
Title Censored quantile regression with covariate measurement
errors

Author(s) Ma, Y; Yin, G

Citation Statistica Sinica, 2011, v. 21 n. 2, p. 949-971

Issued Date 2011

URL http://hdl.handle.net/10722/139721

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37962367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Statistica Sinica 21 (2011), 949-971

CENSORED QUANTILE REGRESSION WITH COVARIATE

MEASUREMENT ERRORS

Yanyuan Ma and Guosheng Yin

Texas A&M University and The University of Hong Kong

Abstract: We study censored quantile regression with covariates measured with er-

rors. We propose a composite quantile objective function based on inverse censoring-

probability weighting, and an averaging estimator to improve estimation efficiency.

Our procedure can eliminate the bias in the naive estimator that is obtained by

treating mismeasured covariates as error-free. Using a combination of martingale

and quantile regression techniques, we show that the proposed estimators for the

regression coefficients are consistent and asymptotically normal. We conducted

simulation studies to examine the finite-sample properties of the new method, and

demonstrated efficiency gain of the averaging estimator over the single quantile

regression estimator. For illustration, we applied our model to a lung cancer study.

Key words and phrases: Averaging estimation, bootstrap, errors-in-variables prob-

lem, regression quantiles, semiparametric method, survival data.

1. Introduction

Linear regression models have been extensively studied for randomly cen-
sored survival data. In particular, the accelerated failure time (AFT) model
is intuitively attractive and easily interpretable. It directly formulates a linear
model between the logarithm of the failure time and covariates X,

log T = βTX + ε, (1.1)

where the model error ε has a zero mean. Semiparametric estimation of model
(1.1) is typically based on least squares or rank methods; see Prentice (1978),
Buckley and James (1979), Ritov (1990), Tsiatis (1990), Wei, Ying, and Lin
(1990), Lai and Ying (1991), and Jin et al. (2003), among others. The estimat-
ing functions are discrete and potentially have multiple roots, and furthermore,
the variances are typically estimated using resampling methods due to their de-
pendence on the density function of ε.

When covariate X is subject to measurement errors, naively considering the
mismeasured covariate to be error-free would cause estimation bias. In classical
linear measurement error models, the attenuation effect of the likelihood-based
estimator is known due to measurement errors. We consider the measurement
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error in the form W = X+U, where W is the observed surrogate, X is the true
unobserved covariate, and U is the measurement error. A common practice is to
assume that both the model error ε and the measurement error U are normal,
and to specify either a ratio between the variances of ε, and U, or the variance for
one of the two errors. These specifications are needed for model identifiability
and carrying out estimation via mean regression techniques, such as the total
least-squares method. However, it is obvious that such an assumption is quite
restrictive and would lead to bias if normality does not hold. For example, in the
data set considered in Section 6, the normality assumption of the measurement
error is not empirically supported by a Kolmogorov-Smirnov test, hence a less
restrictive assumption on the error distribution is needed. See also Carroll et al.
(2006) on various measurement error models and their effects on inference.

In contrast to the mean-based linear models, quantile regression serves as a
robust alternative when the median or any other quantile of the model error ε is
assumed to be zero (Koenker and Bassett (1978)). In quantile regression, model
parameters are often estimated by solving quantile-based estimating equations
through linear programming or interior point methods (Koenker (2005)), and the
corresponding variances are typically estimated by resampling algorithms. For
the fixed censoring case that is related to the Tobit model in economics, see the
work of Powell (1984), Buchinsky and Hahn (1998), Fitzenberger (1997), and
Khan and Powell (2001), among others. Recently, there has also been a growing
interest in the application of quantile regression to randomly censored failure
time data (Ying, Jung, and Wei (1995); Lindgren (1997); Yang (1999); Koenker
and Geling (2001); Bang and Tsiatis (2002); Chernozhukov and Hong (2002);
Portnoy (2003); and Peng and Huang (2008), among others).

In practice, one may be interested in an overall covariate effect for a cer-
tain range of quantiles instead of each specific quantile. A composite quantile
regression model assumes that there exist common covariate effects in a range of
quantiles such that the quantile levels only differ in terms of the intercept. From a
more general regression perspective, composite quantile regression seeks to model
a set of parallel regression curves, and thus it can be viewed as a compromise
between a set of quantile regression curves with different intercepts and slopes
and a single summary regression curve. In the measurement error model that we
consider, composite quantile regression does not require extra assumptions, as
the independence between the distribution for the model error ε and covariates
already guarantees parallel regression curves. Intuitively, the composite quantile
regression should provide estimation efficiency gain over a single quantile regres-
sion, see also Zou and Yuan (2008). In light of these considerations, we derive
our estimator in the composite quantile regression framework, while noting that
if only one quantile is concerned, the proposed method degenerates to traditional
single quantile regression.
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Very limited research has been carried out with measurement error prob-
lems in the context of quantile regression, mainly due to its difficult nature. An
early attempt by Brown (1982) examined a median regression model and de-
scribed the difficulty of parameter estimation. He and Liang (2000) proposed
an innovative root-n consistent estimator in the context of linear and partially
linear models using a quantile regression approach. Recently, Wei and Carroll
(2009) studied a general quantile regression model with measurement errors, a
substantial advance in this area. In this paper, we study the issue of covariate
measurement errors in quantile regression with randomly censored data. We pro-
pose an inverse weighting estimation method and give its asymptotic properties.
The derivation of the asymptotics requires techniques in martingale theory and
in the treatment of quantile regression, which is highly nontrivial. Moreover,
we propose a computing algorithm for composite quantile regression through an
averaging estimation approach. The quantile averaging estimator is naturally
motivated, numerically stable, and easy to implement. There exist several gen-
eral approaches in measurement error models that could also be implemented in
the quantile regression context, such as simulation extrapolation and regression
calibration (Carroll et al. (2006)). However, both are approximate methods and
do not produce consistent estimates in the quantile regression context.

