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Abstract— A large amount of proteomic data is being generated

due to the advancements in high-throughput genome sequencing.

But the rate of functional annotation of these sequences falls far
behind. To fill the gap between the number of sequences and
their annotations, fast and accurate automated annotation
methods are required. Many methods, such as GOblet,
GOfigure, and Gotcha, are designed based on the BLAST
search. Unfortunately, the sequence coverage of these methods
is low as they cannot detect the remote homologues. The lack of
annotation coverage of the existing methods advocates novel
methods to improve protein function prediction. Here we
present a automated protein functional assignment method
based on the neural response algorithm, which simulates the
neuronal behavior of the visual cortex in the human brain. The
main idea of this algorithm is to define a distance metric that
corresponds to the similarity of the subsequences and reflects
how the human brain can distinguish different sequences. Given
query protein, we predict the most similar target protein using a
two layered neural response algorithm and thereby assigned the
GO term of the target protein to the query. Our method
predicted and ranked the actual leaf GO term among the top 5
probable GO terms with 87.66% accuracy. Results of the 5-fold
cross validation and the comparison with PFP and FFPred
servers indicate the prominent performance by our method. The
NRProF program, the dataset, and help files are available at
http://www.jjwanglab.org/NRProF/.

Keywords:  Algorithms, Artificial Genome
annotation, Machine learning, Ontology.
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I. INTRODUCTION

Recent advances in high-throughput sequencing technologies
have enabled the scientific community to sequence a large
number of genomes. Currently there are 1,390 complete
genomes [1] annotated in the KEGG genome repository and
many more are in progress. However, experimental based
functional characterization of these genes cannot match the
data production rate. Adding to this, more than 50% of
functional annotations are enigmatic [2]. Even the well

studied genomes, such as E. coli and C. elegans, have 51.17%

and 87.92% ambiguous annotations (putative, probable and
unknown) respectively [2]. To fill the gap between the
number of sequences and their (quality) annotations, we need
fast, yet accurate automated functional annotation methods.
Such computational annotation methods are also critical in
analyzing, interpreting and characterizing large complex data
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sets from high-throughput experimental methods, such as
The protein-protein interactions (PPI) [3] and gene
expression data by clustering similar genes and proteins.

The definition of a biological function itself is enigmatic in
biology and highly context dependent [4-6]. This is part of
the reason why more than 50% of functional annotations are
ambiguous. The functional scope of a protein in an organism
differs depending on the aspect under consideration. Protein
can be annotated based on their mode of action i.e. Enzyme
Commission (EC) number [7] (physiological aspect) or their
association with a disease (phenotypic aspect). The lack of
functional coherence increases the complexity of automated
functional annotation. Another major barrier is the use of
different vocabulary by different annotations. A function can
be described differently in different organisms [8]. This
problem can be solved by using ontologies, which serve as
universal functional definitions. Enzyme Commission (E.C)
[9], MIPS Functional Catalogue (Fun Cat) [10] and Gene
Ontology (GO) [11] are such ontologies, with GO being the
most recent and widely used. Many automated annotation
methods uses GO for functional annotation.

Protein function assignment methods can be divided into
two main categories — structure-based methods and sequence-
based methods. A protein’s function is highly related to its
structure. Protein structure tends to be more conserved than
the amino acid sequence in the course of evolution [12, 13].
Thus a variety of structure-based function prediction methods
[14, 15] rely on structure similarities. These methods start
with a predicted structure of the query protein and search for
similar structural motifs in various structural classification
databases such as CATH [16] and SCOP [17] for function
prediction. Structural alignments can reveal the remote
homology for 80-90% of the entries in Protein Data Bank
[18] even if no significant sequence similarity was found for
the two proteins [19]. However, these methods are limited by
the accuracy of the initial query structure prediction and the
availability of the homologues structures in the structural
databases. Despite of being highly accurate, the big gap
between the number of sequences and their solved structures
restricts the use of structure-based methods. Therefore,
sequence-based methods are needed.

