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Abstract: Modeling and simulation can be used in many contexts for gaining insights into the
functioning, performance, and operation, of complex systems. However, this method alone often
produces feasible solutions under certain operating conditions of a system in which such solutions may
not be optimal. This is inevitably inadequate in circumstances where optimality is required. In this
respect, an approach to effectively evaluate and optimize system performance is to couple the simulation
model with operations research techniques. In this paper, an optimization framework consisting of a
simulation model and an immunity-inspired algorithm is proposed for optimizing the key parameters in

the domain of automatic material handling.

Keywords: simulation, optimization, artificial intelligence, artificial immune systems.

1. INTRODUCTION

In recent years, increasing competitive market factors, e.g.
more rigid government regulations, increasing number of
competitors, shorter product life cycle and more demanding
customers, have created great pressure on all supply chain
parties, especially manufacturers and distributors, to improve
the efficiency and effectiveness of their production and
distribution systems. For these reasons, analyzing and
evaluating such systems, especially for complex automated
material handling systems (AMHSs), are essential for
improving and optimizing their operation to meet these
challenges. In the past, these systems were investigated
mainly by analytical methods such as linear programming.
However, with the advancement of manufacturing
technologies, these systems are increasingly more complex.
These complex systems that are inherently stochastic in
nature, with complex relationships between system
components, existence of uncertainties and real world
dynamics, make analytical methods hardly applicable. To
meet the challenges, these systems can be studied more
effectively and efficiently by computer-based modeling and
simulation approaches. Unlike a mathematical model,
simulation can handle uncertain structure and stochastic
parameters of a system to reflect the dynamics and to allow
the performance of comprehensive analyses. In addition,
simulation is a cost-effective means for new system or
process design as alternative solutions can be evaluated for
correctness and feasibility before any actual implementation.

While it is well acknowledged that modeling and simulation
techniques together with state-of-the-art simulation tools
provide an effective means to analyze and visualize the
performance of complex engineering systems, the decisions
taken based on the results generated by simulation studies
often depend on the quality of the simulation model and the

Copyright by the
International Federation of Automatic Control (IFAC)

experience of the analyst. This is inadequate from an
optimization viewpoint. In order to improve the optimality of
the process of simulation, a means to direct the undertaking
of simulation study would be academically interesting and of
great practical value. In this respect, this paper reports the
development of an optimization framework for modeling and
simulation of dynamic systems based on an emerging
artificial intelligence method know as Artificial Immune
Systems (AIS).

AIS is a comparatively new bio-inspired computation
paradigm, which captures the ideas from biological immune
system for modeling system behaviors and deriving solution
methods to solve a wide array of problems. Such an
engineering analogue of human immune system has drawn
substantial attention recently due to its promising problem
solving capability and its deep inspiration to the engineering
sciences. AIS embodies a powerful and diverse set of features
including autonomy, spatially distributed nature, dynamically
changing coverage, specificity, diversity, immune learning,
and memory, as well as the important immunological
principles and theories, namely: negative selection principle,
clonal selection principle, immune network theory, and
danger theory. By making use of these immunological ideas,
a number of algorithms have been developed to perform
different tasks e.g. autonomous vehicles control (Lau et al.,
2007), mobile robot navigation (Luh and Liu, 2008),
distributed intrusion detection systems (Beltran, 2002), etc.
There are many applications involving optimization e.g. job
shop scheduling, travelling salesman problems, routing
problems, etc. The AIS research community has considered
optimization a promising application area for immunity-
inspired algorithms, bringing about some novel algorithms
e.g. CLONALG algorithm (de Castro and Von Zuben, 2000),
the B-Cell algorithm (Timmis et al., 2004), and Opt-aiNet (de
Castro and Timmis, 2002). Inspired by the appealing
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properties of AIS, an immunity-inspired optimization
algorithm that captures the immunological ideas including
clonal selection, affinity maturation, and immune suppression
is developed. The algorithm works in cooperation with a
simulation model to solve optimization problems, e.g. to
optimize the overall processing time of machines in factories
and other operations where AMHSs play a crucial role.

2. AFRAMEWORK FOR SIMULATION-BASED
OPTIMIZATION

In this section, the framework (Fig. 1) for carrying out
simulation optimization is described. The main concept
behind this proposed approach is to use the evolutionary
nature of AIS to direct the search for favorable solutions that
are evaluated by the simulation model.

