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Cache-Oblivious Index for Approximate String Matching∗

Wing-Kai Hon† Tak-Wah Lam‡ Rahul Shah§

Siu-Lung Tam‡ Jeffrey Scott Vitter¶

Abstract

This paper revisits the problem of indexing a text for approximate string matching. Specifically,

given a text T of length n and a positive integer k, we want to construct an index of T such that for

any input pattern P , we can find all its k-error matches in T efficiently. This problem is well-studied

in the internal-memory setting. Here, we extend some of these recent results to external-memory

solutions, which are also cache-oblivious. Our first index occupies O((n logk n)/B) disk pages and

finds all k-error matches with O((|P |+occ)/B+logk n log logB n) I/Os, where B denotes the number

of words in a disk page. To the best of our knowledge, this index is the first external-memory data

structure that does not require Ω(|P |+ occ+ poly(log n)) I/Os. The second index reduces the space

to O((n log n)/B) disk pages, and the I/O complexity is O((|P |+ occ)/B + logk(k+1) n log log n).

1 Introduction

Recent years have witnessed a huge growth in the amount of data produced in various disciplines.

Well-known examples include DNA sequences, financial time-series, sensor data, and web files. Due

to the limited capacity of the main memory, traditional data structures and algorithms that perform

optimally in main memory become inadequate in many applications. For example, suffix tree [19, 25] is

an efficient data structure for indexing a text T for exact pattern matching; given a pattern P , it takes

O(|P | + occ) time to report all occurrences of P in T , where occ denotes the number of occurrences.

However, if we apply a suffix tree to index the human genome, which has 3 billion characters, at least

64G bytes of main memory would be needed.

To deal with these massive data sets, a natural way is to exploit the external memory as an extension

of main memory. In this paradigm of computation, data can be transferred in and out of main memory

through an I/O operation. In practice, an I/O operation takes much more time than an operation in

main memory. Therefore, it is important to minimize the number of I/Os.

Aggarwal and Vitter [2] proposed a widely accepted two-level I/O-model for analyzing the I/O

complexity. In their model, the memory hierarchy consists of a main memory of M words and an

external memory of unlimited space. Data reside in the external memory initially (as they exceed the

capacity of the main memory), and computations can be performed only when the required data are

present in the main memory. With one I/O operation, a disk page with B contiguous words can be read

from the external memory to the main memory, or B words from the main memory can be written to a

disk page in the external memory; the I/O complexity of an algorithm counts only the number of I/O

operations involved. To reduce the I/O complexity, an algorithm must be able to exploit the locality
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of data in external memory. For instance, under this model, sorting a set of n numbers can be done in

O
(
(nB log nB )/ log(MB )

)
I/Os, and this bound is proven to be optimal. (See [24] for more algorithms and

data structures in the two-level I/O model.)

Later, Frigo et al. [15] introduced the notion of cache-obliviousness, in which we do not know

the values of M or B when we design data structures and algorithms for the external-memory setting;

instead, we require the data structures and the algorithms to work for any given M and B. Furthermore,

we would like to match the I/O complexity when M and B are known in advance. Thus, cache-

obliviousness implies that the data structures and the algorithms will readily work well under different

machines, without the need of fine tuning the algorithms (or recompilation) or rebuilding the data

structures. Many optimal cache-oblivious algorithms and data structures are proposed over the recent

years, including algorithms for sorting [20] and matrix transposition [20], and data structures like

priority queues [8] and B-trees [7].

For string matching, the recent data structure proposed by Brodal and Fagerberg [9] can index a

text T in O(n/B) disk pages1 and find all occurrences of a given pattern P in T in O((|P |+ occ)/B +

logB n) I/Os. This index works in a cache-oblivious manner, improving on the String-B tree, which is

an earlier work by Ferragina and Grossi [14] that achieves the same space and I/O bounds but requires

the knowledge of B to operate.2 In this paper, we consider the approximate string matching problem

defined as follows:

Given a text T of length n and a fixed positive integer k, construct an index on T such that

for any input pattern P , we can find all k-error matches of P in T , where a k-error match of

P is a string that can be transformed to P using at most k character insertions, deletions, or

replacements.3

The above problem is well-studied in the internal-memory setting [21, 12, 3, 10, 17, 11]. Recently,

Cole et al. [13] proposed an index that occupies O(n logk n) words of space, and can find all k-error

matches of a pattern P in O(|P | + logk n log log n + occ) time. This is the first solution with time

complexity linear to |P |; in contrast, the time complexity of other existing solutions depends on |P |k.

Chan et al. [11] later gave another index that requires only O(n) space, and the time complexity increases

to O(|P |+logk(k+1) n log logn+occ). In this paper, we extend these two results to the external-memory

setting. In addition, our solution is cache-oblivious.

The main difficulty in extending Cole et al.’s index to the external-memory setting lies in answering

the longest common prefix (LCP) query for an arbitrary suffix of a pattern P using a few number

of I/Os. More specifically, given a suffix Pi, we want to find the longest substring of T that is a

prefix of Pi. In the internal-memory setting, we take advantage of the suffix links in the suffix tree

of T to compute the answers of all possible LCP queries in O(|P |) time (there are |P | such queries).