The main idea behind sequence-based methods is to
compare the query protein to the proteins that are well
characterized, and the function of the best hit is directly
assigned to the query sequence. GO annotations are assigned
to the BLAST [20] search results for the first time by GOblet
[21] which maps the sequence hits to their GO terms. Later
on the GO terms are given weights based on the E-value of
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the BLAST search by Ontoblast [22]. This is further refined
in GOfigure [23] and GOtcha [24] by communicating the
scores from one level to the other in the GO hierarchy tree.
All these methods are based on the BLAST search results;
thus they fail to identify the remote homologues with a
higher E-value. This problem is solved in the Protein
Function Prediction (PFP) server [25], which replaces the
BLAST with PSI-BLAST [26] and thus can detect remote
homologues. The PFP server can predict the generalized
function of protein sequences with remote homology, but
with a trade-off of low specificity. FFPred [27] is the most
recent protein function prediction server that builds SVM
classifiers based on the extracted sequence features of the
query sequence and thus it does not require prior
identification of protein sequence homologues. However the
server needs one SVM classifier for each GO term, which
makes it computationally expensive. Furthermore, the server
only provides classifiers for 111 Molecular function and 86
Biological Process categories that represent more general
annotations, which limits its usage in deciphering specific
annotations. The lack of annotation specificity and high
complexity of the existing methods advocate the need to
improvement in the automated protein function prediction.
Here we present a novel automated protein functional
assignment method based on the neural response algorithm
[28]. The algorithm simulates the neuronal behavior of
human’s image recognition, and has been successfully
applied for image classification. The main idea of this
algorithm is to define a distance metric that corresponds to
the similarity of small patches of the images and reflects how
the human brain can distinguish different images. This
algorithm uses a multi-layer framework with spatial scale,
and size increasing as we move from the one layer to the
other in a bottom-up fashion. The bottom most layer consists
of templates (sub-patches) of the images and the intermediate
layers consist of secondary templates formed by the assembly
of the templates in the lower layers. The whole image is in
the topmost layer. For example we consider a three layered
architecture of templates (patches) p, ¢ and r (whole image),
with p € g C r as shown in Figure 1. Assume Im(p), Im(q)
and Im(r) as the function spaces corresponding to the
similarity of the templates in the layers p, ¢ and r
respectively. Im(x) gives the similarity between any two
patches in the layer x and a set m: that maps the templates
from the bottom most layer to the templates in the next layer
i.e. m, : p — ¢, and similarly m, : ¢ — r. Having defined the
layers (p,q and r) and the initial layers similarity function
Im(p), the algorithm builds a derived kernel on the top of
layer  in a bottom-up fashion. The process starts with the
calculation of initial reproducing kernel &, on the bottom
most layer p as the inner product of its functional space
Im(p)>*Im(p). Based on the this initial kernel k,, intermediate
derived kernel k, is computed on top of the layer g and this in
turn is used to compute the final derived kernel %, on the top
most layer 7, which can help us in the classification of the
whole images in layer ». Refer to [28], for the detailed
mathematical formulation of the initial and the derived
kernels. The computation of kernels form the unsupervised
preprocessing component and is key for the superior
performance of the neural response algorithm as it can

minimize the complexity of the corresponding image
classification problem (supervised task)[28].

Our method, NRProF, is the first instance of neural
response algorithm being used in the biological domain. In
the current context of protein functional characterization, the
top most layer represents the whole protein sequences and the
subsequent layers are constituted of sequence motifs. At each
layer similarity is computed between the templates of two
successive layers, which were referred to as derived kernels
by taking the maximum of the previously computed local
kernels in a recursive fashion. Finally a mapping engine is
built on the kernels derived from the neural response
algorithm to map the query protein to its most probable GO
term. A detailed description of the whole methodology is
given in the Methods section.
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Figure 1. Three layer mode for image classification.

II.  METHODS

The neural response algorithm can be viewed as a multi-
layered framework as described in the previous section. Here
we built a two layer model as shown in Figure 2, with the
whole protein sequences in the top most layer and the
templates (sequence motifs) in the subsequent layer. We used
Gene Ontology (GO) vocabulary for protein functional
assignment, i.e. we mapped the query protein to its
corresponding GO term(s) that represent(s) the properties of
the query sequence. GO terms covers three major domains:
cellular component, molecular function, and biological
process. We downloaded the ontology file (OBO) v1.2 from
the GO resource.

To demonstrate our approach, we only used the molecular
function domain with a total of 8,912 GO terms. Then we
extracted the proteins and their sequences belonging to each
of the GO terms. To address the issues of redundancy we had
used CD-HIT [29], a program that removes redundant
sequences and generate a database of only the representatives.
These protein sequences and their respective GO terms were
used as the base dataset for our model. We only used
proteins from humans because we wanted to demonstrate the
ability of our method to predict/characterize the function of
the proteins even if they are remotely homologous to the pre-
characterized proteins (human).
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Figure 2. Two layers of the model and their respective data sources.

