,

a. for sufficiently large  , in equilibrium,   1 and   e. Eventually, as 
rises above a certain level,  = 0 and  = e must obtain.

b. if  = 1 and  = e is not equilibrium at  , the pair is not equilibrium at

0   . If  = 0 and  = e is equilibrium at  , the pair is equilibrium at

0   .

c. any b2 or b equilibrium is increasing in  , and therefore the accompanying 

is decreasing in  .

d. any b1 equilibrium is decreasing in  , and therefore the accompanying  is

increasing in  .

Proof. Hold constant  and allow  to increase; by (45),

S∗∆


= 2  0

For large  then, the b () graph cannot be like the ones in Panels A and B of

Figure 5. For  ≥ b (i.e.,  ≤ 1 + ), so that there exists a unique root b to
S∆ = 0, b  0, given that S∆  0. By (45) and with  − 1 −   0,

lim→∞ b = ∞. For   b (i.e.,   1 + ), there are two roots b1 and b2 to
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S∆ = 0. Again, given that S∆  0, b1  0 and b2  0. By (45)

and with  − 1 −   0, as  → ∞, there can just be two  that solves S∆ = 0,
equal to zero and infinity; thus lim→∞b1 = 0 and lim→∞b2 = ∞. Parts (a)-(d)
of the Propositions then follow immediately.

Intuitively, at a higher cost of financing in general, housing prices fall, and the

reward to quickly selling in the investment market diminishes. But just as in the

case of an increase in  alone, it is not possible to conclude unambiguously that

investors participation must fall, where there exist multiple equilibrium, and that

any b1 equilibrium is actually decreasing in  .

The effects of the general increase in the cost of financing on housing prices are

similar to those of an increase in  by itself. The following proposition summarizes

the results.

Proposition 8

a. If in equilibrium, S∆  0,  = 0, and  = e , houses will be sold at just one
price,  , as given by (38), which is independent of  but decreasing in  .

Equiproportionate increases in  and  then lower housing prices.

b. If in equilibrium, S∆  0,  = 1, and  = e, houses will be sold at two
prices,  and , as given by (30) and (31), respectively. Equiproportionate

increases in  and  lower both prices.

c. If in equilibrium, S∆ = 0,  ∈ (0 1), and  ∈
³ee´, houses will be sold at

two prices,  =  and , as given by (39) and (40), respectively.

i. Equiproportionate increases in  and  , holding  fixed, lower both prices

and so does an increase in  that follows from a decline in .

ii. Holding S∆ = 0, equiproportionate changes in  and  , whether positive
or otherwise, raise  as long as to follow the interest rate changes is an

increase in  and for  ∈ [0 1 + ]. The same positive effect is felt on

 =  for  in neighborhoods of  = 0, 1, and 1 + .

Proof. In the Appendix.

Notice that by (c.i), if to follow the equiproportionate increases in  and  is a

decline in investors participation , housing prices must unambiguously decline, just

as when an increase in  alone causes  to fall will lower housing prices for sure.

More generally, (c.ii) is concerned with how prices may change when the increases

in interest rate may be followed by either an increase or a decline in , as in the

situations covered in Proposition 4. Also as in Proposition 4, here prices will increase

if  happens to rise to follow the interest rate changes, positive or otherwise, if the

values of  are appropriately chosen. The last restrictions are sufficient, but not

necessary, conditions, and that the conclusions should hold under weaker conditions.
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4 Concluding remarks

By allowing for the participation of specialist investors, without any assumed or ac-

quired heterogeneity and endogenous search efforts, our model predicts a positive

relation between transaction price and TOM in the cross section, a relation found

in numerous empirical studies. Our predictions of the relations among price, trans-

action volume, and average TOM in the aggregate also mimic the pattern found in

the data. Unlike previous studies, these relations emerge from our model through

interest rate shocks, arguably a more plausible channel than shocks to preference and

construction–channels that previous studies rely upon.

