
Title JSBiRTH: Dynamic javascript birthmark based on the run-time
heap

Author(s) Chan, PPF; Hui, LCK; Yiu, SM

Citation
The 35th IEEE Annual Computer Software and Applications
Conference (COMPSAC 2011), Munich, Germany, 18-22 July
2011. In Proceedings of 35th COMPSAC, 2011, p. 407-412

Issued Date 2011

URL http://hdl.handle.net/10722/139990

Rights Proceedings of IEEE Annual International Computer Software
and Applications Conference. Copyright © IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37962571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

JSBiRTH: Dynamic JavaScript Birthmark Based on the Run-time Heap

Patrick P.F. Chan, Lucas C.K. Hui, S.M. Yiu
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

{pfchan|hui|smyiu}@cs.hku.hk

Abstract—JavaScript is currently the dominating client-side
scripting language in the web community. However, the source
code of JavaScript can be easily copied through a browser. The
intellectual property right of the developers lacks protection.
In this paper, we consider using dynamic software birthmark
for JavaScript. Instead of using control flow trace (which can
be corrupted by code obfuscation) and API (which may not
work if the software does not have many API calls), we exploit
the run-time heap, which reflects substantially the dynamic
behavior of a program, to extract birthmarks. We introduce
JSBiRTH, a novel software birthmark system for JavaScript
based on the comparison of run-time heaps. We evaluated our
system using 20 JavaScript programs with most of them being
large-scale. Our system gave no false positive or false negative.
Moreover, it is robust against code obfuscation attack. We also
show that our system is effective in detecting partial code theft.

Keywords-birthmark; software protection; code theft detec-
tion; JavaScript

I. INTRODUCTION

The rise of Web 2.0, in particular the Ajax technology,
rendered JavaScript the dominating client-side scripting lan-
guage in the web community. According to a survey from
Evans Data, over 60% of developers use JavaScript and that
usage has outstripped all 3GL and scripting language use,
including Java [1]. However, JavaScript source code can
be readily obtained through the view-source function of a
browser. There is no doubt that the intellectual property right
of web application developers is at risk.

Software protection continues to be an important topic
for computer scientists. Watermarking is one of the well-
known and earliest approaches to detect software piracy in
which a watermark is incorporated into a program to prove
the ownership of it [2], [3]. However, it is believed that
“a sufficiently determined attacker will eventually be able
to defeat any watermark.” [4]. Watermarking also requires
the owner to take extra action (embed the watermark into
the software) prior to releasing the software. Thus, some
existing JavaScript developers do not use watermarking
but try to obfuscate their source code before publishing.
Code obfuscation is a semantics-preserving transformation
of the source code that makes it more difficult to understand
and reverse engineer [5]. However, code obfuscation only
prevents others from learning the logic of the source code
but does not hinder direct copying of them.

A relatively new but less popular software theft detection
technique is software birthmark. Software birthmark does
not require any code being added to the software. It depends
solely on the intrinsic characteristics of a program to deter-
mine the similarity between two programs [6], [7], [8], [9],
[10], [11], [12], [13]. It was shown in [7] that a birthmark
could be used to identify software theft even after destroying
the watermark by code transformation. According to Wang
et al. [6], a birthmark is a unique characteristic a program
possesses that can be used to identify the program. There
are two categories of software birthmarks, static birthmarks
and dynamic birthmarks. Static birthmarks are birthmarks
extracted from the syntactic structure of a program [10],
[12], [13]. Dynamic birthmarks are birthmarks extracted
from the dynamic behavior of a program at run-time [6], [7],
[8], [9], [11]. Since semantics-preserving transformations
like code obfuscation only modify the syntactic structure
of a program but not the dynamic behavior of it, dynamic
birthmarks are more robust against them. We remark that
there does not exist any proposed software birthmark, static
or dynamic, for JavaScript.

Existing dynamic birthmarks make use of the API, system
call, or complete control flow trace obtained during the
execution of a program [6], [7], [8], [9], [11]. Birthmarks
based on control flow may still be vulnerable to obfuscation
attack such as loop transformation. The ones based on API
(or system call) may suffer the problem of not having
enough API calls to make the birthmark unique. In this
paper, we provide an alternative for extracting the dynamic
birthmark based on the unique characteristics of a program
extracted from the run-time heap. The run-time heap is a
location in the main memory which stores all dynamically
created objects. The structures of the objects as well as the
connection between them reflect the unique behavior of a
program. They are independent of the syntactic structure
of the program code and hence, are not to be changed by
semantics-preserving code transformations.