BN

Optimization
strategy

Optimal Solution

S ——

Simulation
model

] ~

Initial
configuration

Feedback

Output performance metric

Fig. 1. A framework for simulation optimization

The framework consists of two critical components, namely 1)
the simulation model and 2) the immunity-inspired
optimization algorithm. The problem to be optimized is
represented by a discrete-event simulation model, which is
defined separately from the optimizer, taking inputs produced
from the optimizer and then generates an output performance
metric as feedback about the quality of solutions obtained
from the optimizer. Based on the input values generated by
the optimizer, the simulation is executed automatically with
various parameter settings. It is worth emphasizing that the
variability of the simulation outputs must be minimized by
running multiple replications of the simulation model with
the same input values but different random number streams.
The optimization strategy is a search algorithm. The quality
of the simulation results previously generated directs the
algorithm to search for a new set of input values, hence
producing feedback about the progress of the search for the
optimal solution with respect to certain criteria, which in turn
derives new inputs to the model. This iterative process
repeats until a pre-specified termination criterion is met. In
this optimization framework, the optimizer is implemented
with VBA, whereas the simulation model is developed using
the Flexsim simulation tool.

2.1 Simulation Model
2.1.1 Problem Formulation and Objective Setting

A single objective simulation-based optimization process is
regarded as the search for an optimum of a simulation
process, i.¢., to find an optimal set of input decision variables
that optimizes an output variable of the simulation model. To
formulate a mathematical model for the simulation-based

optimization problem, assume X ={x;:j=1,2, ..., m} € Q
being an m-dimensional vector of decision variables in real
number representing the input variables for a simulation
mode and Q € [J, u;] is the feasible region of the decision
variables x; with the lower bound /; and the upper bound ;.
The objective function f{X) is an output random variable for
the simulation model as it is assumed that fiX) is not
available directly but can be estimated by performing a
sufficient number of simulation runs with input variables X.
The optimization problem of interest is formulated as follows:

min fX) = E[L(X, w)] (1
XeQ

Subject to

L <x <uj(forj=1,2,...,m) (2)
S(a xj)<ci(fork=1,2,...,n) 3)
=1

where the objective function f{X) is the expected value of the
random output variable L(X, ) that is obtained from the
simulation model, » is a sample path, L is a sample
performance measure, and Equations (2) and (3) are range
constraints and linear constraints.

2.1.2 Simulation Strategy and Simulation Tool

After defining the objective, the next step is to consider the
simulation strategy and simulation tool that fit the problem
domain. In general, there are four types of discrete-event
simulation strategies including process-interaction method,
event-scheduling method, activity scanning method, and
three-phrase method (Banks, 1998). With the problems
concerned, the events to be simulated are not complex and
the relationships between them are relatively straightforward,
the event-scheduling method, thus, is used as the simulation
strategy for this study. In this study, the discrete-event,
object-oriented simulation tool - Flexsim is employed for
implementing the simulation model. The motivation for
adopting a commercial simulation tool for the study is as
follows: First, Flexsim adopts the event-scheduling method
as its simulation engine. Second, it can model systems on
either discrete or continuous basis. Another benefit is that
Flexsim is able to interface with common database and
spreadsheet applications for manipulating data.

2.2 Optimization strategy and algorithm formulation

It is widely known that the essence of the clonal selection
principle for an optimization problem is to generate a varied,
enlarged population of antibodies around their parents based
on their antigenic affinity (fitness). In this way, the search
space is expanded from a low dimensional space to a high
dimensional one. At the end of each generation, the
population will return to the original size with elitist
antibodies with better affinity. From generation to generation,
the original population evolves in a way that high performers
are likely to survive and reproduce new and hopefully better
children, while low performers will be eliminated from the
population. As a result, an optimal solution can be obtained
after a sufficient number of iterations are performed. In this
section, an innovative optimizer called suppression-
controlled clonal selection algorithm (SCCSA) is developed.
The mapping between the biological immune system and the
proposed artificial one is given in Table 1.
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Table 1. Mapping between the biological immune system and

SCCSA
Biological Immune | SCCSA
System
Antigen (Ag) Objective function (simulation model)
Antibody (Ab) Candidate solution (a set of decision variables)