2. Estimation

For i = 1, . . . , n, let Ti be the failure time for the ith subject and Ci be the
censoring time. We observe Yi = min(Ti, Ci) and the censoring time indicator
∆i = I(Ti ≤ Ci), where I(·) is the indicator function. Let Xi be the corre-
sponding unobservable p-dimensional vector of bounded covariates. Instead, we
observe the surrogate Wi and write Wi = Xi + Ui, where Ui is the measure-
ment error. We assume that the observed data (Wi, Yi, ∆i) are independent and
identically distributed (i.i.d.). Under this setup, the censored quantile regression
model subject to measurement errors has the form

log Ti = α + βTXi + εi, (2.1)

Wi = Xi + Ui,

where we assume (εi,UT
i )T ∈ Rp+1 are i.i.d. according to a spherically symmet-

ric distribution and independent of Xi. In particular, for any orthogonal matrix
D, D(ε,UT )T has the same distribution as (ε,UT )T . A spherically symmetric
distribution accommodates the commonly used multivariate normal and multi-
variate t distributions as special cases, hence is a more relaxed assumption than
the usual normal error assumption. A further extension would allow M(ε,UT )T

to be spherically symmetric for some fixed matrix M. However, ε and U are usu-
ally independent, and the effect of M on U can be equivalently captured through
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a reparametrization (see Appendix); for ease of exposition, we focus on the case
in which M is the identity matrix.

If no censoring occurs and the true covariates Xi are observed, then at a
preselected τth quantile, the main parameters (ατ , β) in the quantile regression
model can be estimated through

min
ατ ,β

n∑
i=1

ρτ (log Ti − ατ − βTXi), (2.2)

where the usual “check function” ρτ (u) = u{I(u ≥ 0) − (1 − τ)}.
Under random censorship, we let G(·) be the survival function for the cen-

soring time Ci, and Ĝ(·) be the corresponding Kaplan-Meier estimator based on
{(Yi, 1−∆i), i = 1, . . . , n}. Taking into account both the censoring and the mea-
surement error in W, we propose minimizing the inverse censoring-probability
weighted objective function

Ψn(ατ , β) = n−1
n∑

i=1

∆i

Ĝ(Yi)
ρτ

(
log Yi − ατ − βTWi√

1 + |β|2

)
(2.3)

with respect to (ατ , β). In contrast to the usual quantile regression models, β
in (2.3) does not depend on τ , i.e., the slopes are the same regardless of the
quantile level. If we denote the minimizer of Ψn(ατ , β) by (α̂τ , β̂), then α̂τ is a
consistent estimator of ατ = α + qτ

√
1 + |β|2, and β̂ is that of β, where qτ is

the unique solution to E {ρτ (εi − q)} = 0, i.e., qτ is the τth quantile of ε. For
such inverse probability weighting techniques, see Robins and Rotnitzky (1992),
Robins (1996), and Bang and Tsiatis (2000). The measurement error correction
factor

√
1 + |β|2 is widely used in linear models with additive errors. The main

intuition is the following. In the usual regression, one minimizes the vertical
standardized distance d{(Y −α−βTX)/s.d.(Y −α−βTX)} where d stands for
a suitable distance measure and s.d. is the standard deviation, because only the
vertical Y direction has errors. However, in the measurement error situation, er-
rors also occur along the horizontal X direction, hence a distance containing both
vertical and horizontal components should be favored. In fact, the minimization
of the same standardized distance with X replaced by W automatically corrects
for this. If we denote the variance of ε as σ2

ε and the variance-covariance matrix
of U as ΣU , we have

(Y − α − βTW)
s.d.(Y − α − βTW)

=
(Y − α − βTW)√

σ2
ε + βTΣUβ

,

which is proportional to (Y −α−βTW)/
√

1 + |β|2 under the spherical symmetry
assumption. This correction is first seen in Lindley (1947) for the L2 distance
and in He and Liang (2000) for the L1 distance.
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If there is no particular reason to favor any specific value of τ , we can use a
set of different quantile levels simultaneously to estimate (ατ , β). Let Q represent
the set of quantiles under consideration, Q = {τ1, . . . , τk}, τ1 < . . . < τk. Under
composite quantile regression, we estimate (α, β) by minimizing

Ψn(α, β) = n−1
n∑

i=1

∆i

Ĝ(Yi)

∑
τ∈Q

ωτρτ

(
log Yi − ατ − βTWi√

1 + |β|2

)
, (2.4)

where α represents the concatenated vector of the ατ ’s corresponding to different
values of τ ∈ Q, α = (ατ1 , . . . , ατk

)T . We include a quantile specific weight ωτ to
allow for weighing each regression quantile differently. In practice, a convenient
choice of ωτ is simply to use equal weights. More sophisticated weighting strate-
gies may use weights proportional to the effective sample size, weights inversely
proportional to the trace of the variance-covariance matrix of each quantile re-
gression estimation, or weights that minimize the overall estimation variance.
These more complex weighting schemes require iterative implementation of the
quantile regression procedure, and typically induce numerical difficulties.