We developed a system, called JSBiRTH, to make use of
the run-time heap to detect software piracy for JavaScript.
The core idea of the system is to extract the object reference
tree for each object in the run-time heap and compare the
similarity between them. The system prototype for evalu-
ation consists of two modules. The first module performs

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.60

425

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.60

428

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.60

407

birthmarks extraction. We modified the Google Chromium
browser to dump the heap on a regular interval when
JavaScript programs are running [14]. The second module
is responsible for birthmarks comparison. We designed and
implemented a birthmark comparison algorithm to compare
the birthmarks given by the first module.

To test the effectiveness of the system, 20 existing
JavaScript programs, with most of them being large-scale,
were downloaded from the Internet. Our system showed
zero similarity between different programs and high simi-
larity, more than 96% , between birthmarks from the same
program. For robustness against code obfuscation attack,
the system showed more than 95% of similarity between
the original and the obfuscated copy. Furthermore, we also
show that the system is able to detect partial code theft by
comparing a set of programs which use a common JavaScript
library.

The rest of the paper is structured as follows. Section
II discusses some related work. The problem definitions are
given in Section III. Section IV provides the overview of our
proposed approach. The details about the implementation of
our birthmark system are given in Section V. The evaluation
results of the system are discussed in section VI. Further
discussion is covered in Section VII and Section VIII
concludes.

II. RELATED WORK

The first dynamic birthmark was proposed by G. Myles
and C. Collberg [7]. They exploited the complete control
flow trace of a program execution to identify the program.
They showed that their technique was more resilient to
attacks by semantics-preserving transformations than pub-
lished static techniques. However, their work is still suscep-
tible to various loop transformations. Moreover, the whole
program path traces are large and make the technique not
scalable.

Tamada et al. proposed two kinds of dynamic software
birthmarks based on API calls [9]. Their approach was based
on the insights that it was difficult for adversaries to alter the
API calls with other equivalent ones and that the compiler
did not optimize the APIs themselves. They extensively used
runtime information of API calls as a strong signature of
the program. Through analyzing the execution order and
the frequency distribution of the API calls, they extracted
dynamic birthmarks that could distinguish individually de-
veloped same-purpose applications and were resilience to
different compiler options. This promising result led to
subsequent researches on dynamic birthmarks based on API
calls.

Schuler et al. proposed a dynamic birthmark for Java that
observes how a program uses objects provided by the Java
Standard API [8]. The proposed API birthmark observes
short sequences of method calls received by individual
objects from the Java Platform Standard API. By chopping

up the call trace into a set of short call sequences received
by API objects, it is easier to compare the more compact call
sequences. Evaluation performed by the authors showed that
their dynamic birthmark solution could accurately identify
programs that were identical to each other and differentiate
distinct programs. Moreover, all birthmarks of obfuscated
programs were identical to that of the original program.
Most importantly, their API birthmark was more scalable
and more resilient than the WPP Birthmark by Myles and
Collberg [7].

Wang et al. proposed dependence graph based software
birthmark called SCDG birthmark [6]. An SCDG is a
graph representation of the dynamic behavior of a program,
where system calls are represented by vertices, and data and
control dependences between system calls are represented
by edges. The SCDG birthmark is a subgraph of the SCDG
that can identify the whole program. They implemented a
prototype of SCDG birthmark based software theft detection
system. Evaluation of their system showed that it was robust
against attacks based on different compiler options, different
compilers and different obfuscation techniques. It is the first
system that is able to detect software component theft where
only partial code is stolen.

III. PROBLEM DEFINITIONS

This section provides the static birthmarks and dynamic
birthmarks to ease further discussion. We borrow part of the
definitions from Tamada et al [9]. These are the first formal
definitions appearing in the literature and have been restated
in subsequent papers related to software birthmark.

A software birthmark is a group of unique characteristics
extracted from a program that can uniquely identify the
program. The purpose of software birthmarks is to detect
whether two programs are from the same origin or not.

A. Static Birthmarks

A static birthmark is one that can be extracted solely from
the program source code.

Definition 1. (Static Birthmark) Let p, q be two programs
or program components. Let f(p) be a set of program
characteristics extracted from the source code of p. f(p) is
a static birthmark of p only if both of the following criteria
are satisfied:

1) f(p) is obtained only from p itself
2) program q is a copy of p⇒ f(p) = f(q)

B. Dynamic Birthmarks

A dynamic birthmark is one that is extracted when the
program is executing.

