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Abstract: Modeling and simulation can be used in many contexts for gaining insights into the 

functioning, performance, and operation, of complex systems. However, this method alone often 

produces feasible solutions under certain operating conditions of a system in which such solutions may 

not be optimal. This is inevitably inadequate in circumstances where optimality is required. In this 

respect, an approach to effectively evaluate and optimize system performance is to couple the simulation 

model with operations research techniques. In this paper, an optimization framework consisting of a 

simulation model and an immunity-inspired algorithm is proposed for optimizing the key parameters in 

the domain of automatic material handling. 

Keywords: simulation, optimization, artificial intelligence, artificial immune systems. 

�

1. INTRODUCTION 

In recent years, increasing competitive market factors, e.g. 

more rigid government regulations, increasing number of 

competitors, shorter product life cycle and more demanding 

customers, have created great pressure on all supply chain 

parties, especially manufacturers and distributors, to improve 

the efficiency and effectiveness of their production and 

distribution systems. For these reasons, analyzing and 

evaluating such systems, especially for complex automated 

material handling systems (AMHSs), are essential for 

improving and optimizing their operation to meet these 

challenges. In the past, these systems were investigated 

mainly by analytical methods such as linear programming. 

However, with the advancement of manufacturing 

technologies, these systems are increasingly more complex. 

These complex systems that are inherently stochastic in 

nature, with complex relationships between system 

components, existence of uncertainties and real world 

dynamics, make analytical methods hardly applicable. To 

meet the challenges, these systems can be studied more 

effectively and efficiently by computer-based modeling and 

simulation approaches. Unlike a mathematical model, 

simulation can handle uncertain structure and stochastic 

parameters of a system to reflect the dynamics and to allow 

the performance of comprehensive analyses. In addition, 

simulation is a cost-effective means for new system or 

process design as alternative solutions can be evaluated for 

correctness and feasibility before any actual implementation.  

While it is well acknowledged that modeling and simulation 

techniques together with state-of-the-art simulation tools 

provide an effective means to analyze and visualize the 

performance of complex engineering systems, the decisions 

taken based on the results generated by simulation studies 

often depend on the quality of the simulation model and the 

experience of the analyst. This is inadequate from an 

optimization viewpoint. In order to improve the optimality of 

the process of simulation, a means to direct the undertaking 

of simulation study would be academically interesting and of 

great practical value. In this respect, this paper reports the 

development of an optimization framework for modeling and 

simulation of dynamic systems based on an emerging 

artificial intelligence method know as Artificial Immune 

Systems (AIS).  

AIS is a comparatively new bio-inspired computation 

paradigm, which captures the ideas from biological immune 

system for modeling system behaviors and deriving solution 

methods to solve a wide array of problems. Such an 

engineering analogue of human immune system has drawn 

substantial attention recently due to its promising problem 

solving capability and its deep inspiration to the engineering 

sciences. AIS embodies a powerful and diverse set of features 

including autonomy, spatially distributed nature, dynamically 

changing coverage, specificity, diversity, immune learning, 

and memory, as well as the important immunological 

principles and theories, namely: negative selection principle, 

clonal selection principle, immune network theory, and 

danger theory. By making use of these immunological ideas, 

a number of algorithms have been developed to perform 

different tasks e.g. autonomous vehicles control (Lau et al., 

2007), mobile robot navigation (Luh and Liu, 2008), 

distributed intrusion detection systems (Beltran, 2002), etc. 

There are many applications involving optimization e.g. job 

shop scheduling, travelling salesman problems, routing 

problems, etc. The AIS research community has considered 

optimization a promising application area for immunity-

inspired algorithms, bringing about some novel algorithms 

e.g. CLONALG algorithm (de Castro and Von Zuben, 2000), 

the B-Cell algorithm (Timmis et al., 2004), and Opt-aiNet (de 

Castro and Timmis, 2002). Inspired by the appealing 
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antibody, and round() is an operator for rounding its 

argument to the closest integer.  

Step 7: Mutation 

The hypermutation operator induces multi-point mutations to 

the pool of clones. The clones are mutated as follows: 

Class 1        . = e-! x F                                                                

     C�(c1)(t)  = C(c1)(t)  + . × R × & 1                              (7)                                         

Class 2        . = e-! x F                                                                

     C�(c2)(t)  = C(c2)(t�����.�× R × &2                               (8)                                                     

where .� represents the mutation rate that is inversely 

proportional to the normalized fitness Fi, ! is an exponential 

coefficient controlling the decay of ., R n [-1, 1] is a m-

dimensional random vector obtained with uniform 

distribution, and &1 and &2 are the mutation step factors for 

the Class 1 antibodies and the Class 2 antibodies respectively. 

