
Title A privilege escalation vulnerability checking system for android
applications

Author(s) Chan, PPF; Hui, CK; Yiu, SM

Citation
The 13th IEEE International Conference on Communication
Technology (ICCT 2011), Jinan, China, 25-28 September 2011. In
Proceedings of 13th ICCT, 2011, p. 681-686

Issued Date 2011

URL http://hdl.handle.net/10722/139985

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37962566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Privilege Escalation Vulnerability Checking
System for Android Applications

Patrick P.F. Chan
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

Email: pfchan@cs.hku.hk

Lucas C.K. Hui
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong
Email: hui@cs.hku.hk

S.M. Yiu
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

Email: smyiu@cs.hku.hk

Abstract—Android is a free, open source mobile platform
based on the Linux kernel. The openness of the application
platform attracts developers, both benign and malicious. Android
depends on privilege separation to isolate applications from
each other and from the system. However, a recent research
reported that a genuine application exploited at runtime or
a malicious application can escalate granted permissions. The
attack depends on a carelessly designed application which fails to
protect the permissions granted to it. In this research, we propose
a vulnerability checking system to check if an application can
be potentially leveraged by an attacker to launch such privilege
escalation attack. We downloaded 1038 applications from the
wild and found 217 potentially vulnerable applications that need
further inspection.

I. INTRODUCTION

A recent research from Nielsen shows that Android now
owns 29% market share of smartphone users in the US
and is pulling ahead of RIM Blackberry (27%) and Apple
iOS (27%) [1]. Moreover, the Android Market is the fastest
growing mobile application platform. According to a recent
report released by mobile security firm Lookout, the Android
Market is growing at three times the rate of Apple’s App
store [2]. However, unlike the Apple’s App store, there is
no screening process of the apps being published on the
Android Market. Occasionally, Google needs to take down
some malicious apps from the Android Market after they were
found to contain malware.

Android is basically a privilege-separated operating system
[3]. Every application runs with a distinct system identity in
its own Davik virtual machine. This mechanism isolates appli-
cations from each other and from the system. By default, an
application has no right to perform any operations that would
adversely impact other applications, the operating system, or
the user. To acquire extra capabilities, an application needs to
statically declare the permissions it requires, and the Android
system prompts the user for consent at the time the application
is installed.

However, a recent research points out that an application
with less permissions (a non-privileged caller) is not restricted
to access components of a more privileged application (a
privileged callee) [4]. Such attack is called privilege escalation
attack. On success, it allows a malicious application to indi-
rectly acquire more permissions through a benign application

which fails to guard the permissions granted to it. To pre-
vent this attack, applications must enforce additional checks
on permissions to ensure that any applications accessing its
components must be at least of the same level of privilege as
it is. Since most of the application developers are not security
experts, delegating the task to perform these checks to them
is an error prone approach.

In this research, we propose a vulnerability checking system
to detect benign applications which fail to enforce the afore-
mentioned additional checks on permissions. We make use of
the AndroidManifest.xml file which defines the permissions an
application uses and the permissions other applications need
in order to access the components of that application. Every
Android application must include the AndroidManifest.xml in
its Android package (APK) file as required by the Android
system.

We implemented a prototype of the proposed system and
scanned 1038 applications we downloaded from the wild.
Among them, we detected 217 applications which do not
enforce appropriate checking on permissions. All of them
contain one or more components which are accessible by
other applications and are security sensitive. For the remaining
821 applications, 497 of them are properly protected and 324
of them do not request security sensitive permissions. We
conclude that a large portion of the applications are potentially
vulnerable. Generally speaking, developers are not aware of
the potential privilege escalation attack their applications are
open to.

The rest of the paper is organized as follows. In Section 2,
we give a brief overview of the cornerstones of the Android
security. In Section 3, we present the privilege escalation attack
on Android. The solution we propose is covered in Section
4 and the evaluation results are presented is section 5. We
discuss limitations and future work in Section 6. Finally, we
summarize related work in Section 7 and draw our conclusion
in Section 8.