Ag-Ab affinity Fitness value of each candidate solution

Ab-Ab affinity Distance to other candidate solutions

Immune (Ab-Ab)
suppression

Mechanism to control the number of nearby candidate
solutions with regards to Ab-Ab affinity

SCCSA has taken several key immunological features into
consideration: clonal selection and expansion, affinity
maturation, metadynamics, and immune suppression. In
SCCSA, two types of entities are considered — an antigen (Ag)
and an antibody (Ab). While the antigen represents a problem
to be solved or optimized, each antibody in a population
corresponds to a candidate solution to the problem. Therefore,
the evaluation of the simulation model for a given candidate
solution represents the antigenic Ag-Ab affinity. In addition,
Ab-Ab affinity, which is a measure for maintaining the
population diversity, mimicking the immune suppression
undergone by the interacting B-cells based on immune
network theory, is also considered. The proposed SCCSA is,
in principle, a search algorithm in the solution space initiated
by the antigenic affinity, which comprises four main immune
operators: cloning operator, hypermutation operator,
suppression operator, and selection operator. The detail of the
proposed algorithm is discussed below and the block diagram
showing the computational steps for the proposed SCCSA is
presented in Fig. 2.

Initialization
v End
Setup Initial Yes +
population
Termination
+ condition
Evaluation No
Ranking <——— New
+ population
Randomly add
Normalization back [ +
antibodies and
+ evaluate them Selection
Classification +
+ Suppression
Classified > Discard +
opulation Class 3 )
pep Evaluation
Cloning Mutated
* population
Cloned +
population —|—’ Mutation

Fig. 2. Computation model of SCCSA

Step 1: Initialization

Assume ¢ is the iteration counter of the algorithm so that Ab(r)
={ab;:1=1,2,..., N} is a set of candidate solutions of #
iteration in the current fitness landscape, where N is the

population size, and ab;= {x;: j = 1, 2, ..., m} is a candidate
solution to the fitness function. Each candidate solution x; is a
string of length m with the lower bound /; and the upper
bound ;. At ¢t = 0, the initial population of candidate
solutions is randomly generated using the formula:

x]-=lj+ﬁ><(uj—j) (4)
where f is a random number uniformly distributed in the
range [0, 1].

Step 2: Simulation Evaluation of Initial Population

The fitness of each antibody ab; & Ab(¢) is evaluated using
simulation. In this way, a fitness vector fstoring all the
parent antibodies’ fitness f; (i = 1, 2, ..., N) is determined.

Step 3: Ranking
All antibodies in the current population Ab(¢) is first ranked
in ascending order in accordance with their fitness value.

Step 4: Fitness Normalization
The elements in the fitness vector f at this step are
normalized within the interval [0, 1] as follows:
Fi_ f H— ﬁ
Jo—fu
where F; is the i" antibody’s normalized fitness, f; is the i"

antibody’s fitness, fy is the highest fitness value among the
current antibody population, and f; is the lowest one.

&)

Step 5: Classification
To better increase the efficiency, the population is divided
into three classes - Ab“Y(r), Ab“?(f), and Ab“(r) with
different sizes for handling different tasks as defined below:
Class 1 - Ab“Y(¢): F;> F +0.56
Class 2 - Ab““(1): F -0.56 <F;< F +0.5¢
Class 3 - Ab“(1): F;< F - 0.56

where F is the mean of all antibodies’ fitness and o is the
standard deviation. After the classification is done, different
jobs will be undertaken by them. Class 1 containing high
performers will advance towards the local optimal solutions
with a lower mutation rate. Class 2 comprising medium
performers will concentrate on exploring more promising
areas for the global optimum by performing a more dramatic
mutation. Class 3 antibodies possessing the lowest fitness
will do nothing and will be substituted by randomly
generated antibodies for maintaining the population diversity.

Step 6: Cloning

The cloning operator helps enlarge the population by
generating a number of copies of Class 1 and Class 2
subpopulations, which are denoted as C““(r) and C“?(r)
respectively. Hence the size of the population now is N + N,
and N, is obtained by:

N.=%¢;

{ ¢; =round(max_clone x F}) (6)
where N, is the total number of copies produced for the two
classes of antibodies, c; is the clone size for ab; € Ab(d)(t) U
AbP(f), max_clone is the maximum clone size of each
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antibody, and round() is an operator for rounding its
argument to the closest integer.

