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Abstract—The thin, high-contrast, fine layers with dielectric
and conductive properties, such as ground planes, are feature
structures in IC packagings. Their responses to the pulsed elec-
tromagnetic field is important both theoretically and practically.
In this paper, a new semi-analytical method is proposed to model
the interaction of the layer with an incident electromagnetic field
via a boundary condition that expresses the in-plane conduction
and contrast electric polarization currents in terms of the
exciting incident field by relating the jump in the tangential
component of the magnetic field strength across the layer in
terms of the (continuous) tangential component of the electric
field strength in the layer. Expressions for pulse shapes of the
reflected and transmitted fields are conveniently obtained based
on this method. It provides a novel angle to investigate the ground
plane effects inside IC packagings.

I. INTRODUCTION

The impetus for the research arose in the context of the
computational investigation into the signal integrity of elec-
tromagnetic fields in the layered IC structures. In the analysis,
design and optimizations stages of all relevant technical appli-
cations, as well as their associated electromagnetic interference
analysis, the computational modeling of the governing electro-
magnetic field is a subject of considerable importance and con-
cern. Standard approaches to the discretization of Maxwell’s
equations in such structures are faced with serious difficulties
as to the meshing or gridding of the configuration [1]. To
overcome this difficulty, several approximate procedures have
been proposed. They are all of a physically heuristic nature
and their degree of accuracy and usefulness requires testing
against the results of certain benchmark configurations .

As to the heuristic approaches one can, broadly speaking,
distinguish three different kinds of reasoning. In [2], the con-
trast volume source type electromagnetic field representations
with the Green’s functions (propagators) of the homogeneous,
isotropic embedding (usually free space) serve as the point of
departure. By a judicious reasoning, the pertaining thin layers
of contrast volume electric and magnetic current are replaced
with their corresponding equivalent surface currents. In [3],
the frequency-domain counterpart of the Lorentz reciprocity

relation of the time-convolution type [4, Section 28.2] is
alternatively applied to the interior of the layer and the exterior
of the layer, under the use of field reaction concept introduced
by Rumsey [5] and the field equivalence theorem [6, Chapter
30]. These two approaches are of the global type in that
they employ field representations or theorems that apply to
the configuration space as a whole to arrive at more or
less local interface jump conditions across the layer. Such
local conditions can, however, also be constructed directly
from local arguments applied to Maxwell’s equations. This
third kind of approach is followed by Collin [7, p. 693]
and by Senior [8]. A fourth kind of approach goes via the
use of surface integral equations [1]. An overview of the
different approaches, as well as their application to a number
of canonical problems, can be found in [9].

In the present paper we employ a kind of local approach that
was introduced by Schoenberg and Muir [10] in the context
of elastodynamic wave propagation in finely layered rock
formations and that has also been applied to acoustic wave
propagation [11]. The procedure leads to local jump conditions
on the tangential components of the electric and/or magnetic
field strengths across the layer, the coefficients in which can be
interpreted as local Kirchhoff lumped electric circuit elements
(such as conductance and capacitance for a conductive and
dielectric layer), whose values are representative for the field
transfer in the direction normal to the layer.

Up to the present, the literature on the subject is con-
centrated on the frequency-domain analysis of the electro-
magnetic fields involved. Nowadays, a substantial range of
applications employs pulsed EM fields. For this reason, we
concentrate on the direct time-domain analysis of the problem
and correspondingly use some auxiliary tools from linear,
time-invariant, causal system’s theory, amongst which the
time Laplace transformation properties of causal signals. The
configuration that we consider is a thin, finely layered, high-
contrast, planar sheet with electrically conductive and dielec-
tric properties that differ from the ones of the surrounding
medium. Its representative structure is the ground plane in IC
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Fig. 1. Configuration with thin, finely layered, high-contrast structure in a
homogeneous, isotropic background medium, with incident and scattered EM
waves.

packagings.

II. BOUNDARY CONDITIONS OF THE THIN, HIGH
CONTRAST LAYER

The high-contrast, layered specimen occupies the domain
D = {(x, y) ∈ Σ ⊂ R2,−d/2 < z < d/2}, where d > 0
is the thickness of the layer and Σ is its spatial support
in the (x, y)-plane. The background medium occupies the
entire R3. Somewhere in this medium, sources generate an
incident electromagnetic field. This field is scattered by the
contrasting specimen (Figure 1). The background medium
is taken to be lossless, homogeneous and isotropic with
electric permittivity ϵ0 and magnetic permeability µ0. The
electromagnetic properties of the layer are characterized by
its electric conductivity σ(r) and its electric permittivity ϵ(r);
its magnetic permeability µ0 is taken to be the same as the
one of the background medium.