3. Asymptotic Properties

We use the notation

ti(ατ , β) = ωτ
∂

∂ατ
ρτ

(
log Ti − ατ − βTWi√

1 + |β|2

)
,

ri(α, β) =
∂

∂β

∑
τ∈Q

ωτρτ

(
log Ti − ατ − βTWi√

1 + |β|2

)
,

ti(α, β) = {ti(ατ1 , β), . . . , ti(ατk
, β)}T ,

si(α, β) = {ti(α,β)T , ri(α,β)T }T .

With L as the study duration, we define a filtration F(u) to be the set of σ-
algebras generated by σ{I(Ci ≤ t), t ≤ u; I(Ti ≤ y),Wi, τ ∈ Q, 0 ≤ y ≤
L, i = 1, . . . , n}. We take the counting process for the censoring time to be
N c

i (u) = I(Yi ≤ u, ∆i = 0), the risk process as Ri(u) = I(Yi ≥ u), and let
λc(u) be the hazard function for the censoring distribution. With the mar-
tingale Mc

i (u) = N c
i (u) −

∫ u
0 λc(t)Ri(t)dt, we write Mc(u) =

∑n
i=1 Mc

i (u),
N c(u) =

∑n
i=1 N c

i (u), and R(u) =
∑n

i=1 Ri(u). Note that R(u) = nĜ(u−)Ŝ(u−),
where Ĝ(u−) is the left continuous version of the Kaplan-Meier estimator for the
survival function of the censoring times, and Ŝ(u) is the Kaplan-Meier estima-
tor for the survival function S(u) = Pr(T ≥ u). We state the consistency and
asymptotic convergence properties of (α̂, β̂) in two theorems.
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Theorem 1. Assume that the covariates X belong to a finite set and, for any
τ ∈ Q, E {ρτ (ε − q)} = 0 has a unique solution qτ . Assume the minimizer
of (2.4), (α̂, β̂), belongs to a compact set. Then as n → ∞, (α̂, β̂) converges
strongly to (α, β).

The proof is briefly outlined in the Appendix. Let f denote the density of ε,
and suppose E(ε2) < ∞.

Theorem 2. Under the conditions of Theorem 1, assume further that E(X) = 0,
ΣX = E(XXT ) is positive definite, f(qτ ) > 0, f(qτ + δ) − f(qτ ) = o(1) as
δ → 0 for any τ ∈ Q. Then, as n → ∞,

√
n{(α̂T , β̂

T
)T − (αT , βT )T } →

N{0,A−1B(A−1)T } in distribution, where

A =
∂E {si(α,β)}

∂(αT , βT )
, (3.1)

B = B1 + B2 = E{si(α,β)⊗2}

+E

[∫ L

0

{si(α,β) − F(s, u)}⊗2

G(u)2
λc(u)Ri(u)du

]
,

F(s, u) =
1

S(u)
E {si(α, β)I(Ti ≥ u)} .

The explicit forms of A and B1 are given in the Appendix. We can ap-
proximate A and B1 by using the empirical sample averages evaluated at the
parameter estimates,

Â =
∂

∂(αT , βT )

{
n−1

n∑
i=1

∆isi(α̂, β̂)
Ĝ(Yi)

}
and B̂1 = n−1

n∑
i=1

{
∆isi(α̂, β̂)⊗2

Ĝ(Yi)

}
.

Note that si(α,β) contains Ti, thus we have

B2 = E

[∫ L

0

{si(α, β) − F(s, u)}⊗2

G(u)2
λc(u)I(Ti ≥ u)I(Ci ≥ u)du

]
= E

{ ∫ L

0

si(α,β)⊗2 − si(α, β)F(s, u)T − F(s, u)si(α,β)T + F(s, u)⊗2

G(u)

×λc(u)I(Ti ≥ u)du

}
=

∫ L

0

S(u){F(s⊗2, u) − F(s, u)⊗2}
G(u)

λc(u)du

= E

[∫ L

0

{F(s⊗2, u) − F(s, u)⊗2}
G(u)

λc(u)I(Ti ≥ u)du

]
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= E

[∫ L

0

{F(s⊗2, u) − F(s, u)⊗2}
G(u)2

λc(u)Ri(u)du

]
,

where F(s⊗2, u) = (1/S(u))E
{
si(α,β)⊗2I(Ti ≥ u)

}
. We can thus approximate

B2 by using

n−1
n∑

i=1

∫ L

0

dN c
i (u)

Ĝ(u)2
{F̂(s⊗2, u) − F̂(s, u)⊗2}

= n−1
n∑

i=1

1 − ∆i

Ĝ(Yi)2
{F̂(s⊗2, Yi) − F̂(s, Yi)⊗2},

where F̂(s, u) is the empirical estimate of F evaluated at (α̂, β̂),

F̂(s, u) =
1

nŜ(u−)

n∑
i=1

∆isi(α̂, β̂)I(Yi ≥ u)
Ĝ(Yi)

,

and F̂(s⊗2, u) represents F̂(s, u) but with si(α̂, β̂) replaced by si(α̂, β̂)⊗2. How-
ever, the final asymptotic variance does not simplify, and it does not exhibit a
clear separation between α and β.