We further trimmed our GO terms by screening out the terms
with less than 5 proteins. The resultant GO terms form the
base set for our method and their associated proteins form
layer 1 in the model. For the second layer (template library),
we used the sequence motifs from PROSITE [30] version-
20.68 and Pfam [31] version-24. The rationale behind
choosing PROSITE and Pfam is that Pfam has the largest
sequence coverage [3] and PROSIRE has small sequence
motifs that can be useful in detecting remote homologues in
the absence of a whole conserved domain. We downloaded
the PROSITE patterns and Pfam domains as Hidden Markov
Model (HMM) [32] files from the respective repositories.
Here we built two kernels, one on the top of each layer. First
an initial kernel is computed on top of the template layer,
which can be used as a similarity function between the
templates. Then a derived kernel is computed on top of the
first layer by choosing the maximum neural response
between the individual templates in layer 2 and the sequences
in layer 1. Computation of the initial kernel, the neural
response and the derived kernel is explained in detail in the
following subsections and the overall pipeline of the
methodology is shown in Figure 3.

GO Mapping function
ANy)

[ Derived kernel }

—[ Neural Response N, }
[ Layer 1 Protein sequences ]
—

} \
HMMER & PS scan
to map templates

!
/ Initial kernel '\ ]
[ Layer 2 Template library J

[ \

/

HHsearch for aligning
two HHM profiles

Figure 3.  Pipeline diagram showing the control flow of the method.

A. Initial Kernel

Let there be m templates (sequence motifs) g;...q,, in the
second layer. We need to define a non-negative similarity
measure $(q;q;) between any two motifs g; and ¢;. A natural
condition for similarity is s(g;,q;) < s(g;.q;) for any g; # g;,
which means a motif is always more similar to itself than to
the others. Besides this, to ensure the validity of our
algorithm, a mathematical requirement of the similarity is
that for a set of motifs g¢;...q,, the matrix S should be a
positive definite matrix.

S = [s(qua;)]¥=1 (M

Our template library in layer 2 consists of HMM profiles
from the Pfam database, thus we define the similarity
between templates as profile-profile alignment scores. We
had 10,257 profiles in the template library, making ~10°
profile-profile alignments. To align the template HMM
profiles we used HHsearch which is the most sensitive
profile-profile alignment tool to date [33-35]. As a
refinement for better sensitivity and to capture the remote
homology between the templates, we considered the
secondary structure information of the templates as well,
which is considered more conserved and provides additional
information [36]. We have previously used secondary
structure information to improve protein sequence alignment
[37] and remote homologue identification [38]. Thus we
converted the HMM profiles to HHM [34] profiles
containing the secondary structure information of all the
match states in the HMM profiles. We employed HHsearch
which uses PSI-PRED [39] to predict the secondary structure
and added them to the HMM profiles. By doing this we were
able to capture the remote homologues templates. Profile-
Profile alignments were proved to be more sensitive than
PSI-BLAST in the identification of remote similarity [40].
Thus our method has the edge over the PFP server which is
based on PSI-BLAST in detecting the remote homologues.

B. Neural Response

Consider a protein p in layer 1 with k template hits denoted
by g,;...gpin layer 2. PrositeScan [41] and HMMER 3.0 [32]
are used to scan the protein sequences in layer 1 with the
templates from PROSITE and Pfam respectively. Both
PrositeScan and HMMER 3.0 were used in the local
alignment mode as here we intended to capture the existence
of the locally conserved patterns. Then the neural response of
the protein p with respect to a motif g is given by

N(p,q) = max{ s(qp1,q) - (api- 0)} 2)

Now by considering all the m motifs in the template layer
the information about the protein p given the templates can
be represented by an m-dimensional vector

N() = (N, ¢1), ...N(, qn)) ?3)

Our goal is to learn the similarity between the query
protein p; and the proteins in the base dataset such that we
can assign the query protein p; to the GO term(s) associated
with the most similar protein p;. To quantize the similarity
between pairs p; and p;, we encoded the pair (p,p;) into a
vector N; ;) on which we can formulate the mapping engine to
map the query protein to its most probable GO term. There
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are two ways to achieve this, by taking the difference
between N(p;) and N(p,) or by simply concatenating them
together. As we found that the former method always gives
better performance in our algorithm, we thus let

Ngj = [N(p) — N(p))| 4)
= ([N a) — N}, a1)], -, IN®i, @m) — N(pj, am)|)

which is the neural response of the pair (p,p;) on the
templates set g;...q,,.

