
Title Diffusion kurtosis imaging based on adaptive spherical integral

Author(s) Liu, Y; Chen, L; Yu, Y

Citation IEEE Signal Processing Letters, 2011, v. 18 n. 4, p. 243-246

Issued Date 2011

URL http://hdl.handle.net/10722/140807

Rights IEEE Signal Processing Letters. Copyright © IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37963215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE SIGNAL PROCESSING LETTERS, VOL. 18, NO. 4, APRIL 2011 243

Diffusion Kurtosis Imaging Based
on Adaptive Spherical Integral

Yugang Liu, Leiting Chen, and Yizhou Yu

Abstract—Diffusion kurtosis imaging (DKI) is a recent ap-
proach in medical engineering that has potential value for both
neurological diseases and basic neuroscience research. In this
letter, we develop a robust method based on adaptive spherical
integral that can compute kurtosis based quantities more precisely
and efficiently. Our method integrates spherical trigonometry
with a recursive computational scheme to make numerical estima-
tions in kurtosis imaging convergent. Our algorithm improves the
efficiency of computing integral invariants based on reconstructed
diffusion kurtosis tensors and makes DKI better prepared for
further clinical applications.

Index Terms—Adaptive spherical integral, kurtosis imaging,
MRI, optimization.

I. INTRODUCTION

D IFFUSION magnetic resonance imaging (MRI) is a med-
ical imaging technique used in radiology to visualize mi-

crostructure of biological tissues. The MRI signal is attenuated
by water diffusion in biological tissues. The amount of attenu-
ation of diffusion-encoding gradient plus along one specific di-
rection depends on the probability density function of projected
displacements of water molecules along that gradient direction
[1]. Thus, it becomes possible to reconstruct the full diffusion
displacement probability density function for water molecules
in the tissues. It is usually sufficient to characterize the diffu-
sion characteristics with a scalar apparent diffusion coefficient
(ADC) in isotropic matter. In anisotropic media, such as brain
white matter, where the measured diffusivity is known to depend
on the orientation of tissue, no single ADC can characterize the
orientation-dependent water mobility in these tissues. Because
of this, a zero-mean trivariate Gaussian function was proposed
to model the diffusion tensor imaging (DTI), which reconstructs
the full covariance tensor of the Gaussian function from multiple
measurements.

A diffusion tensor is a second-order three-dimensional
positive semidefinite symmetric tensor [2], [3]. Under the
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Cartesian coordinate system, it is represented by a real three-di-
mensional symmetric matrix, with for , 2,
3. The MRI signal intensity is expressed as follows in
this model.

(1)

where , is a unit vector,

is the ADC value in the direction defined by

(2)

and the parameter is given by

(3)

where is the gradient strength, is the proton gyromagnetic
ratio, is the separation time of the two diffusion gradients,
and is the duration of each gradient lobe [4]. Combining (1)
and (2), we have

(4)

DTI is known to have a limited capability in resolving water
diffusion in the biologic tissues that is non-Gaussian. However,
the complex structure of most tissues, consisting of various
types of cells and membranes, can cause the diffusion displace-
ment probability density function to deviate substantially from
a Gaussian form. This deviation from Gaussian behavior can
be quantified using a convenient dimensionless metric called
the excess kurtosis. To estimate the excess kurtosis of water
diffusion in vivo and describe the non-Gaussian behavior, the
diffusion kurtosis imaging (DKI) has been proposed in [4]. A
diffusion kurtosis tensor is a fourth-order 3-D fully sym-
metric array, which has 15 independent elements
with being invariant for any permutation of its indices

1, 2, 3. Considering the diffusion kurtosis term, (1)
can be expanded as follows:

(5)
where is the apparent kurtosis coefficient (AKC) value
in the direction ,

(6)
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By combining (5), (2) and (6), we have

(7)

Useful information related to tissue structure and patho-phys-
iology may be contained in the non-Gaussian behavior of water
molecules. Hence, diffusion kurtosis imaging (DKI) has impor-
tant biological and clinical significance. Sharp differences be-
tween diffusion kurtosis values in white and gray matters have
been illustrated in [4]. Techniques for kurtosis tensor recon-
struction are introduced in [4]–[8]. Because clinical applications
typically adopt invariant scalar quantities instead of originally
reconstructed tensorial data, the -eigenvalues method is pro-
posed to analyze the diffusion kurtosis tensor and calculate the
mean kurtosis and fractional kurtosis anisotropy, etc in [3], [9].
However, it is difficult to obtain accurate -eigenvalues with
methods in algebraic geometry [10]. In order to make diffusion
kurtosis imaging more precise, our method based on adaptive
spherical integral is proposed.

