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Abstract—A methodology is presented for analytically model-
ing the reflection and transmission of line-source excited pulsed
electromagnetic fields fields at a thin, planar, high-contrast layer
with dielectric and conductive properties. Closed-form time-
domain expressions are derived for the field components in a two-
dimensional setting via an extension of the ’Cagniard-DeHoop’
method.

I. FORMULATION OF THE PROBLEM

Position in the configuration is specified by the coordinates

{x, y, z} ∈ R
3 with respect to a Cartesian reference frame with

the origin O and the three mutually perpendicular base vectors

{ix, iy, iz} of unit length each. In the indicated order, the base

vectors form a right-handed system. The time coordinate is

t ∈ R.

A line source of electric current with volume source density

Jy(x, z, t) = I(t)δ(x, z − h), (1)

with electric current I(t) and located at {x = 0,−∞ <
y < ∞, z = h}, with h > 0, in a homogeneous, isotropic,

lossless medium with electric permittivity ε > 0 and mag-

netic permeability μ > 0, generates a two-dimensional, y-

independent electromagnetic field with non-vanishing compo-

nents {Hx, Ey, Hz}(x, z, t). The pertaining EM field equa-

tions are

∂xHz − ∂zHx + ε ∂tEy = −I(t)δ(x, z − h), (2)

∂xEy + μ∂tHz = 0, (3)

∂zEy − μ∂tHx = 0. (4)

In the plane {z = 0}, a thin layer of vanishingly small

thickness d and with high contrasts in dielectric and conductive

properties is present. Its properties are modeled by the thin-

sheet boundary conditions [2]

lim
z↓0

Ey(x, z, t) = lim
z↑0

Ey(x, z, t) =

Ey(x, 0, t) for all x ∈ R, t ∈ R, (5)

lim
z↓0

Hx(x, z, t)− lim
z↑0

Hx(x, z, t) =

(GL + CL∂t)Ey(x, 0, t) for all x ∈ R, t ∈ R, (6)

in which

GL = lim
d↓0

∫ d/2

z=−d/2

σL(z)dz, (7)

where σL(z) is the electric conductivity of the layer and

CL = lim
d↓0

∫ d/2

z=−d/2

εL(z)dz, (8)

where εL(z) is the electric permittivity of the layer.

It is assumed that the electric current excitation starts to

act at the instant t = 0 and that prior to this instant the field

quantities vanish throughout the configuration.
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Fig. 1. Configuration with highly contrasting thin sheet.

II. THE FIELD PROBLEM IN THE WAVE SLOWNESS DOMAIN

The time invariance of the configuration enables the use of

the one-sided time Laplace transformation

{Ĥx, Êy, Ĥz}(x, z, s) =∫ ∞

t=0

exp(−st){Hx, Ey, Hz}(x, z, t)dt. (9)
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For our further proceedings, the time Laplace transform pa-

rameter s is taken to be real and positive, which in view of

Lerch’s theorem [7, p. 63–65] is sufficient for the uniqueness

of the inversion. Under the transformation (9), the operator

∂t is replaced with s. Next, the spatial shift invariance of the

configuration enables the use of the wave slowness represen-

tation

{Ĥx, Êy, Ĥz}(x, z, s) =
s

2πi

∫ i∞

p=−i∞
exp(−spx){H̃x, Ẽy, H̃z}(p, z, s)dp,(10)

where p is the (complex-valued) wave slowness parameter.

With this representation, the operator ∂x is replaced with

−sp. Furthermore, using the properties of the Dirac delta

distribution,

J̃y(p, z, s) = Î(s)δ(z − h). (11)

With this, the field equations (2) – (4) transform into

−spH̃z − ∂zH̃x + s ε Ẽy = −Î(s)δ(z − h), (12)

−spẼy + s μ H̃z = 0, (13)

∂zEy − sμ H̃x = 0, (14)

and the boundary conditions (5) – (6) into

lim
z↓0

Ẽy(p, z, s) = lim
z↑0

Ẽy(p, z, s) = Ẽy(p, 0, s), (15)

lim
z↓0

H̃x(p, z, s)− lim
z↑0

H̃x(p, z, s) =

(GL + sCL)Ẽy(p, 0, s). (16)