Mismatched households will only be able to find new matches in a market where

vacant houses are abundant. On the other hand, few houses will be vacant if mis-

matched households cannot quickly sell. Flippers in the housing market help mitigate

such coordination problems. In this manner, the change in the vacancy rate and the

change in the number of houses bought by flippers are (almost) two sides of the same

coin. Where investors participation raises demand and prices, our analysis suggests

vacancy tends to increase in an up market. This implication, as shown in Figures

1-3, appears to be borne out in the run-up to the peak of the housing market boom

of late-1990s to mid-2000s.

Meanwhile, the existence of multiple equilibrium appears a natural outcome of the

investment motive in a frictional housing market. When the extent of investors par-

ticipation can be fickle, prices can change discretely in response to a discrete change

in the former. The model economy can then exhibit bubble-like characteristics with

prices fluctuating widely without any apparent changes in “market fundamentals”.

Undoubtedly, our analysis cannot be the complete analysis of “speculative bubbles” in

the housing market. Credit market conditions, market psychology, and the dynamics

of price movements must also feature prominently. Nevertheless, we show that even

in the absence of such factors, the interaction of the strength of the incentives to sell

quickly to flippers and the extent of their activities suffice to imply an intrinsically

volatile housing market.

5 Appendix

Proof of Lemma 1 The first step is to use (8) and (9) to write

 = 1− +   (46)

Then, by (10), (11), (18), and (46),

 =



=

 + 


=

1−

 + 

1− + 
=



 (1− + )
 (47)

Solve the equation for  ,

 =
 (1−)

1− 
 (48)
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Next, by (12) and (8),

 =  (1−  − ) 

Rearrange and then substitute from (18) and (46),

(+ ) (1− + ) = 

µ
1− 1− 




¶


Solve the equation for  ,

 = 
 −  () (1−)

 +  ()
 (49)

Setting the LHSs of (48) and (49) equal yields (21). Implicitly differentiating yields

a negative partial derivative. From (21), e is given by
e + 

³e´ = 

1−
 (50)

while e solves
e + 

³e´
1− e =



1−
 (51)

Given that the LHSs of both conditions are positive and finite for   1, e and e
are strictly positive and finite, and that e  1.

Proof of Lemma 2

Comparative statics Solve (21) for

 =
 − (1−) (+ )


 (52)

Substitute (52) into (48) yields

 =
 − (1−) (+ )

+ 
 (53)

Substitute (53) into (46) yields

 =


+ 
 (54)

Substitute (53) into (18) yields

 =
 ( − 1)− (1−) (+ )

+ 
 (55)

Finally, by (8), (54), (55),

 =


+ 
 (56)

The comparative statics in the Lemma can be obtained by differentiating (53)-(56),

respectively, with respect to , and then noting that e  0.
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Boundary values At  = 0, by (17),  = 0. Then, by (46),  = 1− and

by (9),  =  −  . To obtain the equation for  , substitute (50) into (55) and

simplify. For  = 1, by (15),  = 0. And then by (46),  = 1 − +  . Thus,

with (8),  =  −  . The equation for  is obtained by substituting (51) into

(53) and simplify.

Proof of Lemma 4 First substituting from (9), and then from (52) and (56),

 =  + ( − )  = 


 + 

1 + 


−  (1−)  (57)

Differentiating and simplifying,




=





"





Ãµ
1

 + 

¶2

1 + 


− 1−



!
− 

 + 

1



#


From (50),
1−


≤ 1

 ( + )


since  ≤ e . Thus



≤ 



"





Ãµ
1

 + 

¶2

1 + 


− 1

 ( + )

!
− 

 + 

1



#

=


2 ( + )

∙µ
 − 

 + 

¶



 − 

¸
≤ 

2 ( + )

∙µ
 − 

 + 

¶



 − 




¸
=



2 ( + )

∙
 + 

 + 

¸



  0

where the second inequality follows from the fact that   0 and that  = .

But then e  0; hence   0.