II. CORNERSTONES OF ANDROID SECURITY

Android is a free, open source mobile platform based on
the Linux kernel. Android applications are written in Java and
composed of four types of application components: activities, ___________________________________

978-1-61284-307-0/11/$26.00 ©2011 IEEE

Fig. 1: Privilege Escalation Attack

services, content providers, and broadcast receivers. Compo-
nents can communicate to each other and to components of
other applications through an inter component communication
(ICC) mechanism through intent messaging. An intent is a
passive data structure holding an abstract description of an op-
eration to be performed. To build performance-critical portions
of the application in native code, developers can make use of
the Android NDK companion tool which provides headers and
libraries when programming in C or C++. However, inclusion
of C or C++ libraries kicks away the security guarantees
provided by the Java programming language. Several different
vulnerabilities in native code of the JDK (Java Development
Kit) have been identified [5]. We will discuss about the four
cornerstones of Android security in the rest of this section.

A. Sandboxing

Android is a privilege-separated operating system. Each
application runs within its own distinct system identity and its
own Dalvik virtual machine (DVM). System files are owned by
either the “system” or “root” user. As a result, an application
can only access files it owns or files of other applications
that are marked as readable / writable /executable for others
explicitly. This provides a sandbox for each application which
isolates it from other applications and from the system.

B. Application Signing

Each application must be signed with a certificate whose
private key is held by its developer. The certificate is used
solely for distinguishing application authors. It does not need
to be signed by a certificate authority. Typically, it is a self-
signed certificate. It is used by the Android system to decide
whether to grant or deny application access to signature-level
permissions and whether to grant or deny an application’s
request to be given the same Linux identity as another ap-
plication. The certificate is included in its APK file such that
the signature made by the developer can be validated at install
time.

C. Permissions

Additional finer-grained security features are provided
through a “permission” mechanism that enforces restrictions
on the specific operations that a particular process can perform,
and per-URI permissions for granting ad-hoc access to specific
pieces of data. By default, an application has no permission

to perform any operations that would adversely impact other
applications, the operating system, or the user. To share
resources and data with other applications, an application must
declare the permissions it needs for additional capabilities not
provided by the basic sandbox. The permissions an application
requires is declared in the AndroidManifest.xml file which is
compulsory for all applications. At install time, the Android
system prompts the user for consent. It relies on the user to
judge whether he or she permits the application to use all the
permissions it requires or does not install the application.

D. Accessibility of Components

Application components can be specified as public or pri-
vate. A public component can be accessed by other applica-
tions. However, it can still perform permission checking to re-
strict access to only applications that own certain permissions.
On the other hand, a private component is only accessible by
components within the same application.

III. PRIVILEGE ESCALATION ATTACK ON ANDROID

In this section, we give the details of the privilege escalation
attack on Android. The attack was first proposed by Lucas
Davi et al. in [4]. They stated the problem like following:

An application with less permissions (a non-privileged
caller) is not restricted to access components of a more
privileged application (a privileged callee).

Figure 1 illustrates an example of privilege escalation attack
on Android. In the figure, there are three applications running
in their own DVMs. Application 1 owns no permissions.
Since components in application 2 is not guarded by any
permissions, they are accessible by components of any other
applications. As a result, both components of application 1
can access components 1 in application 2. Application 2 own
permission P1, Therefore, both components of application 2
can access component 1 of application 3 which is protected
by permission P1.

We can see that component 1 of application 1 is accessing
component 1 of application 2. However, since it does not have
permission P1, it is not allowed to access component 1 of ap-
plication 3. On the other hand, application 2 owns permission
P1. Hence, component 1 of application 2 is allowed to access

component 1 of application 3. Therefore, although component
1 of application 1 is not allowed to access component 1 of
application 3, it can access it via component 1 of application
2. Therefore, the privilege of application 2 is escalated to
application 1 in this case.

In order to prevent this attack, component 1 of application
2 should enforce that components accessing it must pos-
sess permission P2. This can be done at code level or by
guarding component 1 by permission P2. However, this relies
on application developers to perform the enforcement at the
right places. This is an error prone approach as application
developers are in general not security experts.