We assume the travel time of the incident wave across
the layer to be negligible with respect to the time width of
the incident pulse. Furthermore, the electric properties of the
layered material, i.e., its electric conductivity and/or its electric
permittivity are assumed to be so high that the quantities

GL =

∫ d/2

z=−d/2

σ(r)dz, CL =

∫ d/2

z=−d/2

ϵ(r)dz. (1)

are of order O(1) as d ↓ 0. (Note that GL has the dimension
of a conductance and CL has the dimension of a capacitance.)

Using a ’pillbox’ perpendicularly crossing the layer and
exercising the vector Stokes’ Theorem, the following boundary
conditions considering the field jump over the thin layer can
be derived

iz×Es(x, y, d/2, t)− iz×Es(x, y,−d/2, t)

= O(d) for (x, y) ∈ Σ as d ↓ 0 (2)
iz×Hs(x, y, d/2, t)− iz×Hs(x, y,−d/2, t)

= J s
sheet +O(d) for (x, y) ∈ Σ as d ↓ 0. (3)

where

J s
sheet = (GL + CL∂t)E(x, y, 0, t) for (x, y) ⊂ Σ. (4)
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Fig. 2. Configuration with finely layered, high-contrast layer of infinite
extent, with incident, reflected and transmitted pulsed EM waves.

III. TIME DOMAIN SCATTERING COEFFICIENTS

The thin, high-contrast layer of infinite extent occupies the
plane {z = 0}. Define the domain D− = {(x, y) ∈ R2,−∞ <
z < 0} and D+ = {(x, y) ∈ R2, 0 < z < ∞} to be the
reflection and transmission regions around the layer (Figure
2). The incident wave is taken to propagate in the (x, z)-plane
which makes all field components independent of y. In view
of this property, the electromagnetic field in the configura-
tion decomposes into an E-polarized field with the electric
field parallel to the layer and an H-polarized field with the
magnetic field parallel to the layer. Then, using the scattering
description discussed in Section II, taking into account the
symmetry properties and denoting by α = αxix +αziz , with
α2
x+α2

z = 1, the unit vector in the direction of propagation of
the incident wave, the representations for the field components
can be written as:

E-polarized field:

{H i
x, E

i
y,H

i
z} = {−αzY0, 1, αxY0} ×

Ei
0[t− (αxx+ αzz)/c0] for r ∈ R3. (5)

{Hs
x, E

s
y,H

s
z} = {∓αzY0, 1, αxY0} ×

Es
0[t− (αxx± αzz)/c0] for r ∈ D±. (6)

where c0 = (ϵ0µ0)
−1/2 is the electromagnetic wave speed

in the background medium, Y0 = (ϵ0/µ0)
1/2 is the plane-

wave admittance of the medium, Ei
0(t) is the signature of

the incident E-polarized pulse, Es
0(t) is the signature of the

scattered E-polarized pulse, and

H-polarized field:

{Ei
x, H

i
y, E

i
z} = {αzZ0, 1,−αxZ0} ×

H i
0[t− (αxx+ αzz)/c0] for r ∈ R3. (7)

{Es
x, H

s
y, E

s
z} = ±{±αzZ0, 1,−αxZ0} ×

Hs
0[t− (αxx± αzz)/c0] for r ∈ D±. (8)

where Z0 = (µ0/ϵ0)
1/2 is the plane-wave impedance of the

medium, H i
0(t) is the signature of the incident H-polarized
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pulse and is H i
0(t) the signature of the scattered H-polarized

pulse.
In view of the linearity and the time invariance of the

configuration, we can write

Es
0(t) = SE(t)

(t)
∗ Ei

0(t), Hs
0(t) = SH(t)

(t)
∗ H i

0(t). (9)

with SE(t) as the time-domain scattering coefficient of E-
polarized waves, and with SH(t) as the time-domain scattering

coefficient of H-polarized waves and where
(t)
∗ denotes time

convolution.
Using the time Laplace transforms of the field represen-

tations (9) in the time Laplace transforms of the boundary
conditions (2) and (3) leads to E-polarized field ŜE(s) and
H-polarized field ŜH(s):

ŜE(s) = −1 +
2αzY0

2αzY0 +GL + sCL
. (10)

ŜH(s) = −1 +
2

2 + αzZ0(GL + sCL)
. (11)

The corresponding time-domain expression for E-polarized
fields is:

SE(t) = −δ(t) + TE exp(−βEt)H(t) (12)

with TE = 2αzY0/CL and βE = TE + GL/CL. The
corresponding time-domain expression for H-polarized fields
is:

SH(t) = −δ(t) + TH exp(−βHt)H(t) (13)

with TH = 2/αzZ0CL and βH = TH + GL/CL. δ(t) is the
Dirac delta distribution and H(t) is the Heaviside unit step
function. (Note that βE > TE and βH > TH .)