If some covariates in the regression model, say Z, are precisely measured, we
then need to modify the objective function to

Ψn(α, β, γ) = n−1
n∑

i=1

∆i

Ĝ(Yi)

∑
τ∈Q

ωτρτ

(
log Yi − ατ − γTZi − βTWi√

1 + |β|2

)
. (3.2)

The minimizer (α̂, β̂, γ̂) of (3.2) is consistent, and similar arguments can be
applied to derive its large-sample properties. If there exists a validation set
of size n1 where the true covariates, say (X1, . . . ,Xn1) are observed, then the
objective function is modified to

Ψn(α, β,γ) = n−1
n1∑
i=1

∆i

Ĝ(Yi)

∑
τ∈Q

ωτρτ (log Yi − ατ − γTZi − βTXi)

+n−1
n∑

i=n1+1

∆i

Ĝ(Yi)

∑
τ∈Q

ωτρτ

(
log Yi − ατ − γTZi − βTWi√

1 + |β|2

)
.

4. Averaging Estimation

In the median regression with τ = 1/2, qτ = 0, we can directly obtain
consistent estimators for both α and β. However, for τ other than 1/2, although
α̂τ is a consistent estimate of ατ , it has a bias of qτ

√
1 + |β|2 as an estimator
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of α. To correct for the bias, a simple procedure is to also include 1 − τ in Q,
and then average the resulting estimators to obtain α̂ = (α̂τ + α̂1−τ )/2, since
qτ + q1−τ = 0 for spherically symmetric distributions.

The composite quantile regression model (2.4) explicitly uses a set of quantile
values and constructs the objective function by summing the individual quan-
tile regression models. Intuitively, it may yield a more efficient estimator than,
say, the usual median regression. However, when several quantiles are modeled
simultaneously in (2.4), more unknown parameters are introduced in α. Mini-
mizing a single objective function involving many unknown parameters typically
imposes numerical difficulties and thus the efficiency gain is often not observed in
practice. Furthermore, when the bootstrap method is used to estimate the vari-
ance, the result might be unstable under the composite model (2.4). Thus, we
propose to first take into consideration different regression quantiles separately,
and then combine the parameter estimates by an averaging estimation approach.
That is, we carry out a single quantile regression for each chosen quantile τ ∈ Q

and average the resulting parameter estimates. This algorithm is straightforward
and inherits the model averaging estimation flavor (for example, Hoeting et al.
(1999); Yang (2003)).

The intuition behind the averaging estimation can be explained as follows.
When carrying out a τth quantile regression, our focus is the covariate effect on
the τth quantile of the survival time. The observations close to the τth quan-
tile are more relevant, because a small shift in the quantile value, say from τ

to τ∗, would result in dramatic changes in the contributions of the nearby data
to the objective function; the data lying between the τth and τ∗th quantiles
would flip their signs in the estimation function. However, such a quantile shift
would not have much influence on other observations, because their ranks stay
the same and their specific values are not essential. Thus when several quantile
levels are modeled simultaneously, observations contribute to the estimation dif-
ferently according to the fitted quantiles, and the information in the data can be
used more effectively when the parameter estimates are combined across these
quantiles. For a better understanding, we compare median and mean regression.
Median regression is directly affected by the observations close to the regression
line, while it is less sensitive to observations that are far away; mean regression
depends equally on all the data, and even a single outlier pulls the regression
curve away. As a tradeoff, mean regression typically yields a more efficient es-
timator than a median regression. Based on a collection of quantiles, we allow
several different clusters of data around preselected regression quantiles to play
a more important role in the estimation, hence provide a better use of the data
and produce a more efficient estimator for the common slope. It can be viewed
as a middle-ground estimator between median and mean regression.
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5. Simulation

We conducted simulation studies to examine the performance of the pro-
posed estimator in quantile regression. We generated data from model (2.1) with
two true covariates X1 and X2, where X1 and X2 were simulated from uniform
distributions on [0, 1] and [0, 2], respectively. We set the true parameter val-
ues to be α = −1.5, β1 = 0.5, and β2 = 0.5. The common distribution of the
model error ε and the measurement errors (U1, U2) was normal with a zero mean
and a standard deviation of 0.2. We took the observed mismeasured covariates
W1 = X1 + U1 and W2 = X2 + U2. The censoring time was generated from a
mixture of a point mass at infinity and an exponential distribution with mean
1/3. By adjusting the mixing percentage, we could achieve a censoring level that
was either light (20 ∼ 25%) or heavy (35 ∼ 40%). For each data realization, we
carried out the median regression by taking τ = 1/2. We estimated the variance
of the estimator using the bootstrap method with 1,000 bootstrap samples. The
asymptotic approximation of the variance given in Theorem 2 typically requires
a very large sample size to exhibit its relevance due to its dependence on the haz-
ard of ε, while the bootstrap performs well for sample sizes of practical use. In
fact, the bootstrap often outperforms asymptotic approximation in variance es-
timation, and this is typical in the quantile regression framework. We conducted
1,000 simulations for different sample sizes, n = 100, 200, and 300.

