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Abstract 

A common purpose of microarray experiments is to study the variation in gene expression across the 

categories of an experimental factor such as tissue types and drug treatments. However, it is not uncommon 

that the studied experimental factor is a quantitative variable rather than categorical variable. Loss of 

information would occur by comparing gene-expression levels between groups that are factitiously defined 

according to the quantitative threshold values of an experimental factor. Additionally, lack of control for 

some sensitive clinical factors may bring serious false positive or negative findings. 

In the present study, we described a bootstrap-based regression method for analyzing gene expression 

data from the non-categorical microarray experiments. To illustrate the utility of this method, we applied it to 

our recent gene-expression study of circulating monocytes in subjects with a wide range of variations in bone 

mineral density (BMD). This method allows a comprehensive discovery of gene expressions associated with 

osteoporosis-related traits while controlling other common confounding factors such as height, weight and 

age. Several genes identified in our study are involved in osteoblast and osteoclast functions and bone 

remodeling and/or menopause-associated estrogen-dependent pathways, which provide important clues to 

understand the etiology of osteoporosis. 

Availability: SAS code is available from the authors upon request. 
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Introduction 

DNA microarrays are a powerful tool to provide a comprehensive picture of cell function as they can 

assay expression of tens of thousands of genes simultaneously. A typical microarray experiment may involve 

a comparison between disease and normal tissues, or a comparison between a strain grown under an 

experimental treatment and the same strain under a control condition. Various fold-change algorithms or t 

statistics were used for statistical analyses of this kind of two-sample experiment designs (1, 2). More 

complex experimental designs, in contrast, may comprise more than two samples as characterized by their 

genotypes, environments or developmental stages (3-5). A common purpose of these microarray experiments 

is to study the variation in gene expression across the categories of an experimental factor such as the above 

mentioned tissue types and drug treatments. However, an experimental factor is often a quantitative variable 

rather than a categorical variable. Loss of information would occur by comparing gene-expression levels 

between groups that are factitiously defined according to quantitative threshold values of an experimental 

factor. Additionally, lack of control for some sensitive clinical factors such as height, weight and age may 

yield serious false positive or negative findings.  

 

In the present study, we described a bootstrap-based regression method for analyzing DNA 

expression data from the non-categorical microarray experiments. Bootstrap is an interesting method to select 

covariables in multivariable models. It allows increasing internal validity of models (6) and has been used 

widely in biology (7, 8). To illustrate the utility of this method, we applied it to our recent gene-expression 

study of circulating monocytes in subjects with a wide range of variations in bone mineral density (BMD). 

BMD, a quantitative clinical phenotype, is a major risk factor for osteoporosis in the elderly especially in the 

postmenopausal women (9). BMD has a large genetic determinant while is significantly affected by height, 

weight, age, and life-style factors such as smoking, exercise and alcohol consumption (10-14). Menopause is 

a major physiological event associated with accelerated bone loss in females (15). Using the proposed 
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method, we attempted to identify differentially expressed genes associated with BMD variation and 

menopausal events while controlling other confounding factors such as height, weight and age.  

Methods 

Subjects and measurement 

The study subjects came from an expanding database being created for genetic studies of osteoporosis, 

which are underway in the Osteoporosis Research Center of Creighton University. Since our major goal is to 

find genes related to osteoporosis, the exclusion criteria to exclude diseases or medications known to affect 

bone metabolism were used. Given that monocytes were used in this study, the additional exclusion criteria 

were also implemented to exclude those diseases/conditions, which may lead to gene expression changes of 

blood monocytes. All the exclusion criteria were detailed earlier by Liu et al. (16). 