Step 7: Mutation

The hypermutation operator induces multi-point mutations to
the pool of clones. The clones are mutated as follows:

Class 1 { a=e’*r
CYH) =C) +axRxw, (7)

Class 2 a=e?*t
{ CYf) =CPt) +axRx w, (8)

where o represents the mutation rate that is inversely
proportional to the normalized fitness F;, p is an exponential
coefficient controlling the decay of a, R € [-1, 1] is a m-
dimensional random vector obtained with uniform
distribution, and w; and w, are the mutation step factors for
the Class 1 antibodies and the Class 2 antibodies respectively.
In order to allow the better performers in Class 1 to take a
smaller mutation step to locate local optima while diverting
the direction for poorer performers in Class 2 by taking a
larger mutation step in search for global optimum in a bigger
search space, w,is always set to be larger than w; (@, < @,).

Step 8: Simulation Evaluation of Mature Clones

Class 1 and Class 2 subpopulations are combined to form a
total clone population C'(f) and then the fitness of each
mature clone C;/ € C'(¢) (i =1, 2, ..., N,) will be evaluated

using simulation. In this way, a fitness vector fstoring all

the child’s fitness fi' (i=1,2,...,N,)is determined.

Step 9: Suppression

A suppression operator is introduced and works on each
clone to avoid antibody redundancy and maintain the
population diversity based on the idea of immune network
theory such that B-cells are stimulated and suppressed by not
only non-self antigens but the interacting B-cells. To achieve
this, the affinity (similarity) among the newly generated
antibodies is determined. The affinity between two antibodies
is defined as the Euclidean distance between them:

d(ab, aby) = | T [abiCx) —abe(x))” <e ©)

where d(ab;, aby) is the Euclidean distance between the two
antibodies, m is the length of each antibody, and ¢ is a
positive threshold value. In this step, if the distance between
two clones is smaller than the threshold, then the clone with
lower fitness is suppressed and eliminated from the
population. This procedure is repeated until all clones are
compared in terms of both affinity and fitness. Eventually, a
surviving clone population C"(¢) is formed and then enters
into the selection process.

Step 10: Selection

An evolutionary selection operator is used to select only the
improved children in the surviving clone population C’(#)
with better fitness to replace some of the less fit parents. The
low-fitness children in Class 3 are replaced by / randomly
generated antibodies to enhance the population diversity.
Finally by combining the updated Class 1 and Class 2
subpopulations and the replaced Class 3 subpopulation, a
new population Ab(#+1) containing N high performers based

on the simulation results (antigenic affinities) for the next
generation f+1 is formed.

Step 11: Termination

To control the termination of the optimization process, the
function Termination_Condition() is introduced. It returns
True if no significant changes (change within an acceptable
range, #) on the average fitness of both Class 1 and Class 2
subpopulations over successive iterations, ferm_max. The
optimization process will also terminate if the maximum
number of iterations Tmax is performed. If these conditions
are not satisfied Steps 3 to 10 are repeated until one of the
predetermined termination conditions is met. The pseudo-
code of SCCSA is given in Table 2.

Table 2. Pseudo-code of SCCSA

procedure SCCSA (N, T4 ¢, 0, , €)

t<—0;

Ab(t) < Generate_Initial_Population (N);

Simulation_Evaluation (Ab(?));

while ( not Termination_Condition () ) do

(Ab“D(r), Ab“?(1), Ab“¥(r)) « Classification (Ab(t));
(CV(1), C*?(1)) « Cloning (Ab“"(r), Ab“?(1), ¢);
(C"N(r), C">(1)) < Hypermutation (C(r), C*?(r), a, w):
C'(f) « Combination (C"*"(z), C"?(r));

10. Simulation_Evaluation (C'(r));

11. C'"'(f) < Supprssion (C'(?), ¢);

12. Ab(t+1) « Selection (Ab(z), C"(1));

13. t—t+1;

14. end while

15.  end procedure

e A ol N

3. CASE STUDY

3.1 Scenario Description

In this section, a case study is performed based on the
operation of an integrated automated material handling
systems (AMHS) installed in Flexible Automation Lab at the
University of Hong Kong. The system consists of a flexible
conveyor system (FCS) and an automated storage and
retrieval system (AS/RS) working collaboratively. The
objective of the study is to minimize the system cycle time,
i.e., the time between taking out pallets from AS/RS
compartments and placing them back to the compartments
after all the manufacturing processes are completed.