For no contrast in the layer (GL = 0 and CL = 0), both
SE(t) = 0 and SH(t) = 0, as it should (no scattering).
In the special case of conductive contrast only (GL ̸= 0,
CL = 0), SE(t) = −[GL/(2αzY0 + GL)]δ(t) and SH(t) =
−[αzZ0GL/(2 + αzZ0GL)]δ(t).

IV. NUMERICAL RESULTS

In this section we present some numerical results for two
types of pulse shape of the incident wave: the rectangular
pulse and the trapezoidal pulse. The trapezoidal pulse is the
frequently used signal in the analysis of practical band limited
IC interconnects and packagings. The governing electromag-
netic parameters in the reflection/transmission structure are:
the layer conductance ratio

ηL = GL/Y0 = GLZ0. (14)

the layer admittance time constant

τL = CL/GL. (15)

The incident wave is characterized by its direction of incidence
αx (projection of the unit vector along the direction of
propagation on the plane of the scattering layer), its pulse time
width tw for the rectangular pulse and its pulse rise time tr,
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Fig. 3. Time snap in front of, and in the vicinity of, the scattering layer
(E-polarization, trapezoidal incident pulse).
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Fig. 4. Time snap behind, and in the vicinity of, the scattering layer (H-
polarization, trapezoidal incident pulse).

pulse time width tw and pulse fall time tf of the trapezoidal
pulse.

For the case of the incident wave with trapezoidal pulse
shape, we take, for the two types of polarization,

{Ei
0, H

i
0} = A0[t

−1
r ramp(t)− t−1

r ramp(t− tr)−
t−1
f ramp(t− tr/2− tw + tf/2) +

t−1
f ramp(t− tr/2− tw − tf/2). (16)

where A0 is the pulse amplitude and ramp(t) is the unit ramp
function (ramp(t) = {0, t} for {t < 0, t ≥ 0}. Here, the
fundamental constituent to the pulse shape of the scattered
wave is its unit ramp response, which we denote, for the two
types of polarization, by {es|ramp, h

s|ramp}(t). Obviously, in
terms of this response,

{Es
0,H

s
0}(t) = A0[t

−1
r {es|ramp, h

s|ramp}(t)−
t−1
r {es|ramp, h

s|ramp}(t− tr)−
t−1
f {es|ramp, h

s|ramp}(t− tr/2− tw + tf/2) +

t−1
f {es|ramp, h

s|ramp}(t− tr/2− tw − tf/2)]. (17)

Unit ramp response (E-polarization)

On account of the results of Section III, the time Laplace
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Fig. 5. Density plot in domain about the scattering layer (E-polarization,
trapezoidal incident pulse).

transform of es|ramp(t) follows, together with s−2 as the time
Laplace transform of ramp(t), as

ês|ramp(s) = ŜE(s)
1

s2
=

(
−1 +

TE

s+ βE

)
1

s2
. (18)

from which the time-domain pulse shape follows as

es|ramp(t) =

(
−1 +

TE

βE

)
ramp(t)−

TE

(βE)2
[
1− exp(−βEt)

]
H(t). (19)

Unit ramp response (H-polarization)

On account of the results of Section III, the time Laplace
transform of hs|ramp(t) follows, together with s−2 as the time
Laplace transform of ramp(t), as

ĥs|ramp(s) = ŜH(s)
1

s2
=

(
−1 +

TH

s+ βH

)
1

s2
. (20)

from which the time-domain pulse shape follows as

hs|ramp(t) =

(
−1 +

TH

βH

)
ramp(t)−

TH

(βH)2
[
1− exp(−βHt)

]
H(t). (21)

From these results, the pulse shapes {Er
0,H

r
0}(t) =

{Er
0, H

s
0}(t) of the reflected wave in D− and the pulse shapes

{Et
0, H

t
0}(t) = {Ei

0,H
i
0}(t) + {Es

0,H
s
0}(t) of the transmitted

wave in D+ can be constructed. Figures 3–6 show results for
an incident wave with trapezoidal pulse shape. The figures
indicate how drastically the pulse shapes can deviate from the
one of the incident wave, as well as how different E-polarized
field behave from H-polarized fields.
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Fig. 6. Density plot in domain about the scattering layer (H-polarization,
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V. CONCLUSION

A semi-analytical method is proposed to model the time-
domain interaction of an incident, pulsed, electromagnetic
field with a thin, high-contrast, finely layered structure via
a thin-sheet boundary condition that expresses the in-plane
conduction and contrast electric polarization currents in the
structure in terms of the exciting incident field. It provides a
novel angel to exam the ground plane effects in the complex
IC packaging structures.
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