Proof of Lemma 5 Substituting from (9) and (57), (22) becomes

 − 

 + ( − ) 


Differentiating with respect to  yields

 ( −) − 

− ( − )

2 





[ + ( − ) ]
2

 0

since   0,   0, and   0.
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Proof of Lemma 7 Starting with  = 0,  = 0, while  →∞, so that S∆ becomes

lim
→0

µ



− 1− 

¶
 − 2 ( + ) 

which is equal to positive infinity/a finite negative number/negative infinity if 
≤

b .

On the other hand, as →∞,  = 0 and →∞, so that S∆ becomes
lim
→∞

− 2 ( + )  (58)

an expression that tends to positive infinity. Differentiating,

S∆


=

µ



− 1− 

¶



+




 (59)

which is guaranteed positive if  ≥ b . In this case, S∆ starts out at either negative
infinity or a finite negative number, is increasing throughout and eventually tends

to positive infinity. A unique  then solves S∆ = 0. On the other hand, if   b ,
S∆ starts out and ends up equal to positive infinity. It must therefore be initially
decreasing but eventually increasing. If the condition in the Lemma holds, (59)

changes sign just once. This can be shown by differentiating (59) and evaluating at

where it is equal to zero, which leads to an expression which is positive if the condition

holds. Then, at where (59) vanishes, S∆ is convex.

Proof of Lemma 8 By (35), lim→0 S∆ = ∞. Thus, for arbitrarily small  ,
S∗∆  0. This proves (a.i). Differentiating (35) and by the Envelope Theorem,

S∗∆


= −
2

  0

This proves the first part of (a.ii). As to the second part, notice that

lim
→ S∆ = − 2 ( + )  (60)

which is minimized at  = 0, yielding a negative S∗∆ in the limit. Given that S∗∆ is
continuous in  , S∗∆ = 0must hold before  has reached b . For (a.iii), differentiating
S∆ = 0 and for  = 1 2,

b


=


2




S∆




Where S∆ is decreasing at b1 and increasing at b2, b1  0 and b2  0.

For (a.iv), notice that S∆, as given by (59), can only be negative as  → b at
 → 0. This proves b1 → 0 as  → b . The limiting value for b2 is given by the
solution to


³b2´ = 2 ( + ) 

35



which of course is simply the definition of b. The positivity of b is due to
the same reason for the positivity of b2 . The limiting value of b as  becomes
arbitrarily large is given by the solution to


³b´µ1− 1 + b

¶
= 2 ( + ) 

Given that the RHS is positive and finite, b is finite and satisfies b  1 +   1.

This completes the proof of (b).

Proof of Proposition 8 Part (a) merely repeats the discussions in Section 3.5.1.

For (b), substitute  = 
−1 into (30) and (31) and differentiate. For (c), substi-

tuting  = 
−1 into (39) and (40), respectively, yields,

 =  =
( + 

−1) 
(2 +  + 2) −1

 (61)

 =


(2 +  + 2) −1
 (62)

both of which are decreasing in  and . Solve S∗∆ = 0 from (45) for  ,

 =
(− 1− )  + 

2
−  (63)

and substituting the result into (61) and (62), respectively, gives

 =  =
(2+ −  −  + − 2) 

(−  + ) (−  −  + − 2)  (64)

 =
22

(−  + ) (−  −  + − 2)  (65)

Differentiating (65) with respect to  and then substituting for  and  using

the identity  =  yield an expression whose sign is given by that of

(− 0) (− 1) (−  − 1)− ((2− 2−  + )0 + − 2) 2
The expression is strictly negative at  = 0 and  = 1 +  if the RHS of (63) is

positive. And then differentiating twice with respect to  yields

2 (− 0)  0

given the concavity of . This establishes that  in (65) must be decreasing in  for

 ∈ [0 1 + ]. For  =  , differentiating (64) with respect to  and evaluating at

 = 0, 1, and 1+, respectively, all yield a strictly negative expression as long as the

RHS of (63) is positive. This establishes that  =  in (64) must be decreasing in

 for  in neighborhoods of 0, 1, and 1 + 
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