The simulation results, presented in Table 1, show that the parameter esti-
mates were approximately unbiased, and that the biases decreased as the sample
size increased. The variance estimates using the bootstrap method were reason-
ably close to the empirical variances, and the variance increased as the censoring
increased. The corresponding coverage probabilities of the 95% confidence inter-
vals were close to the nominal level. We also implemented two naive estimators
where the measurement error was completely ignored in one and the censoring
was completely ignored in the other. Thus, in one estimator, we treated W as X,
and disregarded the

√
1 + |β|2 term from the denominator of the check function.

In the other estimator, we ignored Ĝ(·) in the objective function. As shown in
the lower panels of Table 1, both naive estimators were biased. When ignoring
measurement errors, as the sample size increased, the bootstrap estimated stan-
dard error decreased while the bias stayed approximately the same, and thus the
95% coverage probability deteriorated. When ignoring the censoring, the bias
was more visible when the censoring rate was relatively high. The bias in the
latter estimator was less than that seen when ignoring measurement errors. This
is intuitive since the censoring time was simulated from a mixture of a point mass
at infinity and an exponential distribution, the missingness caused by censoring
was close to the case of missing completely at random.
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Table 1. Simulation results using median regression (τ = 1/2) with mea-
surement errors. The true parameter values are in parentheses.

20 ∼ 25% censoring 35 ∼ 40% censoring
n Estimate α(−1.5) β1(0.5) β2(0.5) α(−1.5) β1(0.5) β2(0.5)

Proposed estimator
100 Mean −1.5047 0.5090 0.4997 −1.5082 0.5105 0.5026

Emp sd 0.1000 0.1392 0.0635 0.1102 0.1624 0.0762
Est se 0.1143 0.1654 0.0723 0.1351 0.2029 0.0846
95% cv 0.9660 0.9710 0.9660 0.9700 0.9700 0.9690

200 Mean −1.4976 0.4999 0.4988 −1.5053 0.5080 0.5019
Emp sd 0.0692 0.1007 0.0456 0.0751 0.1113 0.0518
Est se 0.0739 0.1067 0.0479 0.0820 0.1207 0.0546
95% cv 0.9510 0.9560 0.9460 0.9550 0.9640 0.9490

300 Mean −1.4998 0.5004 0.4995 −1.5029 0.5059 0.4993
Emp sd 0.0556 0.0804 0.0367 0.0623 0.0911 0.0408
Est se 0.0594 0.0860 0.0384 0.0654 0.0970 0.0432
95% cv 0.9500 0.9610 0.9600 0.9510 0.9570 0.9550

Naive estimator ignoring measurement errors
100 Mean −1.3654 0.3410 0.4449 −1.3694 0.3427 0.4486

Emp sd 0.0797 0.0914 0.0536 0.0852 0.1068 0.0642
Est se 0.0866 0.1040 0.0600 0.0967 0.1187 0.0683
95% cv 0.6430 0.6630 0.8420 0.7280 0.7340 0.8690

200 Mean −1.3644 0.3401 0.4458 −1.3710 0.3452 0.4483
Emp sd 0.0557 0.0674 0.0388 0.0617 0.0764 0.0442
Est se 0.0589 0.0703 0.0409 0.0654 0.0804 0.0465
95% cv 0.3560 0.3670 0.7210 0.4830 0.4850 0.8000

300 Mean −1.3666 0.3393 0.4469 −1.3675 0.3414 0.4459
Emp sd 0.0452 0.0536 0.0326 0.0506 0.0633 0.0348
Est se 0.0475 0.0573 0.0330 0.0529 0.0648 0.0375
95% cv 0.1880 0.1980 0.6210 0.2870 0.3190 0.6870

Naive estimator ignoring censoring
100 Mean −1.5120 0.5121 0.5003 −1.5208 0.5131 0.5039

Emp sd 0.1009 0.1410 0.0633 0.1134 0.1628 0.0697
Est se 0.1138 0.1647 0.0722 0.1335 0.2005 0.0849
95% cv 0.9620 0.9670 0.9690 0.9700 0.9720 0.9680

200 Mean −1.5032 0.5002 0.4996 −1.5141 0.5074 0.5004
Emp sd 0.0694 0.1007 0.0458 0.0782 0.1159 0.0500
Est se 0.0738 0.1068 0.0480 0.0834 0.1247 0.0540
95% cv 0.9530 0.9570 0.9390 0.9600 0.9610 0.9610

300 Mean −1.5054 0.5005 0.5000 −1.5119 0.5016 0.5001
Emp sd 0.0562 0.0805 0.0368 0.0633 0.0925 0.0411
Est se 0.0594 0.0861 0.0384 0.0669 0.0988 0.0439
95% cv 0.9520 0.9590 0.9580 0.9630 0.9500 0.9530

Empirical standard deviation (Emp sd), average of the estimated standard errors (Est se)

and coverage probability of 95% confidence intervals (95% cv).
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Table 2. Simulation results using τ =(1/4, 1/2, 3/4) quantile regression with
measurement errors.