In the external-memory setting, a naive implementation would require Ω(min{|P |2/B, |P |}) I/Os to

compute the answers of all LCP queries. To circumvent this bottleneck, we create a new notion called

k-partitionable patterns. If a given pattern P is not k-partitionable, we can show that T contains

no k-error match of P . If P is k-partitionable, we can process all its LCP queries efficiently in two

phases: We first compute the answers of some “useful” LCP queries (using O(|P |/B + k logB n) I/Os),

which would then enable us to answer each other LCP query efficiently (using O(log logB n) I/Os). To

support this idea, we devise an I/O-efficient screening test that checks whether P is k-partitionable; if

P is k-partitionable, the screening test would also compute some useful LCP values as a by-product,

which can then be utilized to answer the LCP query for an arbitrary Pi in O(log logB n) I/Os.

1Under the cache-oblivious model, the index occupies O(n) contiguous words in the external memory. The value of B

is arbitrary, which is considered only in the analysis.
2Recently Bender et al. [6] have devised the cache-oblivious string B-tree, which is for other pattern matching queries

such as prefix matching and range searching.
3A k-error match should more precisely be termed as a k-edit-error match. We use the former one for the sake of

brevity.
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Together with other cache oblivious data structures (for supporting LCA, Y-Fast Trie and WLA), we

are able to construct an index that finds all k-error matches usingO((|P |+occ)/B+logk n log logB n) I/Os.

The space of the index is O((n logk n)/B) disk pages. To the best of our knowledge, this is the first

external-memory data structure that does not require Ω(|P |+ occ+ poly(log n)) I/Os. Note that both

Cole et al.’s index and our index can work even if the alphabet size is unbounded.

Recall that the internal-memory index by Chan et al. [11] occupies only O(n) space. The reduction

of space demands a more involved searching algorithm. In particular, they need the data structure

of [10] to support a special query called Tree-Cross-Product. Again, we can ‘externalize’ this index.

Here, the difficulties come in two parts: (i) computing the LCP values, and (ii) answering the Tree-

Cross-Product queries. For (i), we will use the same approach as we externalize Cole et al.’s index.

For (ii), there is no external memory counter-part for the data structure of [10]; instead, we reduce

the Tree-Cross-Product query to a two-dimensional orthogonal range search query, the latter can be

answered efficiently using an external-memory index based on the work in [1]. In this way, for any fixed

k ≥ 2, we can construct an index using O((n log n)/B) disk pages, which can find all k-error matches

of P in O((|P | + occ)/B + logk(k+1) n log log n) I/Os. Following [11], our second result assumes the

alphabet size to be constant.

In Section 2, we give a survey of a few interesting queries that have efficient cache-oblivious solutions.

We also introduce a novel cache-oblivious index for the weighted level ancestor (WLA) queries. Section 3

reviews Cole et al.’s internal memory index for k-error matching and discusses how to turn it into an

external memory index. Section 4 defines the k-partitionable property, describes the screening test, and

shows how to compute the answers of the LCP queries efficiently. Section 5 shows how to externalize

Chan et al.’s index. We conclude the paper in Section 6.

2 Preliminaries

2.1 Suffix Tree, Suffix Array, and Inverse Suffix Array

Given a text T [1..n], the substring T [i..n] for any i ∈ [1, n] is called a suffix of T . We assume that

characters in T are drawn from an ordered alphabet which is of constant size, and T [n] = $ is a distinct

character that does not appear elsewhere in T . The suffix tree of T [19, 25] is a compact trie storing all

suffixes of T . Each edge corresponds to a substring of T , which is called the edge label. For any node

u, the concatenation of the edge labels along the path from the root to u is called the path label of u.

There are n leaves in the suffix tree, with each leaf corresponding to a suffix of T . Each leaf stores

the starting position in T of its corresponding suffix, which is called the leaf label. The children of an

internal node are ordered by the lexicographical order of their edge labels.

The suffix array of T [18], denoted by SA, is an array of integers such that SA[i] stores the starting

position in T of the ith lexicographically smallest suffix. It is worth-mentioning that SA can be

obtained by traversing the suffix tree in a left-to-right order and recording the leaf labels. Furthermore,

the descendant leaves of each internal node u in the suffix tree correspond to a contiguous range in the

suffix array, and we call this the SA range of u.

The inverse suffix array, denoted by SA−1, is defined such that SA−1[i] = j if and only if i = SA[j].

When stored in the external memory, the space of both SA and SA−1 arrays take O(n/B) disk pages,

and each entry in the arrays can be reported in one I/O.

Suppose that we are given a pattern P , which appears at position i of T . That is, T [i..i+|P |−1] = P .

Then, P must be a prefix of the suffix T [i..n]. Furthermore, each distinct occurrence of P in T

corresponds to a distinct suffix of T sharing P as a prefix. Based on this observation, the following

lemma from [18] shows a nice property about the suffix array.

Lemma 1. Suppose that P is a pattern appearing in T . Then there exists i ≤ j such that SA[i],

SA[i+ 1], . . . , SA[j] are the starting positions of all suffixes sharing P as a prefix. In other words,
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SA[i..j] lists all occurrences of P in T .

2.2 Cache-Oblivious String Dictionaries

Brodal and Fagerberg proposed an external-memory index for a text T of length n that supports

efficient pattern matching query [9]. Their index takes O(n/B) disk pages and it is cache-oblivious.

For the pattern matching query, given any input pattern P , we can find all occurrences of P in T using

O((|P |+ occ)/B + logB n) I/O operations.

In this paper, we are interested in answering a slightly more general query. Given a pattern P , let

` be the length of the longest prefix of P that appears in T . We want to find all suffixes of T that

has P [1..`] as a prefix (that is, all suffixes of T whose common prefix with P is the longest among the

others). We denote Q to be the set of starting positions in T of all such suffixes. Note that Q occupies

a contiguous region in SA, say SA[i..j]. We define the LCP query of P with respect to T , denoted

by LCP (P, T ), to be a query which reports (i) the SA range, [i, j], that corresponds to the SA region

occupied by Q, and (ii) the LCP length, `.