IV. PROPOSED CHECKING SYSTEM

We propose a checking system which takes an Android
application as input and check if the application has proper
security checking such that applications with less permissions
are restricted to access its component(s). We only perform
security checking on activity and service components as they
are the most commonly used components of an application
that can be leveraged to perform privilege escalation attack.
In the rest of this section, we give the design details of
our proposed checking system. We first give an overview of
the AndroidManifest.xml file. After that, we discuss how the
checking process is done based on that file.

A. AndroidManifest.xml

All Android applications are required to include a manifest
file called AndroidManifest.xml in their APK. The manifest
presents essential information about the application to the
Android system, information the system must have before it
can run any of the application’s code. Listing 1 shows an
abstract of the general structure of the manifest file. We only
focus on security related aspects of the manifest. The uses-
permission tag requests a permission that the application must
be granted in order for it to operate correctly. Permissions
are granted by the user to the application at install time.
The permission tag declares a security permission that can be
used to limit access to specific components or features. The
android:permission attribute of the application tag declares
the permission that components of other applications must
have in order to interact with the application. Moreover,
each component can require extra permission for accessing
it. They are declared in the android:permission attribute of
the tag that declares the component. A component can also be
made private by setting the android:exported attribute to false.
Such a component is not accessible by components of other
applications. If the android:exported attribute is absent, the
default value of it depends on whether the component contains
intent filters (except for Content Providers, which have the
default value being true). If there is no intent filters, the default
value is false. Otherwise, the default value is true. An intent
filter specifies the types of intents that an activity, service, or
broadcast receiver can respond to. Since, the filtering process
only focuses on activity and service components, we do not
give detailed description of the provider tag.

Listing 1: General structure of AndroidManifest.xml
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f −8” ?>
<m a n i f e s t>

<uses−p e r m i s s i o n />
<p e r m i s s i o n />
<a p p l i c a t i o n a n d r o i d : p e r m i s s i o n =” . . . ”>

< a c t i v i t y a n d r o i d : p e r m i s s i o n =” . . . ”
a n d r o i d : e x p o r t e d =” . . . ”>

< i n t e n t− f i l t e r>
. . .

< / i n t e n t− f i l t e r>
< / a c t i v i t y>
<s e r v i c e a n d r o i d : p e r m i s s i o n =” . . . ”

a n d r o i d : e x p o r t e d =” . . . ”>
< i n t e n t− f i l t e r>

. . .
< / i n t e n t− f i l t e r>

< / s e r v i c e>
< r e c e i v e r a n d r o i d : p e r m i s s i o n =” . . . ”

a n d r o i d : e x p o r t e d =” . . . ”>
< i n t e n t− f i l t e r>

. . .
< / i n t e n t− f i l t e r>

< / r e c e i v e r>
<p r o v i d e r a n d r o i d : p e r m i s s i o n =” . . . ”

a n d r o i d : r e a d P e r m i s s i o n =” . . . ”
a n d r o i d : w r i t e P e r m i s s i o n =” . . . ”
a n d r o i d : e x p o r t e d =” . . . ”>

<g r a n t−u r i−p e r m i s s i o n />
< / p r o v i d e r>

< / a p p l i c a t i o n>
< / m a n i f e s t>

B. The Checking Policy

The checking system parses the AndroidManifest.xml to
find out if:

1) The application uses any security sensitive permissions
and;

2) There exists an activity or service component that does
not require any permission and is publicly visible and
security sensitive

If both of the them are true, the system rises an alarm that
the application is potentially vulnerable.

We define security sensitive permissions as all permissions
except those on the whitelist shown in table I. They are
permissions that are not harmful to the security and privacy
of the system. The list is subject to change to fine tune the
detection of the system. The longer the list is, the more tolerant
is the system.

We focus on activity and service components as they are
the components that can be leveraged to launch a privilege
escalation attack among the four types of components. The
activity component provides a user interface and is what
the user will see on the screen. On the other hand, the
service component performs long-running operation in the
background and does not provide a user interface. Both kinds
of components can be protected by permissions.

As mentioned in the first part of this section, components
with the android:exported attribute being set to false or com-
ponents with no android:exported attribute and intent filters
will not be accessible by components in other applications.
Therefore, we do not need to care about such components and
only focus on components that are publicly accessible.