20 ∼ 25% censoring 35 ∼ 40% censoring
n Estimate α(−1.5) β1(0.5) β2(0.5) α(−1.5) β1(0.5) β2(0.5)

Proposed estimator
100 Mean −1.5015 0.5071 0.4991 −1.5070 0.5156 0.5012

Emp sd 0.0886 0.1243 0.0557 0.0977 0.1436 0.0669
Est se 0.1027 0.1471 0.0617 0.1244 0.1827 0.0731
95% cv 0.9670 0.9640 0.9610 0.9640 0.9670 0.9550

200 Mean −1.4986 0.5026 0.4986 −1.5052 0.5080 0.5017
Emp sd 0.0603 0.0867 0.0388 0.0665 0.0969 0.0448
Est se 0.0647 0.0923 0.0409 0.0724 0.1052 0.0464
95% cv 0.9590 0.9510 0.9570 0.9580 0.9730 0.9500

300 Mean −1.5018 0.5028 0.5008 −1.4997 0.5031 0.4984
Emp sd 0.0505 0.0712 0.0319 0.0556 0.0806 0.0350
Est se 0.0522 0.0750 0.0329 0.0574 0.0835 0.0369
95% cv 0.9440 0.9600 0.9620 0.9550 0.9510 0.9540

Naive estimator ignoring measurement errors
100 Mean −1.3653 0.3397 0.4453 −1.3685 0.3434 0.4466

Emp sd 0.0689 0.0796 0.0477 0.0732 0.0922 0.0555
Est se 0.0723 0.0868 0.0501 0.0811 0.0992 0.0570
95% cv 0.5160 0.5370 0.7940 0.6350 0.6310 0.8260

200 Mean −1.3644 0.3400 0.4453 −1.3699 0.3432 0.4482
Emp sd 0.0485 0.0583 0.0339 0.0531 0.0649 0.0379
Est se 0.0498 0.0599 0.0346 0.0549 0.0675 0.0388
95% cv 0.2210 0.2420 0.6260 0.3270 0.3630 0.7180

300 Mean −1.3655 0.3373 0.4467 −1.3657 0.3403 0.4453
Emp sd 0.0384 0.0455 0.0272 0.0429 0.0531 0.0301
Est se 0.0401 0.0485 0.0280 0.0441 0.0543 0.0312
95% cv 0.0770 0.0730 0.5190 0.1460 0.1700 0.5780

Naive estimator ignoring censoring
100 Mean −1.5086 0.5097 0.4995 −1.5259 0.5202 0.5069

Emp sd 0.0893 0.1263 0.0552 0.1031 0.1443 0.0620
Est se 0.1047 0.1510 0.0623 0.1251 0.1872 0.0745
95% cv 0.9600 0.9650 0.9640 0.9720 0.9750 0.9720

200 Mean −1.5045 0.5032 0.4993 −1.5186 0.5132 0.5028
Emp sd 0.0603 0.0871 0.0392 0.0714 0.1065 0.0430
Est se 0.0650 0.0930 0.0410 0.0739 0.1087 0.0465
95% cv 0.9580 0.9500 0.9580 0.9598 0.9656 0.9541

300 Mean −1.5073 0.5037 0.5013 −1.5140 0.5051 0.5008
Emp sd 0.0500 0.0699 0.0319 0.0561 0.0825 0.0352
Est se 0.0523 0.0755 0.0330 0.0587 0.0858 0.0374
95% cv 0.9529 0.9609 0.9632 0.9450 0.9450 0.9570
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To illustrate the averaging estimation procedure, we performed a τ = (1/4,
1/2, 3/4) quantile regression on the same 1,000 simulated data sets. We first
fit the three individual quantile regression models corresponding to each value
of τ . Then, we took the average of the parameter estimates: β̄ = (β̂τ=1/4 +
β̂τ=1/2 + β̂τ=3/4)/3 and ᾱ = (α̂τ=1/4 + α̂τ=1/2 + α̂τ=3/4)/3 as the final estima-
tors. From the results in Table 2, we can see that the biases of the averaging
estimators were negligible, and were generally smaller than those under the me-
dian regression in Table 1. The bootstrap variance estimation performed well
and the estimated variance approached the sample empirical variance with the
increasing sample size. The coverage probabilities of the 95% confidence inter-
vals were accurate. Of special interest, the variance estimates under the three-
quantile averaging estimation method decreased approximately 10% for all the
scenarios, compared to those under the median regression. We further applied
a τ = (1/6, 1/3, 1/2, 2/3, 5/6) quantile regression to the same data sets, and
computed the five-quantile averaging estimators. Here the improvement on esti-
mation efficiency was not as significant; see Table 3. Although one could enlarge
Q, the composite regression quantiles would become more saturated and further
gain in efficiency would be less visible. Since averaging more quantile regression
estimates inevitably requires more intensive computation, we recommend using
either one, three, or five quantiles. For comparison, we also present the naive es-
timators for the three- and five-quantile averaging estimators in the lower panels
of Tables 2 and 3, respectively. Overall, the naive estimators performed much
worse than the proposed estimators.

