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Abstract— Maximal clearance is an important property that
is highly desirable in multi-agent motion planning. However,
it is also inherently difficult to attain. We propose a novel
approach to achieve maximal clearance by exploiting the ability
of evenly distributing a set of points by a centroidal Voronoi
tessellation (CVT). We adapt the CVT framework to multi-
agent motion planning by adding an extra time dimension and
optimize the trajectories of the agents in the augmented domain.
As an optimization framework, our method can work naturally
on complex regions. We demonstrate the effectiveness of our
algorithm in achieving maximal clearance in motion planning
with some examples.

I. INTRODUCTION

Motion planning of an agent is to determine a route
parameterized in time between the given starting and ending
positions. Motion planning of multiple agents, also called
multi-agent motion planning, is more challenging since it
is required that no two agents collide with each other while
moving along their routes. Multi-agent motion planning finds
a spectrum of applications in robotics, artificial intelligence,
control theory, computer simulation and computer animation.
We will propose in this paper a novel approach to handle this
problem.

In a typical multi-agent motion planning scenario, the
starting and ending positions of some agents (e.g., robots)
to be deployed in a region are given and a route for each
agent from its starting to its ending positions is to be found.
Due to the uncertainty of agents [1], it is often required that
their routes to be of maximal clearance, that is, the agents
are required to be as far as possible from each other during
motion. Other major factors under consideration include the
smoothness of routes, the speeds as well as the deployment
time of the moving agents.

A popular approach in the literature utilizes the gener-
alized Voronoi diagram to find a maximal clearance route
for an agent by treating all other agents as static ones [2].
However, this method only provides the best local movement
at a certain time instant, while ignoring the coherence be-
tween two consecutive time instants and therefore the global
trajectory of an agent. This kind of approach may generally
lead to zig-zag and disorganized motions.

Centroidal Voronoi tessellation (CVT) is a special Voronoi
tessellation in which each site of an Voronoi cell coincides
with the centroid of the cell. For a domain of uniform density,
the sites of a CVT are evenly distributed. In this paper, we

exploit this favourable property of a uniform point distri-
bution given by a CVT and devise an algorithm for multi-
agent motion planning. We formulate the motion planning
problem as a CVT optimization problem and propose an
energy function which takes into account route smoothness,
motion speeds and the deployment time. By adding a time
dimension to the original path planning domain, our CVT
framework naturally leads to a globally planned maximal
clearance trajectories.

II. RELATED WORKS

There is extensive literature on the topic of motion plan-
ning. Most prior work on multi-agent motion planning can
be classified into centralized and decentralized/decoupled
planning. Centralized planners treat all agents as a single
multi-body robot, which generally provide a complete so-
lution and allow global optimization, but however suffer
from inefficiency due to the high dimensionality of the
configuration spaces. Decentralized planners, on the other
hand, utilize distributed methodology, which first plan for an
initial path for each robot independently which is collision-
free with respect to the obstacles only and then consider the
spontaneous interactions among the robots by varying the
velocities along their paths to avoid collisions. They are in
general more efficient but completeness is not assured [3].
Our proposed method is a kind of centralized planning as we
consider all agents at the same time to achieve an optimal
planning.

We refer to the texts by LaValle [1] and by Choset et
al. [4] and the comprehensive surveys from López et al. [5],
Kavraki and Lavalle [6], and Lindemann and LaValle [7] for
details. We focus here only on trajectory planning, maximal
clearance and CVT based navigation, which are related to
our work.

A. Trajectory planning

In robotics, trajectory planning refers to the problem of
determining both a route and a velocity function for a robot,
and is different from path planning as it is parametrized
by time [8]. Decoupled trajectory planning works in a
similar way as decoupled planning, while direct trajectory
planning generates a path directly in the state space, which
is usually hard to solve analytically and therefore nonlinear
optimization or grid-based search methods are generally
involved [4].
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Roque and Doering [9] performed trajectory planning
using Voronoi roadmaps to generate the shortest feasible path
with maximal clearance. Kant [10] proposed to use path-
time space for decoupled trajectory planning, where time
was added as an extra dimension as to the original domain.
We method also works in the path-time space, but we adopt
a direct approach with nonlinear optimization.