II. METHODOLOGY

First, a precondition for our method is that the diffusion tensor
and kurtosis tensor have been reconstructed. To calculate

kurtosis based quantities, we denote a unit sphere as (
). Then mean kurtosis is defined as

follows:

(8)

where the AKC value can be computed from (6), is
the area of surface . Combining the definitions of kurtosis
anisotropy in [3], [7], kurtosis anisotropy, , is defined in this
paper as follows:

(9)

It is easy to verify that . If , the diffusion
kurtosis tensor is isotropic. If , the diffusion kurtosis
tensor is maximally anisotropic. In [9], mean kurtosis defined in
(8) has proven to be an invariant. Similarly, since the directional
distribution of appearing in (5) is independent of any co-
ordinate systems, its spherical integration is rotation invariant.
Generally, mean kurtosis has relatively large values in regions
with a relatively high fiber density and kurtosis anisotropy has
relatively large values in regions filled with crossing fibers.

From the above definitions, we know the basic method of kur-
tosis imaging is dependent on integrals over the unit sphere .
To divide the domain of integration equally, we build a icosahe-
dron inscribed in , as shown in Fig. 1(a). In spherical trigonom-
etry [11], the mappings between triangular faces of icosahedron
and spherical triangles on can be constructed. Consider three
points , , and on the surface of the sphere in Fig. 1(b).

If every two of them are connected by a great arc, we obtain a
spherical triangle . The angles of the spherical triangle , de-
noted by , , and , are angles between every two planes of the
great circles. From Girard’s Theorem, the area of spherical
triangle can be expressed by

(10)

where is the radius of sphere.

Algorithm 1 Recursive Subdivision of a Spherical Triangle

Declarations: (spherical triangle), [the area of
spherical triangle in (10)], (standard deviation), (a
threshold), (integrand), ( 1, 2, 3, 4) (index).

procedure SUBDIVISION_SPHERICAL_TRIANGLE( , )

Divide the spherical triangle into four subspherical triangles
, , , and

center of subspherical triangle

unit direction of

standard deviation of

if then

SUBDIVISION_SPHERICAL_TRIANGLE( , )

else

the mean value of all items

end if

end procedure

Result: , integral of over spherical triangle .

To divide the unit sphere into suitable sized spherical trian-
gles for numerical integration, our adaptive spherical integral is
based on two rules, “reduction of variance” and “recursive strat-
ified sampling,” in adaptive and recursive Monte Carlo methods
[12]. Let be a spherical triangle as in Fig. 1, , , and
be the midpoints of the arcs , , and . Then we can
obtain four subspherical triangles based on the points , , ,

, , and as shown in Fig. 1(c)–(d). The center of each
spherical triangle is the sample point for that triangle. For ex-
ample, the center of the spherical triangle is the inter-
section between line and spherical triangle , where
is the center of sphere and is the barycenter of triangle

. The steps of our recursive algorithm is illustrated in
Algorithm 1. The integrand in this algorithm can be chosen
from (8) or (9).

Note that our numerical algorithm can reduce the approxima-
tion error by decreasing threshold . Recursive subdivision and
sampling approximate the complex distribution of AKC values
asymptotically. To indicate the convergence of our method, we
use iterative reweighted model fitting [8] to reconstruct the dif-
fusion tensor and kurtosis tensor for the white matter inside
one volumetric pixel. The six independent elements of diffusion
tensor and 15 independent elements of kurtosis tensor are
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Fig. 1. Subdivision of spherical triangles. (a) An icosahedron inscribed in
sphere �, (b) original spherical triangle � , (c) spherical triangles (� , � ,
� , and � ) after division, (d) centers of the spherical triangles.

Fig. 2. Convergence of our algorithm by making threshold � sufficiently close
to 0. (a) Mean kurtosis and (b) Kurtosis anisotropy.

TABLE I
A RECONSTRUCTED DIFFUSION TENSOR � AND

KURTOSIS TENSOR � IN WHITE MATTER

illustrated in Table I. The mean kurtosis and kurtosis anisotropy
converge to stable values when the threshold become suffi-
ciently small as shown in Fig. 2. Jumps caused by changes in
spherical subdivision and sampling resolution become smaller
as becomes smaller. Thus, important kurtosis based quantities
can be obtained by adaptive spherical integral.