C. Derived Kernel

We can derive a kernel K, which measures the similarity of
two protein pairs, from the neural responses. This kernel also
gives the similarity of two proteins. Two proteins are similar,
if the pair constituted by them is similar to a pair with two
similar proteins and vice versa. In the original paper of neural
response [28], a linear kernel is defined by inner products of
neural responses. Under our setting, the linear kernel for two
pairs (p;p;) and (p;p;) can be written as

K ((op;), (pepy)) = N (N, N 3) ©)

n
= Z N (o, aiON (pir, qic)
k=1 N
£ Npa)N (o a)

It is well established that the Gaussian kernel usually
performs better than the linear kernel for various
classification tasks. Thus we had derived a Gaussian kernel
with a scale parameter o, given by

K ((Pi.Pj ) (pir, pj")) = exXp {_ w} ©

D. Function assignment

Finally, a mapping engine was built, which defines a
function /" lying in the reproducing kernel Hilbert space [42]
associated with a positive definite kernel K that is derived
from the neural responses by inner products (linear kernel) or
Gaussian radial basis functions (Gaussian kernel). First, we
computed the neural response of all the proteins in the base
dataset with respect to the template library in layer 1 as
described in section 2.2. Similar neural response was
computed for the query protein sequence as well. Next we
computed the pairwise neural response N between the
query sequence i and the sequence j (/..n) in the base dataset.
The mapping function f(N;;) produces a value ranging
between 0 to 1 corresponding to similarity between the
proteins p; and p;. Thus, we can predict the label Y to 1
(similar) if f(N;;) = 0.5, and Y;to O (non-similar) if (N ;)
< 0.5 . Other thresholds besides 0.5 are also allowed. We
then assigned the query protein p; to the GO term/s associated
with the protein/s p; whose label Y; was set to 1. In this
case the sensitivity of GO term assignments varies with the
threshold used (0.5). To overcome this dependency on the
threshold, we sorted the proteins in the base dataset into
descending order based on their similarity (f(N;;)) to the
query protein. We finally extracted the top 5 GO terms and
assign them to the query protein. By doing so, we are not

only overcoming the threshold dependency problem but also
using the ranking (true value of the f{N;;)) as the confidence
scores for multiple GO terms associated with a single protein.

III.  RESULTS

We used the GO terms with no further children (leaf nodes
of the GO tree) and their corresponding proteins to validate
our approach. The rationale for using leaf nodes is that these
GO terms are more functionally specific than the GO terms at
the higher levels, i.e. no two GO terms share a common
protein and thus can demonstrate the specific function
prediction ability of our method. This also addresses issue of
redundancy in the training set. To further fortify our
argument we had also addressed the redundancy problem at
sequence level by eliminating the redundant sequences that
are more than 80% similar in the training set. This is done by
CD-HIT [29], a program that removes redundant sequences
and generate a database of only the representatives. From the
extracted GO terms we enumerated all the protein pairs
belonging to the same GO term and labeled them as positive
dataset i.e. we assigned a label Y;; as 1 and the protein pairs
belonging to different GO terms were labeled as negative,
Y, =0. Among such labeled pairs, we randomly selected
3000 positive pairs and 3000 negative pairs and used these
labeled protein pairs to train and validate our method. After
training the final mapping function, f{N;) produced a value
between 0 and 1 corresponding to the similarity between the
proteins i and j in the validation set. Upon applying the
threshold of 0.5, we predicted the labels Y to 1 (share a GO
term) if (N, ;) > x, and predict Y;; to 0 (do not share a GO
term) if f(N;;) < x. We tried different values of x to decide
on the best threshold. Different threshold values and their
corresponding accuracies are plotted in Figure 4. From the
Figure 4 it can be observed that the accuracy is high for the
threshold values ranging from 0.5 to 0.6. Thus we has
selected 0.5 as the cutoff to validate our method with 5-fold
cross validation i.e. we divided the pool of 6000 labeled
protein pairs into five partitions with an equal number of
positive and negative labeled pairs. Out of the five partitions,
four were used as training set to train the neural response
algorithm, and the remaining one partition was used to
testing the algorithm. This process was repeated five time
(the folds), with each of the five partitions used exactly once
as the validation data.

o
~

Accuracy
o
[e)]

0.5
0.4 \
01 02 03 04 05 06 07 08 09 1
Threshold (x)
Figure 4.  Accuracy plot for different threshold values.