B. Maximal clearance

Uncertainty of moving agents will increase the probability
of collision if their paths are too close to each other.
óDúnlaing et al. first used generalized Voronoi diagram
(GVD) to compute a maximal clearance path for a disc and
a ladder using planar and 3-dimensional Voronoi diagrams,
respectively [2]. Geraerts et al. enlarged the pre-planned
path clearance by retracting it to the medial axis as a post
processing step [11], and further applied the same idea
for robots in high-dimensional configuration spaces [12].
Geraerts presented a data structure called “Explicit Corridor
Map” based on GVD from which a shortest path is gener-
ated with adjustable amount of clearance in real-time [13].
Champagne and Tang used 2D GVD on environment maps
for planning maximal-clearance paths of crowds compris-
ing groups of agents [14]. Pettré et al. obtained maximal
clearance paths in a multilayered and uneven domain by
means of a navigation graph constructed from the Voronoi
diagram [15]. Bhattacharya and Gavrilova proposed an al-
gorithm to generate a path that can keep a specific value of
minimum clearance from obstacles [16], [17]. Sud et al. pre-
sented a maximal clearance method for global path planning
for multiple agents, using the multi-agent navigation graph
(MaNG) which combines the first- and second-order Voronoi
graphs [18]. In general, GVD-based methods can well handle
scenarios with static obstacles. For situations with dynamic
obstacles or agents, these methods are not guaranteed to
converge and may result in oscillating motions.

C. CVT-based navigation

CVTs have been used in many fields such as computa-
tional geometry, numerical PDEs, mesh-free computation,
image segmentation, surface discretization, etc. Readers may
refer to [19], [20] for more details about the theory and
applications of the CVT.

Recently, there are some literature extending the appli-
cation of CVT to robot navigation. Cortés et al. proposed
to use continuous- and discrete-time Lloyd descent methods
for coverage control and coordination of autonomous robots
for distributed sensing [21]. Pimenta et al. [22] further ex-
tended [21] to cover also non-convex domains with a team of
heterogeneous mobile sensors of finite sizes. Chen et al. [23]
used CVT to generate crowd behavior of mobile robots for
coverage control and multiple-target tracking. CVT-based
approach has also been used in other sensing applications,
e.g., diffusion control, for distributing networked mobile
robots [24].

III. PROBLEM DEFINITION

We consider the maximal clearance trajectory planning for
multiple agents in R2. Suppose that we are given k agents
and their starting position pi

s ∈ R2 and ending position
pi
e ∈ R2, i ∈ {1, . . . , k}. We assume that each agent is

a point agent which takes zero area. A maximal clearance
trajectory planning in this setting is to assign a path as a
function of time to each agent i from pi

s to pi
e, so that

the agents are as far from each other as possible at each
time instant. In this section, we present a solution to the
problem in which the resulting path of each agent i is given
as a piecewise linear curve defined by an ordered set of
n+2 points {pi

j}
n+1
j=0 , which we called the checkpoints, with

pi
0 = pi

s and pi
n+1 = pi

e. We suppose that all agents start
moving at t = 0. Moreover, we require that each agent i takes
equal time increment ∆ti to move from each checkpoint pi

j

to pi
j+1, for j = 0, . . . , n and i ∈ {1, . . . , k}, that is, the

checkpoints {pi
j}

n+1
j=0 are equally sampled with respect to

time. Each checkpoint pi
j is therefore associated with a time

tij = j∆ti, which is the time at which agent i arrives at
pi
j . The position of agent i in the interval [tij , t

i
j+1] is then

determined by linearly interpolating the checkpoints pi
j and

pi
j+1.
We note here that our solution to maximal clearance trajec-

tory planning for multiple agents aims at achieving maximal
clearance at the checkpoints {pi

j}
n+1
j=0 only. It means that two

agents can be in close proximity or even in collision when
one of them is not at the checkpoints. Nevertheless, the time
span of this “error window” can be reduced by using more
checkpoints (i.e., with a larger n) to sample a path.