III. THE SLOWNESS-DOMAIN FIELD EXPRESSIONS

Defining the incident field {H i
x, E

i
y, H

i
z} as the field that

would exist in the absence of the contrasting layer, (12) –

(14) lead to

∂2
z Ẽ

i
y + s2γ2(p)Ẽi

y = −s μ Î(s)δ(z − h), (17)

in which

γ = (c−2 − p2)1/2, (18)

with γ > 0 for p ∈ I and

c = (ε μ)−1/2. (19)

From (17) it follows that

Ẽi
y = μ Î(s)

exp[−sγ(p)Z i]

2γ(p)
, (20)

in which Z i = |z−h|. In the half-space {(x, y) ∈ R
2, z > 0}

we now write the total field as the sum of the incident and

the reflected field {Hr
x, E

r
y, H

r
z}. In the half-space {(x, y) ∈

R
2, z < 0} we denote the total field as the transmitted field

{Ht
x, E

t
y, H

t
z}. Taking into account that the reflected field and

the transmitted field travel away from the scattering thin layer,

we write their electric field slowness representation as

Ẽr
y = μ R̃(p, s)Î(s)

exp[−sγ(p)Zr]

2γ(p)
, (21)

in which Zr = z + h, with z > 0, and

Ẽt
y = μ T̃ (p, s)Î(s)

exp[−sγ(p)Zt]

2γ(p)
, (22)

in which Zt = h − z, with z < 0. In (21), R̃(p, s) is the

slowness-domain reflection coefficient; in (22), T̃ (p, s) is the

slowness-domain transmission coefficient. Using (22) – (24)

in (13) – (14) and substituting the result in the boundary

conditions (15) – (16), we obtain

R̃(p, s) = −1 + T̃ (p, s), (23)

T̃ (p, s) =
βL(p)

βL(p) +GL/CL + s
, (24)

with

βL(p) =
2γ(p)

μCL
. (25)

IV. THE SPACE-TIME EXPRESSIONS FOR THE ELECTRIC

FIELD CONSTITUENTS

The expressions for the time Laplace transformed electric

field constituents are written as

Êi,r,t
y (x, z, s) = s μ Î(s)Ĝi,r,s(x, z, s), (26)

in which

Ĝi(x, z, s) =

1

2πi

∫ i∞

p=−i∞

exp{−s[px+ γ(p)Z i]}
2γ(p)

dp, (27)

Ĝr(x, z, s) =

1

2πi

∫ i∞

p=−i∞
R̃(p, s)

exp{−s[px+ γ(p)Zr]}
2γ(p)

dp, (28)

Ĝt(x, z, s) =

1

2πi

∫ i∞

p=−i∞
T̃ (p, s)

exp{−s[px+ γ(p)Zt]}
2γ(p)

dp, (29)

are the corresponding Green’s function constituents. Note that

the integrands, considered as a function of p and with s real

and positive, have no poles in the complex p-plane, only

branch points. This is a characteristic for the absence of true

surface waves like, for example in acoustics, the Rayleigh

wave at the stress-free boundary of an elastic solid, the Scholte

wave at a fluid/solid boundary and the Stoneley wave at the

interface of two elastic solids. This does, however, not imply

that no large surface effects can occur.

The time-domain counterparts of (27) – (29) are determined

with the aid of an extension of the standard modified Cagniard

method [1]. Accordingly, the integrand in the integration with

respect to p is continued analytically into the complex p-plane,

away from the imaginary axis and, under the application of

Cauchy’s theorem and Jordan’s lemma, the integration along

the imaginary p-axis is replaced with one along the hyperbolic

path (modified Cagniard path) px+ γ(p)Z = τ for T < τ <
∞, where Z > 0, T = D/c and D = (x2 + Z2)1/2 >
0, while τ replaces p as the variable of integration. In the

relevant Jacobian, the relation ∂p/∂τ = iγ(p)/(τ2−T 2)1/2 is

2405



used. Next, Schwarz’s reflection principle of complex function

theory is used to combine the integrations in the upper and

lower halves of the complex p-plane. Parametrizing the upper

part of the modified Cagniard path through

p(x, Z, τ) =
x

D2
τ + i

Z

D2
(τ2 − T 2)1/2

for T < τ < ∞, (30)

which has the consequence that

γ(x, Z, τ) = γ[p(x, Z, τ)]