Definition 2. (Dynamic Birthmark) Let p, q be two pro-
grams or program components. Let I be an input to p and q.
Let f(p, I) be a set of characteristics extracted from p when
executing p with input I . f(p, I) is a dynamic birthmark of
p only if both of the following criteria are satisfied:

426429408

1) f(p, I) is obtained only from p itself when executing
p with input I

2) program q is a copy of p⇒ f(p, I) = f(q, I)

This definition is basically the same as that of static
birthmarks except that the birthmark is extracted with respect
to a particular input I .

Static birthmarks are vulnerable to code obfuscation
which changes the structure of a program without affecting
the dynamic behavior of the program. As a result, a code
thief can destroy a static birthmark by applying obfuscation
to the stolen code and escape from theft detection. On the
other hand, dynamic birthmarks are more robust to such
kind of attack as they rely on the run-time behavior of the
program.

IV. APPROACH OVERVIEW

This section provides an overview of the birthmark sys-
tem. The system comprises two modules. The first module
generates dump files of the run-time heap. It is done by the
modified Google Chromium browser. The second module
compares 2 dump files and calculates their similarity.

A. Tree Representation of the Heap

The heap dumps generated by the modified Google
Chromium browser are in the form of object reference trees.
It is similar to the object reference graph in which the
nodes represent the objects while the edges represent the
references between them. The only difference is that objects
are duplicated to remove cycles in the graph. Although this
will increase the size of the data structure, a tree structure
allows us to control the number of objects to be included for
comparison as we can easily do so by limiting the depth of
the tree to be explored. More importantly, individual objects
can be accessed quickly through the virtual node which we
will explain in a second.

B. Tree Merging

During execution, the Chromium browser keeps dumping
out the heap at 5-second intervals until it gets 20 dumps.
Before we can compare the heap dumps captured from the
execution of two programs, the 20 dumps of each of the two
programs must be merged into one single data structure.

Figure 1 illustrates the merging of two dumps that are
captured during the execution of a JavaScript program. The
two trees at the left are from two consecutive dumps. They
are merged and the tree at the right is formed. Let the node
with ID 12 be node A and the node with ID 10 be node
B. Comparing the two trees, it is not difficult to see that
node A is missing in the right tree. That means it has been
removed after the first dump is captured. That is possible in
real situation as objects could be removed by the garbage
collector. Another change is that a new node, node B, has
been created and added under the node with ID 14. That
represents an object creation.

Figure 1. An example of merging two trees

After the merging, both node A and node B are retained
in the new tree. Therefore, the new tree contains all the
information captured in the two trees. Retaining all of the
information is the main goal of this algorithm as every
node and every edge is representing the characteristic of
the program.

C. Object pruning

We ignore objects that apparently do not represent the
behavior characteristic of a program.

1) Standard Objects: There are a lot of standard objects
residing in the heap along with the custom objects in the
JavaScript programs. Examples of such are HTMLDocu-
ment, JSON, DOMWindow, to name a few. Since these
standard objects do not represent the characteristic of a
program, we remove them from the object reference tree.

2) Auxiliary Objects: In JavaScript, even a function is an
object in the heap. Consequently, there are a lot of ”secretly
created” objects in the heap by the JavaScript engine. We
ignore these objects as they do not represent the behavior of
the program. Moreover, they can be misleading because their
structure are very similar and independent of the behavior
of the program. Considerable amount of such objects will
make two unrelated programs look similar.

D. Node Comparison

After getting the two merged trees from two heap dump
files, we are ready to compare them. Before going into
the comparison process, we first discuss about the way we
compare two nodes. Since the name of the node can be
changed by code obfuscation, we focus on the structure of a
node. Essentially, the structure of a node can be represented
by the number of edges from that node as well as the types
of those edges.

Let EA , EB be the set of edges coming out from node
A and node B respectively denoted by their types. The
similarity NSim(A,B) of the two nodes is calculated as
follows:

427430409

NSim(A,B) =
|EA ∩ EB |
|EA|

A software plagiarizer can deliberately create useless
references between objects. Therefore, we do not take into
account the unmatched edges in node B, which is from the
suspected program, when calculating the similarity between
two nodes.