 

We analyzed gene expressions of blood monocytes using Affymetrix HG-U133A GeneChip®, 

containing probes for 14,500 genes. The raw fluorescence intensity data within CEL files were processed 

with Robust Multichip Average (RMA) algorithm (17), as implemented with R packages from Bioconductor 

(www.bioconductor.org). Blood monocytes were obtained from 19 otherwise healthy women, each woman 

had total hip BMD, lumbar spine BMD (L1-L4), weight and height measurements, and completed a 

questionnaire with age, menopause status and years since menopause for postmenopausal women. Hip and 

spine BMD were measured with Hologic 4500 dual energy X ray absorptiometry (DXA) scanners (Hologic 

Corporation, Waltham, Massachusetts, USA). The machine was calibrated daily. The coefficient of variation 

(CV) values of the DXA measurements for BMD is 0.9%.  Weight was measured using a calibrated balance 

beam scale; height was measured using a calibrated stadiometer. Table 1 presents the basic characteristics of 

the study subjects.  

 

Statistical methods  

http://www.bioconductor.org/
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Let ny be the expression level for gene n and x be a vector of experimental factors of interest (such as 

BMD, menopause status and years since menopause) and potential clinical covariates (such as height, weight 

and age). Then, the model for a multiple linear regression takes the form, 

  xyn  

where   is regression intercept,   are regression coefficients and   is residual. Note that the years since 

menopause for premenopausal women were set to zero. The stepwise method was used for choosing 

independent variables in this multiple regression model. The selection p value for both inclusion and 

exclusion of a variable in the regression model was set as 0.05. In our preliminary data, there were 6363 

genes for each of which at least one independent variable was selected in the model. To obtain a robust list of 

important genes in relation to the independent variables, 1000 bootstrap resampling was used to estimate 

bootstrap frequencies of each variable selected in the regression model for each gene. We observed that the 

random sampling errors are very low when using 1000 bootstrap samples. If a variable has strong bootstrap 

support (frequency greater than 80%), this variable is regarded to be related with the tested gene. Although 

80% bootstrap frequency was an empirical threshold, we believe this threshold is very stringent for choosing 

BMD-related genes. All statistical analyses were implemented in the SAS 8.0e (SAS Institute, Cary, N.C., 

USA).  

 

Results and Discussion 

Using the standard of bootstrap frequency greater than 80%, we found 75 hip BMD-related genes, 

173 spine BMD-related genes, 221 menopause-related genes, and 139 years since menopause-related genes 

(Supplemental Table 1).  

 

Among BMD-related genes, 37.4% of them were associated with cellular protein metabolisms based 

on the inference of gene ontology (GO). Particularly, BMPR1A, TNFRSF10C, TNF, FIP2, TGFBR1, CCL11, 

PTHB1, CXCL3 and MTHFR are potentially involved in osteoblast and osteoclast functions and bone 
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remodeling according to the currently available literatures. BMPR1A is bone morphogenetic protein receptor 

(BMP), type 1A. A recent mouse mutation study demonstrated essential and age-dependent roles for BMP 

signaling mediated by BMPR1A in osteoblasts for bone remodeling (18). BMPR1A is located on the human 

chromosome 10q22.3. Klein et al. reported two mouse QTLs for whole body BMD in the genomic regions 

homologous to human 10q21-24 and 10q23-26 (19, 20). TNFRSF10C, TNF and FIP2 are members of tumor 

necrosis factor (TNF) superfamily. TNF is a proinflammatory cytokine that promotes osteoclastic bone 

resorption and inhibits osteoblast differentiation (21-23). CCL11 is another proinflammatory cytokine 

important to osteoarthritis. The CCL11 expresses eotaxin-1 induced by treatment with interleukin-1β and 