6. Example

We applied the proposed method to a lung cancer biomarker expression
study at M.D. Anderson Cancer Center. The objective of the study was to
evaluate the effects of the risk factors on patient disease-free survival (DFS). In
our analysis, there were 309 patients, and the covariates of interest were histology
(adenocarcinoma=1, 62%; squamous=0, 38%), patient age (ranging from 34 to
90 with a mean of 66 years), sex (female=1, 53%; male=0, 47%), and biomarker
expression. The estimated Kaplan-Meier survival curves stratified by histology
are shown in Figure 1. We can see that the survival curves cross, which often
suggests the violation of the proportional hazards assumption.

For each patient, there were two reading scores of biomarker expression from
two different junior research fellows in consideration of the possible measurement
errors. In addition, there was a random validation set of 28 biomarker expres-
sion scores obtained from the reading by a senior pathologist, whose readings
were considered error-free. We used the average score of the readings from the
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Table 3. Simulation results using τ =(1/6, 1/3, 1/2, 2/3, 5/6) quantile
regression with measurement errors.

20 ∼ 25% censoring 35 ∼ 40% censoring
n Estimate α(−1.5) β1(0.5) β2(0.5) α(−1.5) β1(0.5) β2(0.5)

Proposed estimator
100 Mean −1.5035 0.5094 0.4993 −1.5062 0.5157 0.5006

Emp sd 0.0876 0.1218 0.0551 0.0968 0.1425 0.0646
Est se 0.1078 0.1683 0.0626 0.1411 0.2277 0.0791
95% cv 0.9610 0.9730 0.9650 0.9760 0.9750 0.9680

200 Mean −1.4990 0.5034 0.4988 −1.5061 0.5081 0.5020
Emp sd 0.0595 0.0854 0.0377 0.0671 0.0948 0.0436
Est se 0.0636 0.0928 0.0395 0.0730 0.1116 0.0453
95% cv 0.9590 0.9550 0.9580 0.9540 0.9690 0.9460

300 Mean −1.5018 0.5026 0.5005 −1.4998 0.5023 0.4983
Emp sd 0.0488 0.0694 0.0308 0.0540 0.0782 0.0339
Est se 0.0509 0.0733 0.0317 0.0564 0.0830 0.0356
95% cv 0.9530 0.9640 0.9590 0.9550 0.9560 0.9560

Naive estimator ignoring measurement errors
100 Mean −1.3662 0.3408 0.4454 −1.3689 0.3440 0.4468

Emp sd 0.0679 0.0773 0.0463 0.0702 0.0897 0.0530
Est se 0.0693 0.0832 0.0479 0.0775 0.0949 0.0545
95% cv 0.5050 0.5170 0.7870 0.6130 0.6290 0.8240

200 Mean −1.3645 0.3402 0.4452 −1.3690 0.3411 0.4483
Emp sd 0.0469 0.0564 0.0331 0.0512 0.0635 0.0368
Est se 0.0477 0.0574 0.0331 0.0527 0.0647 0.0372
95% cv 0.1790 0.2010 0.6160 0.2880 0.3240 0.6920

300 Mean −1.3655 0.3379 0.4466 −1.3656 0.3395 0.4453
Emp sd 0.0374 0.0437 0.0263 0.0420 0.0522 0.0291
Est se 0.0386 0.0467 0.0268 0.0425 0.0523 0.0299
95% cv 0.0670 0.0610 0.4710 0.1230 0.1470 0.5370

Naive estimator ignoring censoring
100 Mean −1.5094 0.5098 0.5001 −1.5250 0.5199 0.5064

Emp sd 0.0876 0.1232 0.0556 0.1014 0.1406 0.0604
Est se 0.1045 0.1599 0.0617 0.1224 0.1761 0.0704
95% cv 0.9560 0.9720 0.9650 0.9670 0.9730 0.9660

200 Mean −1.5052 0.5036 0.4998 −1.5146 0.5078 0.5009
Emp sd 0.0594 0.0851 0.0379 0.0693 0.0995 0.0418
Est se 0.0632 0.0909 0.0394 0.0706 0.1031 0.0444
95% cv 0.9520 0.9500 0.9560 0.9610 0.9620 0.9620

300 Mean −1.5077 0.5032 0.5012 −1.5127 0.5037 0.5003
Emp sd 0.0488 0.0695 0.0307 0.0545 0.0778 0.0337
Est se 0.0507 0.0729 0.0318 0.0567 0.0820 0.0359
95% cv 0.9510 0.9630 0.9610 0.9550 0.9540 0.9590
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Figure 1. Estimated Kaplan-Meier survival curves for the lung cancer data
stratified by tumor histology.

two fellows if there was no true reading. We computed the variance of the mea-
surement error from the two separate measurements and found var(U)=0.0489.
From a preliminary analysis using only the validation data set, we obtained the
model error variance, var(ε)=0.5750. Therefore, to meet the spherical symme-
try assumption, we scaled the response and error-free covariates by dividing by√

var(ε)/var(U) = 3.4272. We also tested the normal assumption on the errors
obtained from the 28 validated observations, and found that it was not sup-
ported. However, there appeared to be no strong evidence against the symmetry
assumption. Taking into account both errors in the biomarker measurement and
in the model, we thus adopted a spherical symmetric distribution assumption
after the scaling.