With very minor adaptation, Brodal and Fagerberg’s index can be used to answer the LCP query

efficiently, as stated in the following lemma.

Lemma 2. We can construct a cache-oblivious index for a text T of length n, such that given any input

pattern P , we can compute LCP (P, T ) in O(|P |/B+ logB n) I/O operations. The space of the index is

O(n/B) disk pages.

2.3 LCA Index on Rooted Tree

For any two nodes u and v in a rooted tree, a common ancestor of u and v is a node that appears in

both the path from u to the root and the path from v to the root; among all common ancestors of u

and v, the one that is closest to u and v is called the lowest common ancestor of u and v, denoted by

LCA(u, v). The lemma below states the performance of an external-memory index for LCA queries,

which follows directly from the results in [16, 5].

Lemma 3. Given a rooted tree with n nodes, we can construct a cache-oblivious index of size O(n/B)

disk pages such that for any nodes u and v in the tree, LCA(u, v) can be reported in O(1) I/O operations.

2.4 Cache-Oblivious Y-Fast Trie

Given a set X of x integers, the predecessor of r in X, denoted by Pred(r,X), is the largest integer in

X which is smaller than r. If the integers in X are chosen from [1, n], the Y-fast trie on X [26] can find

the predecessor of any input r in O(log log n) time under the word RAM model;4 the space occupancy

is O(x) words. In the external-memory setting, we can store the Y-fast trie easily using the van Emde

Boas layout [7, 22, 23, 20], giving the following lemma.

Lemma 4. Given a set X of x integers chosen from [1, n], we can construct a cache-oblivious Y-fast

trie such that Pred(r,X) for any integer r can be answered using O(log logB n) I/O operations. The

space of the Y-fast trie is O(x/B) disk pages.

2.5 Cache-Oblivious WLA Index

Let R be an edge-weighted rooted tree with n nodes, where the weight on each edge is an integer

in [1,W ]. We want to construct an index on R so that given any node u and any integer w, we can find

the unique node v (if exists) with the following properties: (1) v is an ancestor u, (2) the sum of the

4A word RAM supports standard arithmetic and bitwise boolean operations on word-sized operands in O(1) time.
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weights on the edge from the root of R to v is at least w, and (3) no ancestor of v satisfies the above

two properties. We call v the weighted level ancestor of u at depth w, and denote it by WLA(u,w).

Assume that logW = O(log n). In the internal-memory setting, we can construct an index that

requires O(n) words of space and finds WLA(u,w) in O(log log n) time [4]. In the following, we describe

the result of a new WLA index that works cache-obliviously, which may be of independent interest.

This result is based on a recursive structure with careful space management. The proof will be given

in the Appendix.

Lemma 5. We can construct a cache-oblivious index on R such that for any node u and any integer w,

WLA(u,w) can be reported in O(log logB n) I/O operations. The total space of the index is O(n/B)

disk pages.

2.6 Cache-Oblivious Index for Join Operation

Let T be a text of length n. For any two strings Q1 and Q2, suppose that LCP (Q1, T ) and LCP (Q2, T )

are known. The join operation for Q1 and Q2 is to compute LCP (Q1Q2, T ), where Q1Q2 denotes the

concatenation of Q1 and Q2.

Cole et al. (Section 5 of [13]) have developed an index of O(n log n) words that performs the join

operation in O(log log n) time in the internal-memory setting. Their index assumes the internal-memory

results of LCA index, Y-fast trie, and WLA index. In the following lemma, we give an index that

supports efficient join operations in the cache-oblivious setting.

Lemma 6. We can construct a cache-oblivious index on T of O((n log n)/B) disk pages and supports

the join operation in O(log logB n) I/O operations.

Proof. Using Lemmas 3, 4, and 5, we can directly extend Cole et al.’s index into a cache-oblivious

index.

3 A Review of Cole et al.’s k-Error Matching

In this section, we review the internal-memory index for k-error matching proposed by Cole et al. [13],

and explain the challenge in adapting it into a cache-oblivious index.

To index a text T of length n, Cole et al.’s index includes two data structures: (1) the suffix tree of

T that occupies O(n) words, and (2) a special tree structure, called k-error tree, that occupies a total of

O(n logk n) words of space. The k-error tree connects to a number of (k− 1)-error trees, each of which

connects to a number of (k − 2)-error trees, and so on. The base of this recursive structure consists of

0-error trees.

Given a pattern P , Cole et al.’s matching algorithm considers different ways of making k edit

operations on P in order to obtain an exact match in T . Intuitively, the matching algorithm first

considers all possible locations of the leftmost error on P in which a match may exist; then for each

location i that has an error, we can focus on searching the remaining suffix, P [i+1..|P |], for subsequent

errors. The searches are efficiently supported by the recursive tree structure. More precisely, at the

top level, the k-error tree will immediately identify all matches of P in T with no errors; in addition,

for those matches of P with at least one error, the k-error tree classifies the locations of the leftmost

error on P into O(log n) groups, and then each group creates a search in a dedicated (k− 1)-error tree.