In Table I we report the average accuracy and area under
the curve (AUC) of the 5-fold cross validation with respect to
the template library used in the layer 2. The differences in the
accuracies (Table I) using the PROSITE and PFAM template
libraries is due to the differences in the respective sequence
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coverage. Thus we combined the PFAM and PROSITE
templates for a better sequence coverage, which is reflected
in the increased accuracy (Table I).

TABLE L 5-FOLD CROSS VALIDATION RESULTS WITH RESPECT TO THE
TEMPLATE LIBRARY USED IN LAYER 2
N Temp late Library Accuracy AUC
in layer 2
1 PROSITE 77.1% 0.851
2 PFAM 80.5% 0.875
3 PROSITE + PFAM 82.0% 0.882

As described in the section C, the derived kernel classifies
two proteins to be similar, if the pair constituted by them is
equivalent (similar) to a pair with two known similar proteins.
To test the classification specificity of our method we have
selected 800 proteins (400 pairs) with the first 100 pairs
sharing an immediate parent GO term (level 1); second 100
pairs sharing a common parent separated by an edge distance
of 2 in the GO tree (level 2). Similarly we have level 3 and 4
datasets with an edge distance of 3 and 4 respectively. As the
positive pairs in the training set share a common GO term,
we expect our method to classify the protein pairs as positive
whose GO terms are the same or the next one in the GO
hierarchy and as negative if their respective GO terms are far
away. The number of positively classified (similar) pairs in
respective subsets is given the Figure 5. We observed that the
number of positively classified (similar) pairs is 88% in the
level 1 dataset as they are much closer in the GO tree and it
gradually dropped to 9% in the level 4 dataset as the GO
distance between them is increased. This suggests that our
method is highly specific in classifying the similar proteins

100 4

88

80 A

60 -

40

20 A

Positively classified pairs

GO term separation depth

with respect to the relative distance between the respective
GO terms.

Figure 5. Classification specificity plot.

Having shown the predominant classification specificity
and the 5 fold cross validation results, we had further
compared our method with the PFP and FFPred servers,
which are the most sensitive protein function prediction
server using GO vocabulary [3] to date. We had compiled a
test set of 400 proteins constituting of 200 proteins (100 pairs)
sharing the same GO term (positive test set) i.e. the edge
distance between the GO terms of a protein pair is zero and
another 200 proteins (100 pairs) sharing a distant root GO
term (negative test set) i.e. the edge distance between the GO
terms of a protein pair is > 1. Each of the 200 protein pairs
were classified as either positive (similar) or negative (non
similar) by NRProF. Since PFP and FFPred server does not

have a standalone software version, we had to submit our
query directly to the online server manually for each of the
400 proteins. The PFP and FFPred servers list the probable
GO terms for a query protein sequence with a confidence
score associated with each of the GO terms. A prediction is
considered to be accurate if they predict the same GO term
(rank 1) for both the proteins of a pair in the positive test set
and different for the negative test set. On the other hand
NRProF prediction is considered to be accurate if it can
classify the positive set as similar and negative set as
dissimilar pairs. Out of 200 predictions, NRProF performed
better than PFP and FFPred servers in 8 and 6 instances
respectively. The accuracies are tabulated in Table II. We
therefore infer that our method NRProF had performed better
than the FFPred and PFP servers.

TABLE II CLASSIFICATION ACCURACY OF THE NRPROF, FFPRED AND
PFP SERVER WITH RESPECT TO THE COMPILED TEST SET.
S| Method Accuracy
1 NRProF 84.5%
2 FFPred 81.5%
3 PFP Server 80.5%

Next we compared the GO term predictability of our
method with PFP and FFPred servers. The PFP and FFPred
servers predict the most probable GO terms for a query
protein with a confidence score associated with each of the
GO terms. In contrast, our method labels the protein pair p;
(query protein) and p; (protein in the base dataset ) as 1 if
they are similar and thereby assigns the GO term of the
protein p; to the protein p; based on the threshold applied on
the function f(N;). To overcome the threshold dependency
and to make the results comparable with the PFP and FFPred
servers, we had sorted the proteins in the base dataset in
descending order based on their similarity (f(N;;)) to the
query protein, and assigned corresponding the most similar
(rank 1) protein’s GO terms to the query protein. A
prediction is considered to be accurate if actual GO term of
the query protein is ranked among the top 5 probable GO
terms by the respective methods. Lack of standalone versions
of PFP and FFPred is a serious limitation on the dataset used
for comparison. We compiled a dataset of 300 proteins each
belonging to the leaf nodes of the GO tree. The prediction
results from PFP and FFpred were obtained by manual
submissions to the respective servers. Table III compares the
GO terms predicted for the Human protein WDR55. PFP
could not report the actual leaf GO term in its top 5
predictions. This is due to trade-off of annotation specificity
to weak hits with High E value. FFPred could not predict
any GO term because it is limited to only 111 Molecular
function and 86 Biological Process categories. Whereas
NRProF had predicted top 3 similar proteins with the same
GO term. The Overall accuracy on the set of 300 proteins is
reported in the Table IV.