We treat all publicly accessible and unprotected service
components as security sensitive as we do not have any idea
about what kind of operations they will perform from the man-
ifest file. However, for activity components, there are standard
actions that Android defines for launching activities. We can
therefore infer the kinds of operations an activity component
performs upon receiving an intent message and only focus on
activity components that perform security sensitive operations
to make the screening process more precise. We define security
sensitive activity actions as all actions except those on a
whitelist of actions that are not security sensitive. We do not
include the whitelist here due to space limitation.

C. The Checking Process

The system starts with scanning the uses-permission tags to
see if there is any permission required by the application that is
not on the whitelist. If there is not any, the system terminates.
Next, the system parses the android:permission attribute of the
application tag to find out if the application is guarded by any
permissions. If yes, the system concludes that the application
is safe. If no, Otherwise, it goes on to perform the following
checking for each activity or service component.

1) Activity components: Figure 2 shows the decision tree
for the checking of activity components. First, the system
checks if there is any permissions declared in the an-
droid:permission attribute of the tag that declares that com-
ponent. If yes, the component is safe as it is protected by
permission(s). If no, the system checks if the android:exported
attribute is presence. If yes and the value of it is true, the
system checks the intent filters of that component. If all the
intent filters are security insensitive, the component passes the
checking. Otherwise, the component is potentially vulnerable
for privilege escalation and the system reports the name of
the component for further inspection. If the android:exported
attribute is absent and the visibility of the component hinges
on the presence of intent filters. If there is no intent filters, the
component is not visible to other applications by default, and
hence, it is safe. Otherwise, the component is visible to other
applications. In that case, the system also checks the intent
filters of that component. If all the intent filters are security
insensitive, the component passes the checking. Otherwise, the
component is potentially vulnerable for privilege escalation
and the system reports the name of the component for further
inspection.

2) Service components: Figure 3 shows the decision tree for
the checking of activity components. The checking of service
components is similar to that of activity components except
that it does not consider whether the intent filters are security
sensitive or not since there is no standard intent action defined
by Android for service components.

Fig. 2: The discision tree of the checking for activity
components.

Fig. 3: The discision tree of the checking for service
components.

V. EVALUATION

We implemented a prototype of the checking system to
evaluate our approach. The prototype consists of 200 lines
of Java code. We make use of AXMLPrinter2.jar to parse the
AndroidManifest.xml in the candidate APK file which is in
binary XML format [6]. The entire checking system runs under
Ubuntu 10.10.

We downloaded 1038 Android applications from the wild to
evaluate our system. They are of different categories including
SMS applications, web browsers, office applications, games,
navigation applications, etc. Some of them are the most
popular applications with the highest number of downloads.
Our system reports that 821 of the applications are free from
the privilege escalation attack. On the other hand, there are
217 applications that did not pass our check.

Although the above result is satisfactory, we still want to
improve it. We picked 50 of them to further investigate the

TABLE I: Security non-sensitive permissions

Permission Description

VIBRATE Allows access to the vibrator

INTERNET Allows applications to open network sockets

READ HISTORY BOOKMARKS Allows an application to read the user’s browsing history and bookmarks

WRITE HISTORY BOOKMARKS Allows an application to write the user’s browsing history and bookmarks

WRITE EXTERNAL STORAGE Allows an application to write to external storage

RESTART PACKAGES Deprecated permission

WAKE LOCK Allows keeping processor from sleeping or screen from dimming

SET WALLPAPER Allows applications to set the wallpaper

SET WALLPAPER HINTS Allows applications to set the wallpaper hints

BIND WALLPAPER Allow an application to bind to WallpaperService

CAMERA Required to be able to access the camera device

CHECK LICENSE To check and make sure the user bought the app

RECEIVE BOOT COMPLETED Allows an application to receive intent after the system finishes booting

DISABLE KEYGUARD Allows applications to disable the keyguard

reason why they did not pass the test. We found that 30 of
them have intent filter(s) with custom intent action and our
system could not anticipate what actions they would perform
upon receiving such intents. 3 of them has an exported activity
component with no intent filter. In that case, it can be started
by any intent and the actions it will perform is unknown.
10 of them contain unprotected components whose intent
filter(s) is for security sensitive intent action. 21 of them has
publicly accessible service component(s) that is not protected
by permission. In future work, we hope we can further narrow
down the set of applications that do not pass the test by half.
Our preliminary ideas will be covered in the next section.