Subsequently, each (k − 1)-error tree being searched will immediately identify all matches of P with

one error, while for those matches of P with at least two errors, the (k − 1)-error tree further classifies

the locations of the second-leftmost error on P into O(log n) groups, and then each group creates a

search in a dedicated (k − 2)-error tree. The process continues until we get to the 0-error trees, where

all matches of P with exactly k errors are reported.
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The classification step in each k′-error tree is cleverly done to avoid repeatedly accessing characters

in P . It does so by means of a constant number of LCA, LCP, Pred, and WLA queries; then, we are

able to create enough search information (such as the starting position of the remaining suffix of P to

be matched) to continue the subsequent O(log n) searches in the (k′−1)-error trees. Reporting matches

in each error tree can also be done by a constant number of LCA, LCP, Pred, and WLA queries. In

total, it can be done by O(logk n) of these queries. See Figure 1 for the framework of Cole et al.’s

algorithm. (In the subroutine Search Error Tree, Line 2, Line 5 and Line 6 can be done by a

constant number of LCA, LCP, Pred, and WLA queries; Line 8 requires O(1) operations by following

appropriate pointers.)

Algorithm Approximate Match(P )

Input: A pattern P

Output: All occurrences of k-error match of P in T

1. R← k-error tree of T ;

2. Search Error Tree(P,R,nil);

3. return;

Subroutine Search Error Tree(P,R, I)

Input: A pattern P , an error tree R, search information I

1. if R is a 0-error tree

2. then Output all matches of P with k errors based on R and I;

3. return;

4. else (∗ R is a k′-error tree for some k′ > 0 ∗)
5. Output all matches of P with k − k′ errors based on R and I;

6. Classify potential error positions into O(log n) groups based on P , R, and I;

7. for each group i

8. Identify the (k′ − 1)-error tree Ri corresponding to group i;

9. Compute search information Ii to continue the search in Ri;

10. Search Error Tree(P,Ri, Ii);

11. return;

Figure 1: Cole et al.’s algorithm for k-error matching.

Each LCA, Pred, or WLA query can be answered in O(log log n) time. For the LCP queries, they

are all in the form of LCP (Pi, T ), where Pi denotes the suffix P [i..|P |]. Instead of answering each query

on demand, Cole et al. compute the answers of all these LCP queries at the beginning of the algorithm.

There are |P | such LCP queries, which can be computed in O(|P |) time by exploiting the suffix links

of the suffix tree of T (the algorithm is essentially McCreight’s suffix tree construction algorithm [19]).

Consequently, the answer of each LCP query is returned in O(1) time when needed. Then, Cole et al.’s

index supports k-error matching in O(|P |+ logk n log logn+ occ) time, where occ denotes the number

of occurrences.

3.1 Externalization of Cole et al.’s index

We are now ready to consider how to adapt Cole et al.’s index into a cache-oblivious index. Notice

that each LCA, Pred, or WLA query can be answered in O(log logB n) I/Os by storing suitable data

structures (see Lemma 3, 4, and 5). The only bottleneck lies in answering the O(logk n) LCP queries.

In the external-memory setting, though we can replace the suffix tree with Brodal and Fagerberg’s

cache-oblivious string dictionary (Lemma 2), if we compute LCP (Pi, T ) for all i in advance, we will

need Ω(|P |2/B) I/Os. Alternatively, if we compute each LCP query on demand without doing anything

at the beginning, we will need a total of Ω((logk n)|P |/B) I/Os to answer all LCP queries during the

search process. In summary, a direct adaptation of Cole et al.’s index into the external-memory setting

will need Ω((min{|P |2, |P | logk n}+ occ)/B + logk n log logB n) I/Os for k-error matching.
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In the next section, we propose another approach, where we compute the answers of some useful LCP

queries using O(|P |/B+ k logB n) I/Os at the beginning, so that each subsequent query of LCP (Pi, T )

can be answered efficiently in O(log logB n) I/Os (see Lemma 9 in Section 4). This result leads to the

following theorem.

Theorem 1. For a fixed integer k, we can construct a cache-oblivious index on T of size O((n logk n)/B)

disk pages such that, given any pattern P , the k-error matches of P can be found in O((|P |+ occ)/B+

logk n log logB n) I/O operations.

4 Cache-Oblivious k-Error Matching

Let P be a pattern, and let Pi = P [i..|P |] be a suffix of P . In this section, we show how to preprocess

P in O(|P |/B + k logB n) I/Os. The aim is to obtain the answers of some useful LCP (Pi, T ) queries,

such that a subsequent query of LCP (Pj , T ) for any j can be answered in O(log logB n) I/Os.

We observe that for a general pattern P , the above target may be difficult to achieve. Instead,

we take advantage of concerning only those query patterns that potentially have a k-error match. We

formulate a notion called k-partitionable and show that

• if P is k-partitionable, we can achieve the above target;

• if P is not k-partitionable, there must be no k-error match of P in T .

In Section 4.1, we first define the k-partitionable property, and describe an efficient screening test

that checks whether P is k-partitionable; in case P is k-partitionable, the screening test would have

computed the answers of LCP (Pi, T ) queries for some i as a by-product. In Section 4.2, we show how to

utilize the answers precomputed in the screening test to answer LCP (Pj , T ) for any j in O(log logB n)

I/Os.

In the following, we assume that we have maintained the suffix array and inverse suffix array of T .

Each entry of these two arrays will be accessed one at a time, at the cost of one I/O per access.