In order to allow the better performers in Class 1 to take a 

smaller mutation step to locate local optima while diverting 

the direction for poorer performers in Class 2 by taking a 

larger mutation step in search for global optimum in a bigger 

search space, &2 is always set to be larger than &1 (&1 < &2).  

Step 8: Simulation Evaluation of Mature Clones 

Class 1 and Class 2 subpopulations are combined to form a 

total clone population C��t) and then the fitness of each 

mature clone Ci� n C��t) (i = 1, 2, …, Nc) will be evaluated 

using simulation. In this way, a fitness vector '
f
&

storing all 

the child’s fitness '
if  (i = 1, 2, …, Nc) is determined.  

Step 9: Suppression 

A suppression operator is introduced and works on each 

clone to avoid antibody redundancy and maintain the 

population diversity based on the idea of immune network 

theory such that B-cells are stimulated and suppressed by not 

only non-self antigens but the interacting B-cells. To achieve 

this, the affinity (similarity) among the newly generated 

antibodies is determined. The affinity between two antibodies 

is defined as the Euclidean distance between them: 

     d(abi, abk) = 2
1 )]()([¦ � 

m
j jkji xabxab  ��0�������������         (9)                                  

where d(abi, abk) is the Euclidean distance between the two 

antibodies, m is the length of each antibody, and 0 is a 

positive threshold value. In this step, if the distance between 

two clones is smaller than the threshold, then the clone with 

lower fitness is suppressed and eliminated from the 

population. This procedure is repeated until all clones are 

compared in terms of both affinity and fitness. Eventually, a 

surviving clone population C���t) is formed and then enters 

into the selection process. 

Step 10: Selection  

An evolutionary selection operator is used to select only the 

improved children in the surviving clone population C���t) 

with better fitness to replace some of the less fit parents. The 

low-fitness children in Class 3 are replaced by l randomly 

generated antibodies to enhance the population diversity. 

Finally by combining the updated Class 1 and Class 2 

subpopulations and the replaced Class 3 subpopulation, a 

new population Ab(t+1) containing N high performers based 

on the simulation results (antigenic affinities) for the next 

generation t+1 is formed.  

Step 11: Termination 

To control the termination of the optimization process, the 

function Termination_Condition() is introduced. It returns 

True if no significant changes (change within an acceptable 

range, �) on the average fitness of both Class 1 and Class 2 

subpopulations over successive iterations, term_max. The 

optimization process will also terminate if the maximum 

number of iterations Tmax is performed. If these conditions 

are not satisfied Steps 3 to 10 are repeated until one of the 

predetermined termination conditions is met. The pseudo-

code of SCCSA is given in Table 2. 

Table 2. Pseudo-code of SCCSA 

1. procedure SCCSA (N, Tmax, c, ., &, 0) 

2. t 8��� 

3. Ab(t) 8�*HQHUDWHB,QLWLDOB3RSXODWLRQ��N); 

4. Simulation_Evaluation (Ab(t)); 

5.       while ( not Termination_Condition () ) do 

6. 
            

(Ab(c1)(t), Ab(c2)(t), Ab(c3)(t)) 8 Classification (Ab(t)); 

7.             (C(c1)(t), C(c2)(t)) 8 Cloning (Ab(c1)(t), Ab(c2)(t), c);  

8.             (C�(c1)(t), C�(c2)(t)) 8 Hypermutation (C(c1)(t), C(c2)(t), ., &);       

9.             C��t) 8�&RPELQDWLRQ� (C�(c1)(t), C�(c2)(t)); 

10.             Simulation_Evaluation (C��t)); 

11.             C��(t) 8 Supprssion (C��t), 0); 

12.             Ab(t+1) 8 Selection (Ab(t), C��(t)); 

13.             t 8�t + 1; 

14.        end while 

15. end procedure 

3. CASE STUDY 

3.1 Scenario Description 

In this section, a case study is performed based on the 

operation of an integrated automated material handling 

systems (AMHS) installed in Flexible Automation Lab at the 

University of Hong Kong. The system consists of a flexible 

conveyor system (FCS) and an automated storage and 

retrieval system (AS/RS) working collaboratively. The 

objective of the study is to minimize the system cycle time, 

i.e., the time between taking out pallets from AS/RS 

compartments and placing them back to the compartments 

after all the manufacturing processes are completed.  

3.1.1 The Basics of the AMHS 

The FCS composes of a number of interconnected 2-meter 

long modular chain conveyor units that can be flexibly 

reconfigured as depicted in Fig. 3.  

Fig. 3. The layout of the AMHS 

Each conveyor module has a programmable logic 

controller to control the movement of the items and 

to communicate with the central computer. For the 

AS/RS, it is connected to the conveyor by the 
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stacker crane, consisting of the single-deep 5-

cloumn rack with 20 compartments for the storage 

of intelligent pallets and items. 