VI. DISCUSSION

In this section, we discuss the limitations of our approach.
After that, we propose future work to improve it. Finally, we
provide security guidelines for application developers that can
help them protect their applications against privilege escalation
attack.

A. Limitations

Since our checking system makes use of the manifest file
only, there may be some missing information at the code level
that can facilitate our checking. For example, an activity or
service component may not perform any security sensitive
operations even though it has the required privilege to do
so. Moreover, it may have permission checkings at the code
level before performing sensitive operations. Furthermore, an
activity component may perform actions that are not defined
in any of its intent filters upon receiving an explicit intent. We
did not notice any applications with this behavior though. We
leave code level checking for future work.

B. Future Work

The control flow grap of the application can be analyzed to
check if there is a permission checking (by invoking the check-
Permission(Permission) API call) before any security sensitive
operations. A control flow graph is a graph representation

of all paths that might be traversed during the execution of
a program [7]. A node represents a code block which will
be executed from the first line to the last line straightly. An
edge represents a jump which can be an if-statement. For
components which performs permission checkings before all
security sensitive operations or for components which do not
perform any security sensitive operations, we regard them as
safe components.

C. Security Guidelines

To protect an application against privilege escalation attack,
developers should avoid making the components of the appli-
cation accessible by components in other applications. This
can be done by either by not declaring any intent filters or
by setting the android:exported attribute of the component to
false. In case the component has to be made public, it should
be protected by a permission such that other applications have
to be privileged in order to access it. Besides, developers
should be aware of the explicit intent messages sent to their
applications. They should not rely on intent filters to protect a
component since other applications can always send an explicit
intent message to their components. Therefore, a publicly
accessible component should not perform security sensitive
operations upon receiving an explicit intent message.

VII. RELATED WORK

The privilege escalation attack on Android was first pro-
posed by Davi et al. [4] in which they demonstrated an
example of the attack. They showed that a genuine application
exploited at runtime or a malicious application can escalate
granted permissions. However, they did not suggest any de-
fense for the attack in the paper.

Before that, there were a few works on security extensions
to Android security architecture. Saint [8] is a modification
of Android to enable application providers to express the ap-
plication security polices that regulate the interactions among
them. It allows an application to control which applications
can be granted the permissions it declares. Moreover, when

an application needs to access an component of another appli-
cation, both parties can assert controls of the communication
between them through defining run-time interaction policies.
In particular, the caller application selects which application’s
interfaces it uses and the callee application controls how its
interface is used by other applications. Saint policy provides
certain protection against privilege escalation attacks as the
application can control which applications can access it. How-
ever, Saint assumes that access to components is implicitly
allowed if no Saint policy exists. This put the burden of
enforcing security to application developers which is error
prone as most of them are not security experts.

Kirin [9] is an application certification service to mitigate
malware at install time. It uses existing security requirements
engineering techniques as a reference to identify dangerous
application configurations in Android. The rules are a set of
combinations of permissions that an application must not be
granted at the same time. For example, an application being
granted permissions to record audio and access location infor-
mation may be an voice and location eavesdropping malware.
Similar to our approach, their certification process relies on
the manifest file in the APK of the application. However, their
approach cannot identify applications vulnerable to privilege
escalation attack. Instead, their work is orthogonal to our work
and is targeting at a different kind of attack vector.

There are other works on security of the Andriod sys-
tem. Schmidt et al. [10] walked through the smartphone
malware evolution. They provided possible techniques for
creating Android malware(s). Their approach involves usage
of undocumented Android functions enabling them to execute
native Linux application even on retail Android devices.
They also showed that it is possible to bypass the Android
permission system by using native Linux applications. Enck
et al. [11] gives a description of the security model of the
Android system. Jakobsson et al. [12] proposed a software-
based attestation approach to detect any malware that executes
or is activated by interrupts. Based on memory-printing of
client devices, it makes it impossible for malware to hide in
RAM without being detected. Nauman et. al. [13] improved
the installation process of Android applications to allow user
to selectively grant permissions to applications and impose
constraints on the usage of resources. Shabtai et al. [14] makes
use of Security-Enhanced Linux (SELinux) to help reduce
potential damage on the Android system from a successful
attack.