IV. KEY IDEA

In this section, we shall present the basic idea of how we
solve the problem of maximal clearance trajectory planning
for multiple agents. Let us consider a path-time domain D =
R2 × T , where T = [t0, t1] ⊂ R (Fig. 1). Each point in D
is a pair (p, t) representing a position p ∈ R2 associating
with a time t. A trajectory g(t) : T→ R2 is then given by a
space curve (or what we call a 3D path) C :

(
g(t), t

)
in D.

A trajectory planning problem in R2 can be transformed to
a 3D path planning problem in D such that:
• two trajectories in R2 are collision-free if and only if

their corresponding 3D paths in D do not intersect; also,
• maximal clearance trajectories can be achieved by de-

signing 3D paths in D which are as far away from each
other as possible, in the following two senses. Firstly,
maximal geometric clearance is realized so that two
agents will be as far apart as possible at a particular
time t. Secondly, maximal temporal clearance can also
be attained so that the arrival time difference between
two agents at a particular location is as large as possible.

We represent a 3D path C in D as a piecewise linear curve
connecting a set of equally sampled points {(pj , tj)}n+1

j=0

against the time axis. We also call these sample points
the checkpoints where the context is clear. Given k paths
{Ci}ki=1 in D, our central idea is to distribute the checkpoints
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Fig. 1. The path-time domain D = R2 × T .

{(pi
j , t

i
j)}

n+1
j=0 , i = 1, . . . , k, in D under some pre-specified

constraints so that the resulting checkpoints constitute a
valid trajectory in R2. To achieve maximal clearance, we
exploit the ability of the centroid Voronoi tessellation (CVT)
method [19], [20] for evenly distributing a set of points in
a domain. We model the trajectory planning problem as an
optimization problem, and take into account practical factors
such as speed limit, path smoothness, etc., to ensure that
the resulting checkpoint distribution will give us a desirable
trajectory. The details of the optimization formulation will
be given in the next section.

V. OPTIMIZATION FORMULATION

We treat maximal clearance trajectory planning for mul-
tiple agents as an optimization problem with inequality
constraints and our goal is to minimize the energy of the
checkpoints {(pi

j , t
i
j)}nj=1, i = 1, . . . , k, defining the 3D

paths in the path-time domain D. Note that the starting
and ending positions of each agent are not involved in the
optimization process. While the starting positions are fixed,
the ending positions are specially treated, as to be further
discussed in Section VI. Since tij = j∆ti for i = 1, . . . , k
and j = 1, . . . , n, the objective function takes pij and ∆ti as
variables as follows:

Minimize f(X) = Fcvt + α1Spath + α2Sspeed + α3Tpath
(1)

subject to Cspeed

where X =
(
xi

)
, xi = (pi

1, . . . ,p
i
n,∆ti),

i = 1, . . . , k, α1, α2, α3 > 0.

The term Fcvt accounts for the CVT energy of the check-
points on the paths to achieve maximal clearance, Spath for
path smoothing, Sspeed for speed smoothing, and Tpath for
controlling the total time taken. The constraint Cspeed is
to ensure that a pre-defined speed limit is observed. The
constants α1, α2 and α3 serve to balance the contribution of
the different energy terms to attain a desirable result. These
energy terms and constraints will be discussed in details
below.

A. Maximal clearance via centroidal Voronoi tessellation

We first give a brief introduction to the centroidal Voronoi
tessellation formulation. More details can be found in [19],
[20]. Let Ω be a compact region in the N -dimensional space

RN . Let P = {pi}ni=1 be n points, called sites, in Ω. A
Voronoi region Vi of a site pi is then defined as:

Vi = {x ∈ Ω | ‖x− pi‖ ≤ ‖x− pj‖,
∀j 6= i, j = 1, 2, . . . , n}

where ‖ · ‖ is the Euclidean norm in RN . Then a Voronoi
tessellation or Voronoi diagram of Ω is given by the set
{Vi}ni=1. A special Voronoi tessellation in which each site
coincides with the centroid of its Voronoi cell is called a
centroidal Voronoi tessellation (CVT).

From an optimization viewpoint, a CVT is characterized
by a gradient-vanishing point of the energy function

F (X) =

n∑
i=1

∫
Vi

‖x− pi‖2 dσ

where dσ is the differential area element of Ω. A local
minimizer of F (X) therefore yields a CVT of Ω.