TNF- and plays an important role in cartilage degradation in osteoarthritis. TGFBR1 is a transforming 

growth factor (TGF) beta receptor whose expression is important in mediating 1, 25(OH) 2D3-associated 

changes in the growth rate of osteoblasts (24). PTHB1 (parathyroid hormone-responsive B1) is 

downregulated by parathyroid hormone in osteoblastic cells, and therefore, is thought to be involved in 

parathyroid hormone action in bones. CXCL3 is a chemokine (C-X-C motif) ligand. CXCL3 is potentially 

involved in chemokine activity based on the NCBI GO inference, which is known to participate in bone 

monocyte recruitment (25, 26). MTHFR (5,10-methylenetetrahydrofolate reductase) can affect the 

methylation of homocysteine to methionine and high serum homocysteine concentrations have adverse 

effects on bone (27, 28). A polymorphism of the MTHFR gene, C677T, which causes an alanine to valine 

substitution and gives rise to a thermolabile variant of the MTHFR protein with reduced activity (29), was 

associated with elevated levels of circulating homocysteine (30) and lumbar spine BMD (31). During the past 

two years, a number of association studies appeared with regard to its relevance to osteoporosis (32-35). It is 

worth noting that several osteoblast-related genes such as BMPR1A and PTHB1 were found in circulating 

monocytes which are early precursors of osteoclasts. Bone loss in osteoporosis is due to the persistent excess 

of bone resorption over bone formation. Osteoblasts play a central role in bone formation by synthesizing 

multiple bone matrix proteins, while they also regulate osteoclast maturation by soluble factors and cognate 

interactions, resulting in bone resorption. For example, while FGF-2 induces RANKL expression by 
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osteoblasts, it also inhibits osteoclast differentiation directly by interfering with the action of M-CSF (36). 

Thus, osteoclast differentiation, formation, and, to a lesser degree, activation depend upon the proximity and 

products of the osteoblast. Therefore, it is not unexpected to identify osteoblast-related genes differentially 

expressed in monocytes in the present study. These genes may regulate the balance between osteoblast and 

osteoclast activity that is important for bone remodeling and health.  

 

Among genes that are related to menopausal status or years since menopause, several are upstream 

and downstream targets of estrogen receptors, including MAPK1, U29725, laminin 2, laminin β1, PLAU, 

PRKD3, ALPP, ADAM2, ADAM21, ADAM22, ADAMTS2, ADAMTS6, TNFSF13, TNFRSF13B, TNFRSF25, 

TRADD, TNFAIP6 and IL22R. The expression changes of these genes may be due to the fact that ovaries 

reduce and stop producing estrogen in postmenopausal women. In our data, the status of menopause had 

effects on MAPK1 gene expression (bootstrap frequency=83.5%) and years since menopause affected 

U29725 (MAPK7) gene expression (bootstrap frequency=93.5%). Estrogen can activate the MAPK family 

member extracellular regulated kinase-1 (ERK-1). Increases in ERK activation coincided with increased ER-

 phosphorylation. Reduced availability of this pathway when estrogen levels are reduced could explain 

diminished effectiveness of mechanically related control of bone architecture after the menopause (37). Two 

laminin genes, laminin 2 and laminin β1, were detected to be associated with menopausal status and years 

since menopause, which were potentially involved in maintenance of estrogen receptor alpha expression (38). 

PLAU (urokinase-type plasminogen activator) was shown to be downregulated by ovariectomy but restored 

with estrogen during fracture healing (39). PRKD3 is a member of protein kinase C (PKC) family. Recent 

data revealed a direct PKC-c-Src-ER interaction, which may be crucial in the modulation of estrogen 

responsiveness and the differentiation process in osteoblasts (40). ALPP (alkaline phosphatase) is a bone 

formation marker. Bone alkaline phosphatase was significantly increased in postmenopausal women (41). 

Interestingly, we found three genes (ADAM2, ADAM21 and ADAM22) that encode a member of the ADAM 

(a disintegrin and metalloprotease domain) family and two genes (ADAMTS2 and ADAMTS6) that encode a 
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member of the ADAM with thrombospondin motifs (ADAMTS) protein family. Both ADAM and ADAMTS 

gene families have been shown to play a role in bone osteoblast function in several recent studies (42-45). It 

has been suggested that one of the mechanisms by which estrogen protects against postmenopausal 

osteoporosis is by modulating the production of cytokines, such as tumor necrosis factors (TNF), interleukin-

1 (IL-1) and interleukin-6 (IL-6), in the bone microenvironment (46). In our data, five TNF superfamily 

genes (TNFSF13, TNFRSF13B, TNFRSF25, TRADD and TNFAIP6) and one interleukin cytokine (IL22R) 

were associated with menopausal female events.  