The logic of the loading and unloading of the crane is 

dependent on the type of pick-up order received. There are 2 

types of pick-up orders: one is initiated by the AS/RS and 

another one is initiated by the FCS. When the crane receives 

a pick-up order initiated by the AS/RS, it transports the pallet 

containing a piece of raw material from the corresponding 

compartment to the conveyor. For the pick-up orders initiated 

by the conveyor, the crane moves the pallet with a processed 

item from the conveyor back to its original compartment in 

the AS/RS. If two different types of orders are received at the 

same time, the working sequence is based on the current 

position of the crane. That is to say, if the crane parks in front 

of the conveyor, the pick-up task initiated from the conveyor 

will be handled first; if the crane parks at one of the column 

positions of the rack, the pick-up order initiated by the 

AS/RS will be performed first.  

3.1.2 The Operation of the System 

The operation of the system is implemented with the Flexsim 

simulation tool. These operation steps are performed 

sequentially in the simulation process. The operation is as 

follows: 

1. Initially, all the pallets are stored in the compartments of 

the AS/RS and the stacker crane waits at the starting 

position.  

2. After the system is turned on, each pallet is moved out 

from the compartment and, in turn, placed on the conveyor 

by the stacker crane.  

3. After the pallet arrives at the conveyor, it is transported via 

different sections of the conveyor system where it 

undergoes different manufacturing processing activities. 

These manufacturing processes are modeled as stochastic 

processes where indeterminism exists.  

4. When all the processes are completed, the pallet is sent 

back to its original compartment in the AS/RS and the 

cycle time of the whole process is measured. 

3.1.3 Assumptions 

Since the system being studied is a laboratory setup for 

experimental purposes, a number of real-world factors are 

ignored. Thus, the following assumptions are made: 

1. The total number of products is 6. 

2. The system only processes one type of product.  

3. The demand created from succeeding processes or end 

customers is not considered. 

4. The arrival rate of products generated from preceding 

processes or suppliers is not considered. 

5. The processing time of each processing activity is a 

random variable that follows a normal distribution. 

6. No machinery maintenance and mechanical breakdown 

are considered so that rework and yield are not 

considered. 

7. All products are processed in the same sequence. 

3.1.4 Initial Model Settings 

The configuration and system parameters of the actual system 

were implemented in Flexsim and the initial model settings 

(Table 3) are as follows: 

Table 3. Initial model settings 

Item Value 

Conveyor speed 14.9 cm/sec 

Crane speed 5.5 cm/sec 

Forks speed 4.7 cm/sec 

Crane acceleration 3 cm/sec 2   

Crane deceleration 3 cm/sec 2   

Capacity of crane 1 pallet  

Spacing of conveyor 1 pallet 

Processing time of 

Process 1 

Normal distribution with a mean of 6 sec and a standard 

deviation of 4 sec 

Processing time of 

Process 2 

Normal distribution with a mean of 7 sec and a standard 

deviation of 3 sec 

Processing time of 

Process 3 

Normal distribution with a mean of 8 sec and a standard 

deviation of 4 sec 

 

3.2 Performance Evaluation 

3.2.1 Sensitivity Analysis of Key Parameters and 

Optimization Problem Formulation 

As the results of SCCSA may be sensitive to certain initial 

parameters including the number of replications for each 

simulation run, initial population size, maximum number of 

clones to be produced by the parents, mutation factors, 

suppression threshold, and termination factors, they are tested 

through sensitivity analysis to observe the impact of 

individual parameters on the performance. 

From the results of the sensitivity analysis, we can see that 

the maximum speed and forks speed (forks speed of moving 

up and down) of the stacker crane are the most critical factors 

affecting the system’s performance in terms of cycle time. 

Based on these results, we can conclude that the crane’s 

speed is a determining factor of the whole system and 

optimization of these two parameters can improve the overall 

system performance. Therefore, a set of decision variables or 

an antibody ab is defined as follows: x1 is taken to be the 

maximum speed and x2 being the forks speed, and the 

optimization problem is represented by: 

min

�ab

 f(ab) = E[cycle time]                                                (10) 

Subject to 

1 ��xj ��50 (for j = 1, 2)                                                      (11) 

where the objective function f(ab) is the expected value of the 

random output variable cycle time that is obtained from the 

simulation model, and Eq. (11) represents the physical 

constraints. 

3.2.2 Experimental Results and Analysis  

To evaluate the performance of SCCSA, two experiments 

were performed. The first one is to make a comparison 

between the results of the simulation model without the use 

of an optimizer and the results of coupling simulation and 

optimization in order to investigate the optimization 

algorithm’s effectiveness. The second experiment was 

conducted to benchmark SCCSA against CLONALG and 

Opt-aiNet with respect to its convergence. Each algorithm 

was run for 10 times to obtain the average performance of 

each algorithm on the problem.  

Based on the results from the sensitivity analysis, the 
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