CVT is known to evenly distribute a set of points (i.e., the
sites) in a domain. We therefore use CVT to distribute the
checkpoints of the paths evenly in D which in turn achieves
maximal clearance as discussed in Section IV. Given the
checkpoints zij = (pi

j , t
i
j) in D, i = 1, . . . , k, j = 1, . . . , n,

the CVT energy of all checkpoints on all the paths in D is
defined as:

Fcvt =

k∑
i=1

n∑
j=1

∫
V
zi
j

‖z− zij‖2 dσ,

where Vzi
j

is the Voronoi region of zij and dσ is the
differential volume element of D.

B. Trajectory Smoothing
CVT tends to well distribute the checkpoints in the path-

time domain to give us maximal clearance, but it does not
take into account what the trajectories should behave like. A
reasonable requirement is that an agent should take a path
involving fewer turns to the destination, which means that
zig-zag paths are not desirable. Also, abrupt changes in the
speed of motion of an agent should also be avoided so as
to maintain a natural movement. We therefore introduce two
smoothing terms: path smoothness and speed smoothness.
The two factors are considered separately so that we may
adjust their individual contribution to produce desired result.

1) Path smoothness: The smoothness of a 3D path is
defined by the smoothness of its projection onto the 2D x-y
plane, which is measured by an approximation of the sum of
its turning angles squared. Specifically, at any checkpoint pj ,
j = 1, . . . , n, the turning angle θj of a path is the smaller
angle between the vectors pj−1pj and pjpj+1. Then the
path smoothness term is defined as:

Spath =

k∑
i=1

n∑
j=1

(1− cos θij),

where cos θij =
pi

j−1p
i
j ·p

i
jp

i
j+1

‖pi
j−1p

i
j‖‖pi

jp
i
j+1‖

.

The quantity 1 − cos θj ensures that the function Spath is
nonnegative and nondecreasing.
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2) Speed smoothness: The speed variation along a tra-
jectory can be observed by projecting a path to the xt-
and the yt-planes in D. In the same spirit as in how
path smoothness is determined above, speed smoothness is
measured approximately by the sum of the turning angles
squared. Let the coordinates of pi

j be (xij , y
i
j) ∈ R2. Then

we define

Sx
speed =

k∑
i=1

n∑
j=1

(1− cos θij),

Sy
speed =

k∑
i=1

n∑
j=1

(1− cosφij),

where cos θij =
vi
j−1v

i
j ·v

i
jv

i
j+1

‖vi
j−1v

i
j‖‖vi

jv
i
j+1‖

,

cosφij =
wi

j−1w
i
j ·w

i
jw

i
j+1

‖wi
j−1w

i
j‖‖wi

jw
i
j+1‖

,

vi
j = (xij , j∆ti), and

wi
j = (yij , j∆ti).

C. Total time taken for motion

It is often useful to be able to control the amount of time
required for an agent to complete an entire path. In some
applications, one may require that the agents be able to arrive
at the destinations as soon as possible. Hence, we introduce
an energy term for such a control which is defined as:

Tpath =

k∑
i=1

∆ti.

By minimizing Tpath, we aim to navigate the agents to
move as fast as possible.

D. Speed constraint

It is natural to require that all agents be not moving with a
velocity that is less than zero or exceeds a user pre-specified
limit, denoted as MaxSpeed. The constraint is imposed by
having

Cspeed : 0 ≤
‖pi

j−1p
i
j‖

∆ti
≤ Maxspeed,

i = 1, . . . , k, j = 1, . . . , n.

VI. ALGORITHMIC DETAILS

In this section, we present a solution to formulation (1) and
also discuss how we shall handle the end points of the paths
in the path-time domain D which determines the journey time
of the agents. The detailed steps of our algorithm are given
in Algorithm 1.