3.1.1 The Basics of the AMHS

The FCS composes of a number of interconnected 2-meter
long modular chain conveyor units that can be flexibly
reconfigured as depicted in Fig. 3.

Fig. 3. The layout of the AMHS

Each conveyor module has a programmable logic
controller to control the movement of the items and
to communicate with the central computer. For the
AS/RS, it is connected to the conveyor by the
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stacker crane, consisting of the single-deep 5-
cloumn rack with 20 compartments for the storage
of intelligent pallets and items.

The logic of the loading and unloading of the crane is
dependent on the type of pick-up order received. There are 2
types of pick-up orders: one is initiated by the AS/RS and
another one is initiated by the FCS. When the crane receives
a pick-up order initiated by the AS/RS, it transports the pallet
containing a piece of raw material from the corresponding
compartment to the conveyor. For the pick-up orders initiated
by the conveyor, the crane moves the pallet with a processed
item from the conveyor back to its original compartment in
the AS/RS. If two different types of orders are received at the
same time, the working sequence is based on the current
position of the crane. That is to say, if the crane parks in front
of the conveyor, the pick-up task initiated from the conveyor
will be handled first; if the crane parks at one of the column
positions of the rack, the pick-up order initiated by the
AS/RS will be performed first.

3.1.2 The Operation of the System

The operation of the system is implemented with the Flexsim
simulation tool. These operation steps are performed
sequentially in the simulation process. The operation is as
follows:

1. Initially, all the pallets are stored in the compartments of
the AS/RS and the stacker crane waits at the starting
position.

2. After the system is turned on, each pallet is moved out
from the compartment and, in turn, placed on the conveyor
by the stacker crane.

3. After the pallet arrives at the conveyor, it is transported via
different sections of the conveyor system where it
undergoes different manufacturing processing activities.
These manufacturing processes are modeled as stochastic
processes where indeterminism exists.

4. When all the processes are completed, the pallet is sent
back to its original compartment in the AS/RS and the
cycle time of the whole process is measured.

3.1.3 Assumptions
Since the system being studied is a laboratory setup for
experimental purposes, a number of real-world factors are
ignored. Thus, the following assumptions are made:

1. The total number of products is 6.

2. The system only processes one type of product.

3. The demand created from succeeding processes or end
customers is not considered.

4. The arrival rate of products generated from preceding
processes or suppliers is not considered.

5. The processing time of each processing activity is a
random variable that follows a normal distribution.

6. No machinery maintenance and mechanical breakdown
are considered so that rework and yield are not
considered.

7. All products are processed in the same sequence.

3.1.4 Initial Model Settings

The configuration and system parameters of the actual system
were implemented in Flexsim and the initial model settings
(Table 3) are as follows:

Table 3. Initial model settings

Item Value
Conveyor speed 14.9 cm/sec
Crane speed 5.5 cm/sec
Forks speed 4.7 ci/sec
Crane acceleration 3 cm/sec’
Crane deceleration 3 cm/sec’
Capacity of crane 1 pallet
Spacing of conveyor 1 pallet

Processing time of Normal distribution with a mean of 6 sec and a standard

Process 1 deviation of 4 sec
Processing time of Normal distribution with a mean of 7 sec and a standard
Process 2 deviation of 3 sec
Processing time of Normal distribution with a mean of 8 sec and a standard
Process 3 deviation of 4 sec

3.2 Performance Evaluation
3.2.1 Sensitivity Analysis of Key Parameters and
Optimization Problem Formulation

As the results of SCCSA may be sensitive to certain initial
parameters including the number of replications for each
simulation run, initial population size, maximum number of
clones to be produced by the parents, mutation factors,
suppression threshold, and termination factors, they are tested
through sensitivity analysis to observe the impact of
individual parameters on the performance.

From the results of the sensitivity analysis, we can see that
the maximum speed and forks speed (forks speed of moving
up and down) of the stacker crane are the most critical factors
affecting the system’s performance in terms of cycle time.
Based on these results, we can conclude that the crane’s
speed is a determining factor of the whole system and
optimization of these two parameters can improve the overall
system performance. Therefore, a set of decision variables or
an antibody ab is defined as follows: x; is taken to be the
maximum speed and x, being the forks speed, and the
optimization problem is represented by:

min f(ab) = E[cycle time] (10)
abeQ)

Subject to

1 <x,<50 (forj=1,2) (1

where the objective function f{ab) is the expected value of the
random output variable cycle time that is obtained from the
simulation model, and Eq. (11) represents the physical
constraints.