 

Figure 1 shows hierarchical clustering for 19 samples using differential expression associated with 

BMD variation, menopausal status, and years since menopause. According to the results of the cluster 

analysis, women with hip BMD value greater than 0.9 were classified into one group and those smaller than 

0.9 were classified into another group. Pre- and postmenopausal women also had quite distinct patterns of 

gene expression and therefore were clearly clustered into two well-defined groups. Based on the expression 

data associated with years since menopause, those women who have not experienced or recently experienced 

menopause were classified into one group, while those women who have experienced menopause for a long 

time (at least more than 4 years) were classified into another group.  

 

Conclusions 

In summary, we described a bootstrap-based regression method for handling expression data from the 

non-categorical microarray experiments. This method allows a comprehensive discovery of gene expressions 

associated with osteoporosis-related traits while controlling other common confounding factors such as 

height, weight and age. We prioritized a small list of candidate genes for future confirmation studies in terms 

of their functional relevance to osteoblast and osteoclast functions and bone remodeling and/or menopause-

associated estrogen-dependent pathways. These gene expression data provide important clues to understand 

the etiology of osteoporosis.  
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Figure legend 

Figure 1 Hierarchical clustering for 19 samples using differential expression associated with (A) BMD 

variation, (B) menopausal status, and (C) years since menopause. Red indicates upregulated genes, and green 

represents down-regulated genes. At the top of panel A, the numbers represent hip BMD value of each 

woman. At the top of panel B, the letter “pre” represents premenopausal women and “post” represents 

postmenopausal women. At the top of panel C, the numbers represents years since menopause for each 

woman. Note that the years since menopause for premenopausal women were set to zero.  
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Table 1 Basic characteristics of the study subjects 

 

 

 