A. Solution to nonlinear optimization with inequality con-
straints

We use the Powell-Hestenes-Rockafellar (PHR)
method [25], a well-known augmented Lagrangian
algorithm, to solve the nonlinear optimization problem
with inequality constraints given in (1). The constraint
Cspeed is then incorporated as a penalty function as follows:

Minimize M(X, λCspeed , σ) = f(X) + c(X, λCspeed , σ) (2)

where X =
(
xi

)
, xi = (pi

1, . . . ,p
i
n,∆ti),

i = 1, . . . , k,

c(X, λCspeed , σ) =

1

2σ

k∑
i=1

n∑
j=1

[(max(0, λCi
j

+ σCi
j(X))2)]

where λCspeed is the Lagrangian multiplier vector for Cspeed,

σ is the penalty parameter and Ci
j(X) =

‖pi
j−1p

i
j‖

∆ti
−

Maxspeed. Details on updating of parameters λCspeed , σ and
the terminal condition can be found in [25].

Now that we have converted the constrained optimization
problem to an unconstrained one, we adopt the L-BFGS
(limited-memory BFGS) algorithm [26], a quasi-Newton
method proposed by Liu et al. [27] for CVT computation,
to minimize M(X, λCspeed , σ).

B. Determining the total journey time

Minimizing the CVT energy function tends to evenly
distribute the checkpoints in the domain D = R2×T , which
means that given a fixed time interval T , there is most likely
an agent who takes the maximum possible time to reach
his destination (without considering the effect of the energy
term Tpath). The problem therefore lies in how a proper time
interval for the domain D is selected. Choosing a too small
interval may result in nonexistence of solution, while a too
large interval may render a journey completion time much
longer than necessary. Our solution is as follows. The initial
time interval is taken as the maximum of the shortest journey
time of all agents, assuming that they head straight towards
their destination with the maximum speed. Recall that in
the optimization framework, the speed constraint is only
guaranteed for the journey from pi

0 up to pi
n, not including

the destination for each agent, which is pi
n+1. Hence, after

each iteration of energy minimization, we check if each
agent i is able to move from the last checkpoint pi

n to the
destination pi

e within the speed limit in a time interval ∆ti.
A valid solution is found only if there is no agent violating
the speed limit in this regard; otherwise the time interval T
needs to be incremented so that the “speeding agents” should
all observe the speed limit. In the latter case, the optimization
will then be carried out again in order to seek for a better
solution.

C. The algorithm

Algorithm 1 details the procedure of our method. We first
determine in step 1 the initial path (which are the shortest
paths towards the destination), as well as the time increment
∆ti for each agent. In step 2 we construct the domain D,
and perform the optimization process in steps 3 and 4. The
last step serves to update the time interval of D to allow a
valid solution.
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Algorithm 1:
CVT-based maximal clearance trajectory planning in R2

Input:
Number of agents k;
Number of checkpoints on each path n;
Starting points {pi

0} and ending points
{pi

n+1}, i = 1, . . . , k.

STEP 1 For i = 1, . . . , k, set ∆ti =
‖pi

0p
i
n+1‖

(n+1)Maxspeed
.

Also, set pi
j = pi

0 + j
n+1

pi
0p

i
n+1, j = 1, . . . , n.

STEP 2 Let D = R2 × T , where T = [0,maxi{(n + 1)∆ti}].
STEP 3 Minimizing Eq. (2) with L-BFGS method.
STEP 4 If terminal condition is satisfied, go to step 5;
otherwise, update the penalty parameters and go to step 3.

STEP 5 Check if, for each i = 1, . . . , k,
pi
npi

n+1

∆ti
≤ Maxspeed.

If not, set T = [0,maxi{(n + 1)∆ti}], goto STEP 2.
Otherwise, a valid solution is found and return all checkpoints.

VII. EXPERIMENTAL RESULTS

In this section, we shall give the implementation details
and show some experimental results to demonstrate the
effectiveness of our algorithm.

A. Implementation details

We use CGAL version 3.5.1 [28] and exact predicates
inexact constructions kernel [29] to compute the Voronoi
diagrams. We run all experiments on a workstation with an
Intel Xeon 3.33 GHz CPU and 12GB RAM.

The four terms Fcvt, Spath, Sspeed and Tpath in the objective
function (1) are generally of different magnitudes and are
therefore first normalized. The three weights α1, α2 and α3

are then applied to the normalized terms.

B. Parameter tuning

(a) Without path smoothness (b) Without speed smoothness

Fig. 2. Poor results without speed or path smoothness control.