E. Object Reference Tree Comparison

After applying the above two pruning techniques, objects
are compared in the following way. For each object Obji1
in the plaintiff program p, an object Obji2 of the same type
with size difference less than a percentage m in terms of no.
of node in the subtree is chosen from the pool of objects
of the suspected program q such that OSim(Obji1, Obji2)
is the highest among all unpaired objects in q. This process
is repeated until all Obji1 is paired up with an object in
the suspected program or all objects in the suspected pro-
gram has been exhausted. The similarity of two programs,
Sim(p, q) is given by:

Sim(p, q) =

∑
OSim(Obji1, Obji2)× Size of Obji1

Total Heap Size of p

The algorithm OSim() for two objects recursively cal-
culates the similarity between the nodes in their object
reference trees. It first compares the root nodes based on
their structure as mentioned before. It then groups the
children of the root nodes based on their node types. Within
each pair of groups of nodes having the same type, the tree
comparison algorithm is called recursively to find out the
similarity between pairs of subtrees. The subtrees are then
paired up such that similar subtrees are in one pair. The final
similarity score is calculated based on the similarity of the
root node as well as the similarity of their subtrees weighted
by their size.

Since, in practice, the object reference graph maybe of
many levels, we limit the depth of the tree to d and stop
exploring the tree once that level is reached. In the system
prototype, we set d to 3 and m to 50%.

V. IMPLEMENTATION

We implemented a prototype of the run-time heap based
birthmark system. The entire system consists of about 500
lines of C++ code. We leveraged the open source Chromium
browser from Google of version 7.0.520.0 to build the
birthmark extraction module [14]. The Google V8 JavaScript
engine is the JavaScript engine embedded in the Chromium
browser [15]. For the purpose of our research, we modified
the V8 JavaScript engine such that it dumps out the heap
whenever it comes across a dumpHeap() function call when
executing a JavaScript program. To achieve this, we lever-
aged a feature called function templates of the V8 JavaScript

engine. The dump heap function is an API function provided
by the V8 JavaScript engine. It dumps the run-time heap
and returns a tree structure that contains the objects in the
heap. In order to trigger the dumpHeap() function during
the execution of a JavaScript program, we instrument the
candidate JavaScript programs by adding a code snippet at
the beginning of them to call the dumpHeap() function on
every 5 seconds for 20 times.

VI. EVALUATION

To evaluate our implementation of the birthmark extrac-
tion system, four groups of JavaScript programs were chosen
for testing purpose. The first group consisted of 4 text
editors. The second group consisted of 4 graphic libraries.
The third group consisted of 5 games/game engines. The
fourth group consisted of 7 programs which used the jQuery
library [16].

We installed these programs on our testing server and ex-
tracted birthmarks from them using our modified Chromium
browser. We then compared the birthmarks using our birth-
mark comparison program. The birthmark extraction and
comparison were performed on a computer with Intel
Core2Duo 2.66Ghz, 3GB Ram, running Ubuntu 10.10.

During the experiment, we launched the browser with
a command line argument to specify the address of the
testing program. This avoided loading of any default page
which might lead to loading of extra objects in the heap.
After launching the browser with the target page, we
randomly played around with the software and triggered
some functions of them. The modified Chromium browser
dumped out the heap while we were playing around with the
software. A message showed up after twenty heap dumps
were captured. We then closed the browser and obtained
a text file containing the twenty heap dumps captured. We
repeated the above for each of the testing program.

A. Effectiveness

This part of the evaluation tested whether the system could
effectively detect the similarity of two programs. Most im-
portantly, a good birthmark system should not produce any
false positive. The 3 groups of programs were independently
developed similar purpose programs and served the objective
of our evaluation well.

Among the four text editors, only NicEdit and jWYSI-
WYG had custom objects. There were some pairs of pro-
grams that could not be compared using our system because
there was no custom object in either of them. This shows
that our system is not applicable to all programs. For the
graphic libraries and games game engines, since they were
more large scale, all of them had custom objects.

Throughout the evaluation, the similarity between the
same programs was always one (with two exceptions which
are 0.985 and 0.967). The similarity between two distinct
programs was always zero. This shows that our birthmark

428431410

extraction and comparison method can determine similarity
between two programs accurately. More importantly, there
was no false positive meaning that it did not give high
similarity score for two programs which were not copies
of each other.

B. Robustness

Next, we tested the robustness of our system. That is,
the ability for it to detect similarity between a program
before and after obfuscation. Attackers of birthmarks usually
exploit obfuscation to alter the birthmark of the infringing
program copy. Therefore, robustness against such attack is
of crucial significance.