VIII. CONCLUSION

In this research, we addressed the privilege escalation attack
with an application checking system. Through checking the
security and permission configurations of the applications,
we identify privileged components that are poorly protected
by permissions. Although these components are genuine by
themselves, their permissions can be leveraged by other appli-
cations which may be malicious. Evaluation of our system with
1038 applications downloaded from the wild showed that our
system successfully identified 217 applications (21%) that are

potentially vulnerable. This essentially forms the first line of
defense against the privilege escalation attack by eliminating
its attack vector. Future directions are identified to further
improve the precision of the system.

ACKNOWLEDGMENT

The work described in this paper was partially supported by
the General Research Fund from the Research Grants Council
of the Hong Kong Special Administrative Region, China
(Project No. RGC GRF HKU 713009E), the NSFC/RGC
Joint Research Scheme (Project No. N HKU 722/09), and
HKU Seed Fundings for Basic Research 200811159155 and
200911159149.

REFERENCES

[1] Nielsen, “Who is winning the u.s. smartphone bat-
tle?” http://blog.nielsen.com/nielsenwire/online mobile/
who-is-winning-the-u-s-smartphone-battle/, March 2011.

[2] Lookout, “App genome report,” https://www.mylookout.com/
appgenome, February 2011.

[3] Android Open Source project, “Security and permissions,” http://
developer.android.com/guide/topics/security/security.html, April 2011.

[4] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in Proceedings of the 13th international
conference on Information security, ser. ISC’10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 346–360. [Online]. Available: http://portal.
acm.org/citation.cfm?id=1949317.1949356

[5] G. Tan and J. Croft, “An empirical security study of the native code in
the jdk,” in Proceedings of the 17th conference on Security symposium.
Berkeley, CA, USA: USENIX Association, 2008, pp. 365–377. [Online].
Available: http://portal.acm.org/citation.cfm?id=1496711.1496736

[6] D. Skiba, “Axmlprinter2,” http://code.google.com/p/android4me/, Octo-
ber 2008.

[7] B. A. Cota, D. G. Fritz, and R. G. Sargent, “Control flow graphs
as a representation language,” in Proceedings of the 26th conference
on Winter simulation, ser. WSC ’94. San Diego, CA, USA: Society
for Computer Simulation International, 1994, pp. 555–559. [Online].
Available: http://portal.acm.org/citation.cfm?id=193201.194302

[8] M. Ongtang, S. Mclaughlin, W. Enck, and P. Mcdaniel, “Semantically
rich application-centric security in android,” in In ACSAC 09: Annual
Computer Security Applications Conference, 2009.

[9] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” in Proceedings of the 16th ACM
conference on Computer and communications security, ser. CCS ’09.
New York, NY, USA: ACM, 2009, pp. 235–245. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653691

[10] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. Clausen, S. Camtepe,
S. Albayrak, and C. Yildizli, “Smartphone malware evolution revisited:
Android next target?” in Malicious and Unwanted Software (MAL-
WARE), 2009 4th International Conference on, oct. 2009, pp. 1 –7.

[11] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” Security Privacy, IEEE, vol. 7, no. 1, pp. 50 –57, jan.-feb. 2009.

[12] M. Jakobsson and K.-A. Johansson, “Retroactive detection of malware
with applications to mobile platforms,” in Proceedings of the 5th
USENIX conference on Hot topics in security, ser. HotSec’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–13. [Online].
Available: http://portal.acm.org/citation.cfm?id=1924931.1924941

[13] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android
permission model and enforcement with user-defined runtime
constraints,” in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’10. New
York, NY, USA: ACM, 2010, pp. 328–332. [Online]. Available:
http://doi.acm.org/10.1145/1755688.1755732

[14] A. Shabtai, Y. Fledel, and Y. Elovici, “Securing android-powered mobile
devices using selinux,” Security Privacy, IEEE, vol. 8, no. 3, pp. 36 –44,
may-june 2010.