The following two examples demonstrates the importance
of the terms Spath and Sspeed, and how their weights can be
tuned to achieve a balance between maximal clearance and
the quality of paths. Fig. 2(a) (resp. (b)) is a result without
path (resp. speed) smoothness control by setting α1 (resp.
α2) to zero. Without path smoothness control, sharp turns
appear in both paths of the two agents, as is shown in (a). It
is also easy to see that the unsmoothed velocity leads to an
undesirable zig-zag path in (b). Fig. 3 illustrates the effect of

(a) α1 = 0 and α2 = 0 (b) α1 = 0.03 and α2 = 0.015

(c) α1 = 0.16 and α2 = 0.08 (d) α1 = 0.5 and α2 = 0.25

Fig. 3. Results with different smoothness parameters.

using different values of α1 and α2. An unacceptable result
with α1 = 0 and α2 = 0 is shown in (a). Setting α1 and α2

with larger values keeps improving the path quality in terms
of smoothness as shown in (b-d), but however sacrificing
maximum clearance of the paths. We found that α1 = 0.16
and α2 = 0.08 is a suitable choice in a typical setting. Our
testing shows that together with α3 = 0.4, the resulting
trajectories also allow the agents to move to their ending
positions as quickly as possible. Hence, these values are used
in all experiments in this paper.

C. Results

Fig. 4 shows some examples with two agents. It can be
seen that the two agents always keep clear of each other
in the examples. The agents also keep the largest distance
at midway of their journey. Fig. 5 shows examples with
four agents and we can see that not only geometric but also
temporal maximal clearance is achieved.

More complex scenarios are shown in Fig. 6 with 16
agents and Fig. 7 with 40 agents. We show the projection
of the trajectories of the agents on R2, as three dimensional
views cannot provide useful visualization in this case. The
snapshots of the moving agents with their trails at six time
stamps are given. From these snapshots, we can see that the
agents are distributed evenly and their trajectories are also
smooth. In Fig. 7(d), about 10 agents appear to be crowded
in the central region of the square. The reason is that most
agents choose to take a shorter path passing through the
central region in order to more quickly reach the ending
positions.

2285



(a) Both agents from (0, 0) to
(1, 1)

(b) One agent from (0, 0) to
(1, 1) and the other the opposite
way

(c) Both agents from (0, 1
2
) to

(1, 1
2
)

(d) One agent from (0, 1
2
) to

(1, 1
2
) and the other the opposite

way

Fig. 4. Examples with two agents.

(a) All agents from (0, 0) to
(1, 1)

(b) Two agents from (0, 1
2
) to

(1, 1
2
) and the other two the

opposite way

Fig. 5. Examples with four agents.

D. Other domains

Since the CVT energy function is defined on general two-
dimensional domains, our algorithm can handle also complex
domains naturally. An example with two agents in a circular
domain is shown in Fig. 8. Another example with four
agents in a non-simple domain is shown in Fig. 9. Such
non-simple domains may also model scenarios with moving
obstacles. For each moving obstacle, a cylinder is constructed
by sweeping the obstacle along its trajectory in the path-time
domain. The path-time domain D for the optimization then
becomes the augmented domain minus the cylinders of all
the obstacles. Obstacles can naturally be avoided by placing
initial checkpoints outside of the cylinders.

VIII. CONCLUSION

We propose a CVT-based framework for motion plan-
ning to achieve maximal clearance in a two-dimensional

(a) Slice t=2/20 (b) Slice t=7/20

(c) Slice t=10/20 (d) Slice t=13/20

(e) Slice t=16/20 (f) Slice t=20/20

Fig. 6. An example with 16 agents.

domain. Efficient optimization schemes are employed in
our algorithm. Experiments show that our approach handles
general domains and is robust. Similar to many other existing
methods, we treat robots simply as points without area;
although a reasonable approximation, this may lead to some
errors in practice. In future, we will adapt our approach by
computing the CVT energy function of robots with complex
shapes directly to ensure accurate solutions. Our discrete
sampling scheme for the trajectories does not assure non-
collision of agents in between the checkpoints. One possible
solution is to directly define the CVT energy function of the
trajectory paths in three dimensions which will be further
investigated.
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