4.1 k-Partitionable and Screening Test

Consider the following partitioning process on P . In Step 1, we delete the first ` characters of P where

` is the LCP length reported by LCP (P, T ). While P is not empty, Step 2 removes further the first

character from P . Then, we repeatedly apply Step 1 and Step 2 until P is empty. In this way, P is

partitioned into π1, c1, π2, c2, . . . , πd, cd, πd+1 such that πi is a string that appears in T , and ci is called a

cut-character such that πici is a string that does not appear in T . (Note that πd+1 is an empty string if

P becomes empty after some Step 2.) Note that this partitioning is unique, and we call this the greedy

partitioning of P .

Definition 1. P is called k-partitionable if the greedy partitioning of P consists of at most k cut-

characters.

The following lemma states that the k-partitionable property is a necessary condition for the exis-

tence of a k-error match.

Lemma 7. If P has a k-error match, P is k-partitionable.

Proof. Suppose on contrary that P is not k-partitionable and the greedy partitioning of P has more

than k cut-characters. Then, consider a particular k-error match M of P . Since πici is not a string in

T , there must be at least one edit operation in that region to turn P into M . This implies that at least

k + 1 edit operations are needed to turn P into M , which is a contradiction.
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The screening test on P performs the greedy partitioning of P to check if P is k-partitionable. If

P is not k-partitionable, we can immediately conclude that P does not have a k-error match in T .

One way to perform the screening test is to apply Lemma 2 repeatedly, so that we discover π1 and c1
in O(|P |/B + logB n) I/O operations, then discover π2 and c2 in O((|P | − |π1| − 1)/B + logB n) I/O

operations, and so on. However, in the worst case, this procedure will require O(k(|P |/B + logB n))

I/O operations. In the following lemma, we make a better use of Lemma 2 with the standard doubling

technique and show how to use O(|P |/B+ k logB n) I/O operations to determine whether P passes the

screening test or not.

Lemma 8. The screening test on P can be done cache-obliviously in O(|P |/B+k logB n) I/O operations.

Proof. Let r = d|P |/ke. In Round 1, we perform the following steps.

• We apply Lemma 2 on P [1..r] to see if it appears in T . If so, we double the value of r and check if

P [1..r] appears in T . The doubling continues until we obtain some P [1..r] which does not appear

in T , and in which case, we have also obtained π1 and LCP (π1, T ).

• Next, we remove the prefix π1 from P . The first character of P will then become the cut-character

c1, and we apply Lemma 2 to get LCP (c1, T ). After that, remove c1 from P .

In each subsequent round, say Round i, we reset the value of r to be d|P |/ke, and apply the same steps

to find πi and ci (as well as LCP (πi, T ) and LCP (ci, T )). The algorithm stops when P is empty, or

when we get ck+1.

It is easy to check that the above process correctly outputs the greedy partitioning of P (or, up

to the cut-character ck+1 if P does not become empty) and thus checks if P is k-partitionable. The

number of I/O operations of the above process can be bounded as follows. Let ai denote the number

of times we apply Lemma 2 in Round i, and bi denote the total number of characters compared in

Round i. Then, the total I/O cost is at most O((
∑

i bi)/B + (
∑

i ai) logB n) by Lemma 2. The term∑
i bi is bounded by O(|P |+ k) because Round i compares O(|πi|+ d|P |/ke) characters, and there are

only O(k) rounds. For ai, it is bounded by O(log(k|πi|/|P |) + 1), so that by Jensen’s inequality, the

term
∑

i ai is bounded by O(k).

4.2 Computing LCP for k-Partitionable Pattern

In case P is k-partitionable, the screening test in Section 4.1 would also have computed the answers for

LCP (πi, T ) and LCP (ci, T ). To answer LCP (Pj , T ), we will make use of the join operation (Lemma 6)

as follows. Firstly, we determine which πi or ci covers the jth position of P .5 Then, there are two cases:

• Case 1: If the jth position of P is covered by πi, we notice that the LCP length of LCP (Pj , T )

cannot be too long since πi+1ci+1 does not appear in T . Let πi(j) denote the suffix of πi that

overlaps with Pj . Indeed, we have:

Fact 1. LCP (Pj , T ) = LCP (πi(j)ciπi+1, T ).

This shows that LCP (Pj , T ) can be found by the join operations in Lemma 6 repeatedly on πi(j),

ci and πi+1. The SA range of πi(j) can be found easily using SA, SA−1 and WLA as follows.

Let [p, q] be the SA range of πi. The pth smallest suffix is the string T [SA[p]..n], which has

πi as a prefix. We can compute p′ = SA−1[SA[p] + j], such that the p′th smallest suffix has

πi(j) as a prefix. Using the WLA index, we can locate the node (or edge) in the suffix tree of T

corresponding to πi(j). Then, we can retrieve the required SA range from this node. The LCP

query on Pj can be answered in O(log logB n) I/O operations.

5This is in fact a predecessor query and can be answered in O(log logB n) I/O operations by maintaining a Y-fast trie

for the starting positions of each πi and ci.
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• Case 2: If ci is the jth character of P , the LCP query on Pj can be answered by the join operation

on ci and πi+1 in O(log logB n) I/O operations, using similar arguments as in Case 1.

Thus, we can conclude the section with the following lemma.

Lemma 9. Let T be a text of length n, and k be a fixed integer. Given any pattern P , we can perform

a screening test in O(|P |/B + k logB n) I/Os such that if P does not pass the test, it implies that there

is no k-error match of P in T . In case P passes the test, LCP (P [j..|P |], T ) for any j can be returned

in O(log logB n) I/Os.

5 An O(n log n)-Space Cache-Oblivious Index

5.1 A Review of Chan et al.’s k-error Matching

Below we review the O(n)-space index for k-error pattern matching given by Chan et al. [11]. For

simplicity, we only consider the case of Hamming distance.