Trait Mean ± SD Range 

Hip BMD (g/cm
2
) 0.932 ± 0.169 0.721-1.339 

Spine BMD (g/cm
2
) 1.023 ± 0.234 0.748-1.428 

Age (years) 51 ± 2.54 47-55 

Height (cm) 167.0 ± 7.5 154.8-177.4 

Weight (kg) 77.0 ± 21.7 48.7-126.1 

Years since menopause (years) 6.4 ± 4.7 1-15 
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PTPN11
TULP1
U2AF2
C21orf108
FSCN1
SRISNF2L
ACADSB
FLJ20509
PPP1R3D
TRO
DKFZp547I014
SLC27A6
RBM5
UPF3A
PAICS
MPPE1
CD44
CLDN15
HNRPDL
PTPRR
NF2
CBFA2T2
KIAA0514
TEB4
MTMR4
DCLRE1B
PLK4
---
TNFRSF13B
SCA7
TPM1
CORO1B
RHOBTB3
POLRMT
ZNF623
CRHR1
---
SPP2
KIAA0953
IF
PSEN2
FGB
PEX3
WDR8
PRDM13
NDRG2
MCL1
NEDD5
GTF2I
MAST2
WDR1
SPN
BCL2L1
BCL2L1
C7orf25
ABO
ATRN
DO
KIAA0626
ADAMTS2
CGI-79
GFI1B
GSN
C9orf82
ALOX15B
PERP
HPGD
---
FLJ12735
MAN1C1
SLC2A10
UTY
---
RAB6C
RPIP8
PHF7
ADAMTS6
C9orf77
RBP4
PSG3
FLJ22843
SGCD
LYPLA3
SLC43A3
PASK
SERPINB10
FLJ10902
CLC
OR3A2
UBE2H
OK/SW-cl.56
PTD008
---
EN2
DDX28
CG018
SLC2A1
FLJ20257
NICE-4
C6orf35
FLJ20898
TNFSF13
NFX1
ASTN2
SSTR5
G3BP
---
CHN2
ELF2
FBLN2
FMO3
LAD1
COL4A4
LYZ
SBNO1
HSPA2
KIAA0509
MGC13098
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MYO1B
SNRPA1
ZHX2
MERTK
ZNF204
RFC1
TRIB2
NRP2
LY6G6E
CCNT2
WDR4
RAB2
OPTN
UBPH
TPR
FLJ10808
ZNF473
PFN2
RYK
GFER
SAP30
MS4A2
---
SAMSN1
BMPR1A
EDNRB
CAV2
SCIN
FLJ30656
ZNF237
---
MRAS
NET1
SLC27A2
RAB32
AR
OSBPL3
U2AF2
C18orf10
TMLHE
CDC25C
SNIP1
TGFBR1
RGS16
LOC81558
RDX
JAK2
PCTK2
EIF2AK3
SMC4L1
TRA1
PSMC2
SEC23B
PPP1CC
TRIM8
RBM5
NUP107
MEG3
RNASE3L
NR3C1
BUB3
FLJ11011
RIMS3
PDE4B
GATM
EFNA1
KNS2
RBL1
HERC2
DDX27
ATRX
HNRNPG-T
DC50
CXCL3
ITPR1
LGALS8
RASSF3
FLJ10652
NCK1
BCLAF1
ALDH1A1
ABI1
MARCO
FLJ21908
HNRPU
ENDOG
---
ABHD5
ALS2CR3
LMAN2L
SLC11A2
NCBP1
ABCA1
EIF4A2
hnRNPA3
SIP
CCT2
B1
HNRPA3
HNRPA3
KIAA0436
TOMM20
GRSF1
MRPS28
CCT7
ELOVL5
PAI-RBP1
MO25
FBXO11
FUSIP1
MGC21416
HMGN3
NR3C1
SMARCA4
ICSBP1
PPP2R5E
PC4
ATP5F1
DDX39
TRAPPC3
H41
DLD
HNRPA1
EIF2B1
C15orf15
RUNX1
NOTCH2
SMC4L1
SENP6
ZNF451
HHLA1
TNF
NRP2
CASP4
SF3B2
MDC1
CCL11
TNFRSF10C
TMEM24
RORC
FLJ13544
PRKAG2
SLC2A8
SLC7A8
PDE4DIP
CHEK1
CSPG5
BRPF1
KIAA0556
HCK
ZG16
---
GPM6B
ADAM19
SARM1
CENPA
LZTR1
KIAA0676
FTL
PRG-3
MMP24
SPUF
---
HSPA6
HSPA6
ARSE
C4BPA
ZNF235
SHOX2
DTR
PADI1
PCDHGC3
PPP1R15A
LYPLA2
ANAPC13
EPHB4
PPT2
TSC1
ARMC4
LY6G5C
CYLC2
SSB1
C19orf22
INHA
ARF5
GGT1
POLQ
CACNA1B
NPM3
DOM3Z
TIMP2
HMG20B
PTPN18
GGA1
SDAD1
NUCB1
RXRA
CLTB
MTHFR
---
MAN2C1
TNS
ASAHL
DDX11
ANGPT1
ICOSL
BANF1
PPIA
PAK2
CD99
MRPL52
B1
DOK1
BIRC5
HIST1H2BN
NRL
FLJ20477
TAGLN2
CYP2C8
KIAA0101
LOC55924
SERPINA1
MYL4
MAPK8IP3
GPLD1
NFASC
UGT2B28
PURA
PPIG
ATP6V1F
LYPLA2
PLVAP
FLJ22318
RGS6
TBR1
WDR10
CPR8
FN1
KIAA0090
CLEC2
LOC55831
MAGEL2
SCN2A2
CSNK2B
MID2
ODZ3
NCDN
PSKH1
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