TABLE IIL GO TERMS PREDICTED FOR THE PROTEIN Q9H6Y2 BY PFP,
FFPRED AND NRPROF.
Protein Name / ID | WDRS55/Q9H6Y2
Actual Leaf
GO term G0:0002039
Top 5 GO terms G0:0005488, GO:0043169, GO:0003676,
by PFP G0:0004977, GO:0046026
Top 5 GO terms . .
by FFPred No GO terms predicted for this sequence
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P51532, Q96S44, Q9HCKS (GO:0002039),
T";’ SN(;(I),:(‘;;'“S Q01638 (GO:0002114), Q13822
Y (GO:0047391)
TABLE IV. GO TERM PREDICTION ACCURACY AND AUC VALUES OF

THE NRPROF AND PFP SERVER WITH RESPECT TO THE TEST SET.

S| Method  Accuracy AUC
1 NRProF 87.66% 0.9339
2 PFP Server  83.33% 0.8892

From Table IV, we can infer that our method NRProF had
performed reasonably better than the PFP server. We had not
reported the accuracy of the FFPred as it is limited to 111
Molecular function categories making it suitable for general
function classes rather than specific annotations and therefore
it is not fair to compare FFPred with the test set constituting
of protein from the leaf GO terms (with no further child
nodes). There are other methods that use GO vocabulary for
protein function prediction methods including GOblet,
GOfigure and GOtcha. But the PFP server has already been
proved to be superior to all the above mentioned methods
[25]. Thus we had compared our method (NRProF) only with
the PFP server.

IV. DISCUSSION

Here we present a novel protein function prediction
method, NRProF, based on the neural response algorithm
using the Gene Ontology vocabulary. The neural response
algorithm simulates the neuronal behavior of the visual
cortex in the human brain. It defines a distance metric
corresponding to the similarity by reflecting how the human
brain can distinguish different sequences. It adopted a multi-
layer structure, in which each layer can use one or multiple
types of sequence/structure patterns.

NRProF is the first instance of neural response being used
in the biological domain. It finds the most similar protein to
the query protein based on the neural response N between the
query and the target sequences; and thereby assigns the GO
term(s) of the most similar protein to the query protein. This
is a profound and composite method with the essence of
sequential, structural and evolutionary based methods for
protein function prediction. The templates from the PRINTS
and PFAM database contribute to the functional profiles or
signatures (sequence). The mismatch and deletion states in
the HMM profiles of the PFAM templates account to the
degeneracy due to evolution and the secondary structural
information of the match states in the HHM profiles
contribute to the structural part. The use of HMM profiles
along with the secondary structure information of PROSITE
and PFAM sequence motifs to define the neural response
gives our method an edge over other available methods to
identify the remote homologues, as profile-profile alignments
are superior to PSI-BLAST based methods in detecting the
remote homologues. Thus NRProF can complement most of
the existing methods.

Our method is computationally less complex compared
with the other methods, as the initial neural response of the
proteins in the base dataset with respect to the template

library are computed only once and from there the neural
response between the query and target is computed with the
least computational effort unlike other BLAST/PSI-BLAST
based methods. The simple derived kernel (section 2.3) adds
to the computational simplicity of our method. We validated
our method in a 5-fold cross validation fashion and obtained
an accuracy of 82%. Considering the criterion that a
prediction is valid if and only if the actual GO term is top
ranked (1% Rank) GO term by our method, 82% is quite a
good accuracy. The classification accuracy of 84.5% on a test
set of 400 proteins suggest that our method is highly specific
in classifying the similar proteins with respect to the relative
distance between the respective GO terms. Upon further
caparison of our method with the PFP and FFPred servers
which are the most sensitive function prediction servers to
date, the GO term prediction accuracy of 87.66% evince that
our method is more accurate in predicting the specific
functions. Thus we conclude that our method is
computationally simple yet accurate when compared with the
other methods. This is achieved by simulating the neuronal
behavior of the visual cortex in the human brain in the form
of neural response.
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