Consider a text T [1..n] over an alphabet Σ of constant size. Let β = Θ(logk+1 n) be an integer.

We first focus on handling “long” patterns, whose lengths are at least β. We call a character T [a] a

check-point if a is a multiple of β. Given a long pattern P , we cut P into P [1..i− 1] and P [i..m] for all

i ∈ [1, β]. For all k1 and k2 where k1 + k2 ≤ k, we will search for all check-points a such that P [i..m]

has a k2-error match starting from T [a], and P [1..i− 1] has a k1-error match ending at T [a− 1]. Thus,

P has a (k1 + k2)-error match starting at T [a− i+ 1].

The index is divided into two parts.

1. (Pattern Matching Index) T is indexed using some special search trees for the check-points, called

TAIL` and HEAD`, where ` ∈ [0, k]. Each leaf in TAIL` (or HEAD`) corresponds to a check-

point. Given a pattern X, TAIL` supports finding all its `-error matches in T that start at some

check-points. Similarly, HEAD` finds all `-error matches ending at the position in T just before

some check-points. HEAD` and TAIL` do not report directly all the check-points; instead they

report a set of O(log` n) nodes such that the union of all their descendant leaves covers all the

matches.

2. (Set Intersection Index) For any k1, k2 with k1 + k2 ≤ k, if there exists a leaf x1 in TAILk1 and

a leaf x2 in HEADk2 both corresponding to the same check-point a, then (x1, x2) is called a

connecting pair. Given a node u1 in TAILk1 and a node u2 in TAILk2 , the index for connecting

pairs supports finding connecting pairs (x1, x2) where x1 and x2 are descendants of u1 and u2
respectively.

Chan et al. adapted the work of Cole et al. [13] to index the check-points in O(n) space. Given a

pattern P , after an O(|P |)-time preprocessing, the required nodes in the Pattern Matching Index can be

found in O(β logk n log logn) = O(log2k+1 n log log n) time. In the Set Intersection Index, each pair of

trees (TAILk1 ,HEADk2) is indexed using the technique of Buchsbaum et al. [10] for Tree-Cross-Product.

The total space required is O(n), and finding all connecting pairs takes O(log2k+1 n log log n+occ) time.

For short patterns with length less than β, we can use the data structure by Lam et al. [17], which

supports k-error searching in O(|Σ|k|P |k log logn + occ) time. If Σ is of constant size, then the time

complexity becomes O(logk(k+1) n log logn+ occ).

5.2 Cache-Oblivious Data Structure

Now we show how to turn Chan et al.’s index into a cache-oblivious index by providing the corresponding

cache-oblivious data structures.
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Pattern Matching. Let T ′ (resp. P ′i ) denote the string with all characters in string T (resp. Pi)

reversed. Analogous to Section 3, Chan et al.’s data structure makes O(logk n) LCA, Pred, WLA and

LCP queries, where LCP queries are in the form LCP (Pi, T ) and LCP (P ′i , T
′) where 1 ≤ i ≤ |P |.

We can build cache-oblivious data structures in Section 2 so that LCA, Pred and WLA queries can be

answered in O(log logB n) I/O. Similar to the previous section, the major difficulty is to avoid using

Ω(|P |2/B)-time to compute the answers of all LCP queries in advance for all i. By preprocessing P

and P ′ using our screening test and greedy partition, LCP queries can be answered by Lemma 9 using

O(log logB n) I/Os. This data structure requires O(n log n) space due to a data structure in Lemma 6

that was not needed in the index of Chan et al.

Set Intersection. There is no cache-oblivious data structure for Tree-Cross-Product. Here, we show

a reduction of Tree-Cross-Product to two-dimensional orthogonal range queries. We first look at the

Tree-Cross-Product indexing problem.

Let T1 and T2 be trees with at most n leaves. Let E be a set of pair of leaves (v1, v2) such that v1 is

a leaf of T1 and v2 is a leaf of T2. We call the pairs in E connecting pairs. Given a node u1 in T1 and

a node u2 in T2, we ask for all connecting pairs (v1, v2) such that v1 and v2 are descendants of u1 and

u2, respectively.

The data structure of Buchsbaum et al. [10] takes O(n+ |E| log n) space and answers each query in

O(log log n + occ) time where occ is the number of connecting pairs reported. We show the following

cache-oblivious data structure to answer each Tree-Cross-Product query in O(logB n+ occ/B) I/O.

1. We label the leaves from left to right by their pre-order ranking. For each internal node, we

store the smallest and the largest labels of all its descendant leaves. The data structure requires

O(n/B) pages, and on given a node u1 in T1, it takes O(1) I/O to retrieve the corresponding

stored labels. The tree T2 is indexed similarly.

2. For a connecting pair (v1, v2), we store a point (x, y) in the two-dimensional plane such that

x and y are labels of v1 and v2, respectively. Given an axis-parallel rectangle (x1, y1)–(x2, y2),

we want to locate all points inside the rectangle. The data structure by Arge et al. [1] requires

O(|E| log2 n/B log logn) disk pages and takes O(logB n+ occ/B) I/Os to answer the query.

The above data structures handle “long” patterns in O((|P | + occ)/B + log2k+1 n logB n) I/Os.

The Pattern Matching index requires O(n log n/B) disk pages and the Set Intersection index requires

O((n/β) logk n(log2 n/ log logn)) = O(n log n/(B log log n)) disk pages. The total space requirement is

O(n log n/B) disk pages.