We obfuscated 8 of our testing programs with the Jasob
3 obfuscator [17]. Jasob 3 is a state-of-the-art obfuscation
tool for JavaScript used by hundreds of companies and
individuals to protect and optimize their web content. We
extracted birthmarks for each of the obfuscated program. For
each of the program, we compared the birthmark extracted
from the original copy and the birthmark extracted from the
obfuscated copy. All of the pairs gave similarity higher than
or equal to 0.955 and 5 of them gave similarity 1. This shows
that our methodology is robust against obfuscation.

C. Ability to Detect Partial Code Theft

Finally, we tested whether our system could detect partial
code theft. To simulate partial code theft, we leveraged
programs using the same JavaScript library. We downloaded
8 programs which all used the jQuery library [16]. We
updated the 8 programs to use the latest version of jQuery
to make the experiment more effective.

We considered a sample jQuery object and tested its
presence in the 8 jQuery programs. The presence of the
jQuery library object was detected in all of the 8 programs.
Furthermore, all the matched jQuery object in the 8 program
demonstrated high similarity to the sample jQuery object.

This part of experiment showed that our system could
identify library theft accurately.

VII. DISCUSSION

A. Counterattacks

There are two ways to alter the structure of the object
trees. The first way is to inject dummy objects to dilute
the birthmark. The second way is to restructure the existing
objects.

1) Objects Injection Attack: One possible attack to our
scheme is to create a lot of dummy objects to dilute the
birthmark. For each dummy object, there are two possible
attack scenarios. The first scenario is that it is placed right
below the virtual node (the node connecting all the objects).
We assume this dummy object is not similar to any of the
original object or at least not to the extent that it is chosen
to be paired up with those objects in p. Otherwise, it will
only contribute to the similarity score and will actually aid

the detection. In the normal case, this dummy object is not
similar to the original objects and is not paired up. As shown
by the definition of Sim(p, q) in section IV subsection E,
the unpaired object in the suspected program q is not taken
into account. Therefore, they have no effect on the similarity
calculation. The second attack scenario is that the dummy
object appears in the internal node of an object reference
tree. Similar to the argument for the first attack scenario, the
dummy object will be unpaired and will actually be ignored.

2) Object restructuring: Another possible attack to our
scheme is to restructure an object. There are four possible
attack scenarios. The first attack scenario is to remove some
references from an object. This will most probably badly
affect the behavior of the program and is not practical. The
second attack scenario is to add some useless references to
other objects. As shown in our definition of node similarity
in section IV subsection D, the extra references to other
object for a node in the suspected program will not affect the
calculation of the node similarity. However, another effect is
that the object will become more bulky and may be not be
paired with the objects in the plaintiff program even though
it is originally an object in the plaintiff program. This is
controlled by the parameter m. The parameter m controls
the balance between the false positive and false negative
rate. On one hand, a small m will lower the false positive
rate as it avoids an object in the plaintiff program being
wrongly considered part of a huge unrelated object in the
suspected program. On the other hand, a larger m will allow
us to survive under this attack scenario and achieve a lower
false negative rate. This shows that our system bares the
same limitation of intrusion detection systems where there
exists a fundamental trade-off between false positives and
false negatives.

The third and fourth attack scenario are class splitting
and class coalescing as suggested in [18] by M. Sosonkin
et al. For class splitting, Sosonkin stated in the paper that
they believed in practice, splitting a class into two classes
not related by inheritance or aggregation is possible only
in situations where the original design is flawed and there
should have been several different classes. In other words,
all references between the original class and the other classes
are now going through the inheriting class. Therefore, the
change on the heap structure is not influential and the
original birthmark can still be found. For class coalescing,
the structure is drastically changed. The original birthmark
can no longer be found in the new heap structure. However,
evaluation done by Sosonkin et al. showed that, unlike class
splitting, class coalescing introduces tremendous amount of
overhead proportional to the number of classes coalesced.
Therefore, intensive class coalescing is not practical. For
small amount of class coalescing, our birthmark system is
still robust as it considers the tree as a whole and dose not
rely on special nodes that cannot be altered.

429432411

B. Comparison with the Current Approach

Current dynamic birthmarks make use of the system call
or API call trace to extract characteristics of a program at
run-time. However, some programs may not have enough
system calls or API calls to make the call trace large
enough to form a birthmark that can uniquely identify the
program. Similarly, there are some programs that do not
define enough custom objects so that our approach cannot
extract a birthmark that can uniquely identify them. Rather
than stating which approach is better, the two approaches
should essentially be complements to each other such that
more programs can benefit from software birthmarks to
protect their copyright.