3.2.2 Experimental Results and Analysis

To evaluate the performance of SCCSA, two experiments
were performed. The first one is to make a comparison
between the results of the simulation model without the use
of an optimizer and the results of coupling simulation and
optimization in order to investigate the optimization
algorithm’s effectiveness. The second experiment was
conducted to benchmark SCCSA against CLONALG and
Opt-aiNet with respect to its convergence. Each algorithm
was run for 10 times to obtain the average performance of
each algorithm on the problem.

Based on the results from the sensitivity analysis, the
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parameters of SCCSA were set as: Initial population size, N =
5; Maximum number of clone, max_clone = 3; Maximum
iteration, Tmax = 100; Number of replication per each fitness
evolution, replication = 10; Exponential distribution
coefficient, p = 0.05; Mutation step factors, w;= 0.5 and @, =
3.5; Suppression threshold, ¢ = 2; Acceptable Range, # = 0.1;
Number of successive iterations that no significant change is
found, term_max = 5, and the settings of CLONALG and
Opt-aiNet were set with similar values.

3.2.2.1 Simulation without Optimization vs. Simulation with
Optimization

The results obtained from the first experiment are shown in

Table 4 in which simulation results were obtained by

performing the algorithms for 100 generations.

Table 4. Comparison between the results of simulation alone
and those of combining optimization and simulation

Simulation without optimization 914.46 sec
Optimization via SCCSA 399.46 sec
Difference (%) 515.00 (56.32%)
Optimization via CLONALG 399.49 sec
Difference (%) 514.97 (56.31%)
Optimization via Opt-aiNet 399.47 sec
Difference (%) 514.99 (56.32%)

The table reveals that the cycle time of the whole process is
reduced by more than 56% by employing optimization
algorithms (SCCSA, CLONALG or Opt-aiNet). This
indicates that the use of an optimizer can result in significant
improvement. The results indicated that the speed of the
crane should be increased for better performance.

3.2.2.2 Performance Comparison among SCCSA, CLONALG
and Opt-aiNet
In order to assess the convergence characteristics of SCCSA,

the rate of arriving at optimal solutions by SCCSA is
compared with that of CLONALG and Opt-aiNet. All the

algorithms are applied to solve the above-mentioned problem.

The results are shown in Fig. 4.

Comparisonamong three algorithms

—#—SCCSA
—#—CLONALG

Cycle Time
S
&
e

Opt-aiNet

1 2 3 4 5 10 20 30 40 50 60 70 80 S0 100

Generations

Fig. 4. Comparison of the rate of convergence of SCCSA,
CLONALG and Opt-aiNet

It can be seen that SCCSA converges faster than CLONALG
and Opt-aiNet as near optimal solution can be found with a
much smaller number of generations taken by SCCSA.
Therefore, SCCSA is the best performer. The performance of
SCCSA is largely attributed to the suppression operator and

classification operator. The suppression operator helps to
reduce antibody redundancy, and hence significantly
minimizes the number of unnecessary simulation evaluations.
The classification operator works closely with the multi-point
mutation operator to improve the convergence and enhance
the search performance by facilitating local and global search
simultaneously. As a result, SCCSA takes much fewer
numbers of generations to reach the optimum. This implies
less computational resource and cost are needed, thus
indicating that SCCSA outperforms the other two algorithms.

4. CONCLUSIONS

The results of the case study show that the proposed immune-
inspired SCCSA framework can produce a set of optimal
system parameters for minimizing the cycle time of the
system in an efficient way. When SCCSA is compared with
other two AlS-based optimization algorithms, namely,
CLONALG and Opt-aiNet, SCCSA shows the best
performance on the AMHS problem.

Moreover, the framework also serves as a decision support
tool for AMHS operation for helping to find optimal system
settings e.g. speed of machines, number of operators or
machines, and any other decision variables of interest.
Although the system under study is a laboratory scale system,
the framework is scalable to tackle other real world problems
of larger complexities. In the future, the framework will be
extended to tackle nonlinear and multiobjective problems.
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