For short patterns, the index of Lam et al. [17] can be used directly as it stores the occurrences of

each short pattern contiguously in the memory. Hence, searching takes only O(logk(k+1) n log log n +

occ/B) I/Os.

Theorem 2. For a fixed integer k ≥ 2, we can construct a cache-oblivious index on T of size O(n log n/B)

disk pages such that on given any pattern P , the k-error matches of P can be found in O((|P |+occ)/B+

logk(k+1) n log log n) I/O operations. For k = 1, searching takes O((|P | + occ)/B + log3 n logB n) I/O

operations.

6 Conclusion

We adapted Cole et al.’s approximate matching index into a cache-oblivious index. We identified

the answering of all LCP queries as the major bottleneck in a naive implementation. To circumvent

this bottleneck, we compute only the answers of some “useful” LCP queries in advance, so that each

subsequent LCP query can still be answered efficiently. We take advantage of a new notion called

k-partitionable and devise an I/O-efficient screening test that checks whether P is k-partitionable. If
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P is k-partitionable, the screening test would also compute the answers of some useful LCP queries as

a by-product, which can then be utilized to answer LCP query for arbitrary Pi efficiently.

Together with other cache-oblivious data structures, we are able to construct an index to find all

k-error matches using O((|P | + occ)/B + logk n log logB n) I/O operations. The space of the index

is O((n logk n)/B) disk pages. To the best of our knowledge, this is the first external-memory data

structure that does not require Ω(|P |+ occ+ poly(log n)) I/O operations. Our index can work even if

the alphabet size is unbounded.

When the alphabet size is a constant, we extended the internal-memory result of Chan et al. [11] to

work in the external memory setting. The difficulties of the extension come in two parts: (i) computing

the answers of the LCP queries, and (ii) answering the Tree-Cross-Product queries. For (i), we will

use the same approach as we externalize Cole et al.’s index. For (ii), there is no external memory

counter-part for the data structure of [10]; instead, we show how to reduce the Tree-Cross-Product

query to a two-dimensional orthogonal range search query, so that we can store an appropriate data

structure of [1] that can answer the latter query efficiently. In this way, for any fixed k ≥ 2, we

can construct an index using O((n log n)/B) disk pages, which can find all k-error matches of P in

O((|P |+ occ)/B + logk(k+1) n log logn) I/Os.

It is open whether we can further reduce the number of searching I/Os to O((|P | + occ)/B +

poly(logB n)). Another related open problem is on the construction of these indexes. It would be nice

to know if one can obtain cache-oblivious construction algorithms for these indexes.
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A Appendix

A.1 Cache-Oblivious WLA Index

Given a rooted tree R with n nodes, with integral weights on each edge drawn from [1,W ], we want to

construct an index on R such that on given any node u and any integer w, we can find the ancestor

node v of u such that the sum of weights on the edge from the root to v just greater than or equal to w.

We call v the weighted level ancestor of u at depth w, and denote it by WLA(u,w).

Assume that logW = O(log n). In the following, we describe our cache-oblivious implementation of

the WLA index.

Firstly, we focus on an index that supports WLA query for any node u being a leaf in R. Let us

call that a WLA-for-leaf index on R. After that, with minor modification to the WLA-for-leaf index,

we can easily extend it to support WLA query for the internal nodes in R as well.

For ease of discussion, we define some notation as follows. For each node v in R, the sum of the

weights of all edges on the path from the root to v is called the depth of v. We call the subtree formed

by those nodes having at least
√
n descendant leaves the top tree of R. For each node x not in the top

tree, but whose parent is in the top tree, we call the subtree rooted at x in R a bottom tree rooted

at x. The edge that connects the bottom tree to a top tree is called a middle edge. That is, R can be

decomposed into one top tree connected to multiple bottom trees through middle edges. Note that the

12



number of leaves in a top tree or in a bottom tree is at most
√
n. For any rooted tree S, a compact tree

of S is defined by contracting every non-root degree-1 internal node of S.

A simple recursive structure: Our WLA-for-leaf index is a recursive structure based on the top-

bottom tree decomposition, and it is stored using the van Emde Boas layout [7, 22, 23]. Precisely,

the WLA-for-leaf index of a tree consists of the WLA-for-leaf index of the compact tree of its top tree

first, the WLA index for each of the middle edges,6 and the WLA-for-leaf index of the compact tree of

each of its bottom tree. Our recursion stops when the number of leaves in the compact tree is one; in

this case, the tree consists of a root node x and a leaf node `. The corresponding WLA-for-leaf index

will be a pointer to a cache-oblivious Y-fast trie structure (stored at some other memory locations)

that is defined on the depth of all nodes on the path from x to ` in the original tree R. Similarly, the

WLA-index for a middle edge (v, x) will be a pointer to a cache-oblivious Y -fast trie defined on the

depth of all nodes on the path from v to x in R.

Before we give further details about WLA-for-leaf index when there is more than one leaf in the

tree, let us see how one would find WLA of a leaf u at depth w based on the WLA-for-leaf indexes of

(the compact tree of) the top tree and the bottom trees. Let x be the root of the bottom tree that

contains u, and let (v, x) be the middle edge connecting the bottom tree to its top tree. (Recall that v

is a node in the top tree.) There can be three cases:

Case 1: If w is between the depth of x and the depth of v, the desired WLA can be found by consulting

the WLA index for the middle edge (v, x).

Case 2: Else if the depth of v is more than w, let `′ be the leftmost descendant leaf of v in the top

tree. The desired WLA will be WLA(`′, w), which can be found by consulting the WLA-for-leaf

index in the top tree.