C. Future Work

An approach which makes use of both the system or
API call traces and the heap dumps will be even more
powerful. Conjunction of the two approaches can cover
programs which use very few system or API calls but
create considerable amount of custom objects or vice versa.
Besides, both time and space complexity of the merging and
birthmarks comparison algorithm can be further improved.

VIII. CONCLUSION

We designed the first dynamic birthmark extraction and
comparison methodology which exploits the run-time heap.
It is also the first birthmark methodology for JavaScript.
We implemented our design using the Google Chromium
browser and developed a birthmark system prototype. Eval-
uation of our system shows that it is robust against code
obfuscation attack. During the evaluation, it gave no false
positive or false positive. It is also capable to detect partial
code theft of large-scale programs.

ACKNOWLEDGMENT

The work described in this paper was partially sup-
ported by the General Research Fund from the Research
Grants Council of the Hong Kong Special Administrative
Region, China (Project No. RGC GRF HKU 713009E), the
NSFC/RGC Joint Research Scheme (Project No. N HKU
722/09), and HKU Seed Fundings for Basic Research
200811159155 and 200911159149.

REFERENCES

[1] E. Data, “Javascript dominates emea development,” http:
//www.evansdata.com/press/viewRelease.php?pressID=127,
January 2008.

[2] C. Collberg and C. Thomborson, “Software watermarking:
Models and dynamic embeddings,” in Proceedings of Sym-
posium on Principles of Programming Languages, POPL’99,
1999, pp. 311–324.

[3] K.-i. M. K. I. Akito Monden, Hajimu Iida and K. Torii, “Wa-
termarking java programs,” in Proceedings of International
Symposium on Future Software Technology, 1999.

[4] C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kece-
cioglu, C. Linn, and M. Stepp, “Dynamic path-based software
watermarking,” in Proceedings of the ACM SIGPLAN 2004
conference on Programming language design and implemen-
tation, ser. PLDI ’04. New York, NY, USA: ACM, 2004,
pp. 107–118.

[5] C. Collberg, C. Thomborson, and D. Low, “A taxon-
omy of obfuscating transformations,” Tech. Rep. 148,
Jul. 1997, http://www.cs.auckland.ac.nz/∼collberg/Research/
Publications/CollbergThomborsonLow97a/index.html.

[6] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based
software theft detection,” in Proceedings of the 16th ACM
conference on Computer and communications security, ser.
CCS ’09. New York, NY, USA: ACM, 2009, pp. 280–290.

[7] G. Myles and C. Collberg, “Detecting software theft via
whole program path birthmarks,” in Information Security 7th
International Conference, ISC 2004, Palo Alto, CA, USA,
September 27-29, 2004. Proceedings, 2004, pp. 404–415.

[8] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic
birthmark for java,” in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, ser. ASE ’07. New York, NY, USA: ACM,
2007, pp. 274–283.

[9] M. N. A. M. Haruaki Tamada, K. Okamoto and K. ichi
Matsumoto, “Design and evaluation of dynamic software
birthmarks based on api calls,” Nara Institute of Science and
Technology, Tech. Rep., 2007.

[10] H. Tamada, M. Nakamura, and A. Monden, “Design and
evaluation of birthmarks for detecting theft of java programs,”
in In Proc. IASTED International Conference on Software
Engineering, 2004, pp. 569–575.

[11] M. N. Haruaki Tamada, K. Okamoto and A. Monden, “Dy-
namic software birthmarks to detect the theft of windows
applications,” in In Proc. International Symposium on Future
Software Technology, 2004.

[12] G. Myles and C. Collberg, “K-gram based software birth-
marks,” in Proceedings of the 2005 ACM symposium on
Applied computing, ser. SAC ’05. New York, NY, USA:
ACM, 2005, pp. 314–318.

[13] M. N. A. M. H. Tamada, K. Okamoto and K. ichi Matsumoto,
“Detecting the theft of programs using birthmarks,” Graduate
School of Information Science, Nara Institute of Science and
Technology, Tech. Rep., 2003.

[14] “Google chromium project,” http://code.google.com/
chromium/.

[15] “Google v8 javascript engine,” http://code.google.com/p/v8/.

[16] “jquery,” http://jquery.com/.

[17] “Jasob 3,” http://www.jasob.com/.

[18] M. Sosonkin, G. Naumovich, and N. Memon, “Obfuscation of
design intent in object-oriented applications,” in Proceedings
of the 3rd ACM workshop on Digital rights management, ser.
DRM ’03. New York, NY, USA: ACM, 2003, pp. 142–153.

430433412