=
Z

D2
τ − i

x

D2
(τ2 − T 2)1/2

for T < τ < ∞, (31)

(20) leads to

Ĝi(x, Z i, s) =
1

2π

∫ ∞

τ=T i

exp(−sτ)

1

(τ2 − T i2)1/2
dτ, (32)

(21) to

Ĝr(x, Zr, s) =
1

2π

∫ ∞

τ=T r

exp(−sτ)

Re

[
−1 +

βL(p)

βL(p) +GL/CL + s

]
1

(τ2 − T r2)1/2
dτ,(33)

and (22) to

Ĝt(x, Zt, s) =
1

2π

∫ ∞

τ=T t

exp(−sτ)

Re

[
βL(p)

βL(p) +GL/CL + s

]
1

(τ2 − T t2)1/2
dτ, (34)

where (23) – (25) have been used.

In (32), Lerch’s uniqueness theorem of the one-sided

Laplace transformation [7, pp. 63–65] directly yields

Gi(x, Z i, t) =
1

2π(t2 − T i2)1/2
H(t− T i). (35)

If in (33) and (34) the term in brackets in the integrands had

been independent of s, Lerch’s theorem would, here as well,

directly provide the corresponding function of time. With the

aid of the Schouten–Van der Pol theorem of the one-sided

Laplace transformation [3], [4, pp. 124–126], [5], [6, pp. 232–

236] we proceed further, however, and apply further rules of

the inverse Laplace transformation to obtain

Gr(x, Zr, t) =

[
− 1

2π(t2 − T r2)1/2
+

1

2π

∫ t

τ=T r

Re{βL(p) exp{−[βL(p) +GL/CL](t− τ)}}
1

(τ2 − T r2)1/2
dτ

]
H(t− T r) (36)

and

Gt(x, Zt, t) =[
1

2π

∫ t

τ=T t

Re{βL(p) exp{−[βL(p) +GL/CL](t− τ)}}
1

(τ2 − T t2)1/2
dτ

]
H(t− T t). (37)

(Note that, due to the presence of τ in βL(p), the right-hand

sides of (36) and (37) are not time convolutions.) Since βL(p)
is complex-valued, its occurrence in the exponential function

is expected to lead to oscillatory phenomena whose magnitude

is the more pronounced the larger the imaginary part of βL(p)
is with respect to its real part. Evidently, this ratio is position

dependent and the phenomenon is expected to be larger the

larger the ratio |x|/Zr,t is, i.e., close to the boundary, or, which

is equivalent, at large horizontal offsets.

Equation (26) finally leads to the time-domain expressions

for the electric field constituents

Ei,r,t
y (x, z, t) = μ∂t

[
I(t)

(t)∗ Gi,r,t(x, z, t)

]
, (38)

where
(t)∗ denotes time convolution. Further investigation into

the effect of the different parameters on the wave shapes

requires a study via the numerical evaluation of the relevant

integrals in (36) – (38).

V. CONCLUSION

Via an extension of the Cagniard-DeHoop method for ana-

lyzing pulsed field behavior in layered configurations, closed-

form analytic time-domain expressions have been derived for

the electromagnetic field constituents that are generated by

a pulsed line source of electric current in the presence of a

thin, highly contrasting layer with dielectric and conductive

properties in a two-dimensional model setting. The expressions

indicate that drastic changes in pulse shape can be expected

due to the interaction of the field with the layer. Numerical

results based on the field expressions obtained can serve as

an indication as to the possibilities of applying the pertaining

thin-sheet (approximate) boundary conditions in codes for

computational electromagnetics.
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