Case 3: Else, we have the depth of x is less than w. The desired WLA can be found by consulting the

WLA-for-leaf index in the bottom tree rooted at x.

In order to support the above procedure efficiently (when there is more than one leaf in the tree), we

define the WLA-for-leaf index as follows: For each leaf u in the tree, we store the information (i) the

depth of x (the root of the bottom tree where u belongs) and the depth of v, (ii) a pointer to the

WLA index for the middle edge (v, x), (iii) a pointer to `′ (the leftmost descendant leaf of v in the

top tree) in the WLA-for-leaf index for the top tree, and (iv) a pointer to u in the WLA-for-leaf index

for the bottom tree containing u. With this information stored, we can find WLA of any leaf at any

depth by recursion.

To count the number of I/O operations involved, we observe two things: (1) Though we do not

know the actual value of B, once the size of the compact tree in the recursion contains at most B

leaves (thus, Θ(B) nodes in total), the above procedure will access O(1) number of disk pages in the

remaining recursion; the reason is that by our memory layout, the WLA-for-leaf index of this tree fits

into O(1) disk pages. (2) If the number of leaves in a tree is n′, the number of leaves in its top tree,

or in each of its bottom tree, is at most
√
n′. Combining (1) and (2), we can conclude that there are

at most O(log logB n) recursion steps to reduce the tree size from n to B (though we do not know B

in advance), and for each of these recursion steps, it requires O(1) number of I/O operations. Then, at

the end of the recursion, we will follow a pointer to a Y-fast trie structure, and perform a predecessor

search. By Lemma 4, this final step takes at most O(log logB(nW )) I/O operations, which can be

bounded by O(log logB n) as we assume logW = O(log n). Thus, we can solve WLA for any leaf using

O(log logB n) I/O operations.

A more compact structure: Unfortunately, the major drawback of the above recursive structure is

its space usage. Consider any leaf u. It will be in a bottom tree of R, in a bottom tree of a bottom tree

6A middle edge in the current tree may refer to multiple edges in the original tree, since recursion is performed on

compact trees.
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of R, a bottom tree of a bottom tree of a bottom tree of R, and so on. With each leaf requiring O(1)

number of words of space (to store its information of (i) through (iv)), we can see that the above

recursive structure takes at least Ω(n log logn) words of storage. One easy fix to reduce the space is to

remove the leaves of the bottom tree in the recursion. Precisely, if Sx is a bottom tree of S rooted at x,

we obtain a tree S′x from Sx by removing all its leaves, and replace the original WLA-for-leaf index on

the compact tree of Sx by the WLA-for-leaf index on the compact tree of S′x. Then, for any leaf u in

the bottom tree Sx, let (v′, u) be the edge that connects u to Sx. In addition to keeping the previous

information (i) to (iii), we store (iv) the depth of u and the depth of v′, (v) a pointer to `′′ in the

WLA-for-leaf index of S′x, where `′′ is the leftmost descendant leaf of v′ in S′x, and (vi) a pointer to a

Y-fast trie structure (stored at some other memory locations) that is defined on the depth of all nodes

on the path from v′ to u in the original tree R. In this way, recursion in the top tree is the same as

before, while recursion in the bottom tree can be done by the modified Case 3 as follows:

Modified Case 3: Else, we have the depth of x is less than w.

1. If the depth of u is less than w, report “not found” as WLA(u,w) is undefined.

2. Else if the depth of v′ is less than w, the desired WLA is on the path from v′ to u in the

original tree, which can be found by a predecessor search in the Y-fast trie pointed by u.

3. Else, the desired WLA is WLA(`′′, w), which can be found by consulting the WLA-for-leaf

index on (the compact tree of) S′x.

With the above modified implementation, we have the following lemma.

Lemma 10. We can construct a cache-oblivious index on R such that for any leaf u and any integer w,

WLA(u,w) can be reported in O(log logB n) I/O operations. The total space of the index is O(n/B)

disk pages.

Proof. In the modified implementation, the I/O operations can be bounded in the same way as in the

original implementation. For the space, each node in R can become at most once as a leaf in some

bottom tree, in which case O(1) words are required to store the leaf information. And for each edge

in R, it can be in a path corresponding to at most one Y-fast trie structure. It is because once a path is

stored by a Y-fast trie, either the recursion stops, or the path contains a leaf in some bottom tree to be

removed from recursion. This implies that the path (and the edges on it) will not appear in subsequent

recursive structures. Thus, the number of words required for the Y-fast trie is linear to the number of

edges in R. As R has O(n) nodes and edges, the total space is O(n) words, which is stored in O(n/B)

disk pages with our memory layout.

To get the general WLA index, we observe that for any internal node v, suppose that `v is the

leftmost descendant leaf of v in R, then WLA(v, w) is undefined when depth of v is less than w, and

otherwise, it will be WLA(`v, w). Thus, for each internal node v, if we store along (i) its depth and

(ii) a pointer to `v, we can use the WLA-for-leaf index to solve the WLA of any internal node at

any depth. The total space of this augmentation is O(n) words, or O(n/B) disk pages. This gives the

following theorem.

Theorem 3. Given a rooted tree R with n nodes, where edges in the tree have integral weights from

[1,W ] with logW = O(log n), we can construct a cache-oblivious index on R such that for any node v

and any integer w, WLA(v, w) can be reported in O(log logB n) I/O operations. The total space of the

index is O(n/B) disk pages.
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