III. EXPERIMENTAL RESULTS

We have performed comparisons between our algorithm and
-eigenvalues based method in [3], [9]. -eigenvalues based

method computes eigenvalues of diffusion tensor and kurtosis
tensor with techniques in algebraic geometry [10]. Kurtosis
based quantities, such as mean kurtosis, can be obtained from
these eigenvalues. However, these eigenvalues are apt to be af-
fected by numerical errors. In addition, it is difficult to estimate

Fig. 3. Comparison of �-eigenvalues and adaptive spherical integral from 75
measurements. (a) Mean diffusivity, (b) fractional anisotropy, (c) mean kurtosis
with �-eigenvalues, (d) fractional kurtosis anisotropy with �-eigenvalues, (e)
mean kurtosis with adaptive spherical integral, and (f) kurtosis anisotropy with
adaptive spherical integral.

error bounds for the numerical solutions as a small error in kur-
tosis tensor reconstruction may give rise to a much larger error
in -eigenvalues.

All the experiments have been implemented on an Intel Core
2 Duo 2.7 GHz processor with 2 GB memory. The measure-
ments were collected with five levels of values, which are 0,
500, 1000, 1500, 2000, and 2500, in unit of , respec-
tively. At each distinct value except 0, 10 to 15 gradient di-
rections were sampled over the unit sphere, resulting in 58 or
75 measurements per pixel. The parameters in (3) are proton
gyromagnetic ratio , separa-
tion time and duration of each gradient lobe

, respectively. The threshold in our algorithm is
set to 0.001. To reconstruct the diffusion tensor and kurtosis
tensor , the robust model fitting method in [8] is adopted in
the model fitting stage.

To compare -eigenvalues and adaptive spherical integral
in kurtosis imaging, the same MRI data of a human brain was
processed by both methods. The average processing time per
pixel is 0.51 s with -eigenvalues and 0.42 s with adaptive
spherical integral, respectively. Fig. 3 shows kurtosis imaging
results of a normal subject. The mean diffusivity (MD) and
fractional anisotropy (FA) [2] are most common invariants in
DTI. MD describes the relative degree of diffusion and FA
describes the relative degree of anisotropy in diffusion tensor
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Fig. 4. Comparison of �-eigenvalues and adaptive spherical integral from 58
measurements. (a) Mean diffusivity, (b) fractional anisotropy, (c) mean kur-
tosis with�-eigenvalues, (d) fractional kurtosis anisotropy with�-eigenvalues,
(e) mean kurtosis with adaptive spherical integral, and (f) kurtosis anisotropy
with adaptive spherical integral.

TABLE II
A COMPARISON OF MEAN ERRORS AND NOISY POINT RATIOS. GROUND

TRUTH DATA IS OBTAINED FROM 6860 SUB-TRIANGLES ON THE SPHERE AND

ADAPTIVE SPHERICAL INTEGRAL USUALLY NEEDS 400-800 SUB-TRIANGLES.
IF THE MINIMUM ABSOLUTE DIFFERENCE WITH ITS FOUR IMMEDIATE

NEIGHBORS IS LARGER THAN 0.4, WE CLASSIFY IT AS A NOISY PIXEL. (KAD:
FRACTIONAL KURTOSIS ANISOTROPY WITH�-EIGENVALUES, KAA: KURTOSIS

ANISOTROPY WITH ADAPTIVE SPHERICAL INTEGRAL)

. Since the range of KA is the same as FA, the values in
Fig. 3(b), (d), and (f) are within interval . Non-Gaussian
information can be observed in kurtosis images, but not in the
FA image. In Fig. 3(d) and (f), it is easy to verify that there
exist more noisy dots in the results based on -eigenvalues.
Similarly, more noisy dots appear in MK images estimated
using -eigenvalues, such as in Figs. 3(c) and 4(c). To analyze
their numerical performance, we compute the mean error
against ground truth for each method and also its ratio of noisy
pixels as shown in Table II. The ground true is estimated using

an overly subdivided sphere. Our numerical integration with
adaptive subdivision clearly outperforms the method based on

-eigenvalues.
Fig. 4 shows kurtosis imaging results of a stroke patient. The

asymmetry between the left cerebral hemisphere and right cere-
bral hemisphere can be easily observed in FA and KA results.
As in the previous experiment, more clinical information can be
obtained from kurtosis based quantities. The image of kurtosis
anisotropy with adaptive spherical integral is also cleaner than
the results with -eigenvalues according to Fig. 4(d) and (f).

IV. CONCLUSIONS

We have presented a convergent method for computing kur-
tosis based invariant quantities using adaptive spherical integral.
A new definition of kurtosis anisotropy (9) has been proposed.
And our algorithm estimates kurtosis based quantities more ac-
curately and efficiently in the experiments performed on clinical
data.
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