We took 20,000 bootstrap samples for the variance estimation and the anal-
ysis results on the original data scale are shown in Table 4. Across the three
models, we can see that patient age had a significant effect on DFS, where older
patients appeared to survive longer, possibly due to the slower reproduction of the
cancer cells. For τ = 1/2, there was no survival difference between the adenocar-
cinoma and squamous histology groups; the histology effect was strengthened by
simultaneously modeling three or five regression quantiles, showing that patients
with adenocarcinoma had better survival. There was no significant difference
in survival between male and female patients, and the biomarker did not affect
the survival. When the measurement error was ignored, using a naive estimator,
we obtained slightly different estimates although the scientific conclusions drawn
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were the same. We also explored our estimator by ignoring the censoring and
obtained quite different results; especially, the significance of histology was not
detected (see Table 4).

For comparison, we applied the corrected score method under the Cox (1972)
model to the lung cancer data (Nakamura (1990)). The model parameter esti-
mates and standard errors for histology, log(age), sex, and biomarker expression
are −0.1589 (0.2615), 0.7723 (0.6695), 0.3568 (0.2470) and −0.1003 (0.2215),
respectively. Due to the violation of the proportional hazards assumption with
crossing survival curves, the Cox model did not detect any risk factor that sig-
nificantly affected survival.

7. Conclusion

We have proposed a censored quantile regression model with covariate mea-
surement errors. Further extensions to nonlinear regression is possible along the
lines of Wei and Carroll (2009). Considering the marginal distribution of the
model error, the composite quantile regression model is natural. Our estimation
procedure can be viewed as an alternative implementation of the composite quan-
tile regression, which takes an averaging estimation approach after fitting each
separate quantile regression model. The proposed method successfully eliminates
the estimation bias caused by the covariate measurement errors. The efficiency
gain of the averaging estimation over the usual single quantile regression esti-
mator can be substantial, while the numerical computation is straightforward.
Efficiency can also be improved through better handling of censored/missing
data by augmenting the inverse probability weighted objective function (Robins,
Rotnitzky and Zhao (1994)). The augmented terms consist of the censored cases,
and thus the estimator uses the data more efficiently. The drawback of such aug-
mentation approach is its computational complexity. Particularly, to achieve
efficiency improvement, we need to estimate the expectation of the event time
conditional on the censoring and covariates information at all the times for each
censored observation, see Bang and Tsiatis (2002). Due to the numerical insta-
bility this augmentation may incur, we do not pursue this further. Although
alternative approaches to handling the censored data are available, such as the
imputation procedure of Buckley and James (1979), these methods are not ap-
plicable when covariates are measured with errors. This is because all these
methods require calculating the survival function of model residuals, while in
the presence of measurement errors, residuals cannot be obtained even if all the
model parameters are known.
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Table 4. Analysis of the lung cancer data using censored quantile regression,
with the biomarker expression measured with errors.

Estimate Intercept Histology log(age) Sex Expression
Proposed estimator

τ = 1/2
Est −2.7645 0.1517 2.4946 0.0127 −0.1264
Est se 0.5111 0.0988 0.4420 0.1090 0.0863
p-value <0.0001 0.1246 <0.0001 0.9075 0.1428

τ = (1/4, 1/2, 3/4)
Est −2.5102 0.1766 2.2222 −0.0067 −0.1117
Est se 0.3510 0.0847 0.2955 0.0900 0.0771
p-value <0.0001 0.0370 <0.0001 0.9407 0.1471

τ = (1/6, 1/3, 1/2, 2/3, 5/6)
Est −2.7638 0.1789 2.3880 −0.0189 −0.0838
Est se 0.2580 0.0804 0.2281 0.0837 0.0721
p-value <0.0001 0.0261 <0.0001 0.8212 0.2449

Naive estimator ignoring measurement errors
τ = 1/2

Est −2.7077 0.1518 2.4476 0.0100 −0.1238
Est se 0.5290 0.0984 0.4500 0.1085 0.0797
p-value <0.0001 0.1229 <0.0001 0.9265 0.1202

τ = (1/4, 1/2, 3/4)
Est −2.4414 0.1920 2.1354 0.0091 −0.0947
Est se 0.3851 0.0844 0.3207 0.0894 0.0695
p-value <0.0001 0.0230 <0.0001 0.9189 0.1729

τ = (1/6, 1/3, 1/2, 2/3, 5/6)
Est −2.7858 0.1670 2.3925 −0.0065 −0.0736
Est se 0.2685 0.0796 0.2325 0.0828 0.0645
p-value <0.0001 0.0360 <0.0001 0.9378 0.2538

Naive estimator ignoring censoring
τ = 1/2

Est −1.4722 0.0571 1.2462 −0.0313 −0.0117
Est se 0.2798 0.0779 0.2402 0.0782 0.0742
p-value <0.0001 0.4630 <0.0001 0.6892 0.8749

τ = (1/4, 1/2, 3/4)
Est −2.0254 0.1028 1.6952 −0.0440 −0.0354
Est se 0.2865 0.0729 0.2253 0.0761 0.0593
p-value <0.0001 0.1581 <0.0001 0.5629 0.5509

τ = (1/6, 1/3, 1/2, 2/3, 5/6)
Est −2.1931 0.1015 1.8575 −0.0520 −0.0470
Est se 0.2104 0.0708 0.1713 0.0732 0.0567
p-value <0.0001 0.1517 <0.0001 0.4777 0.4073

Appendix

Verification of using reparametrization to resolve non-spherical symmetry.
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Assume M(ε,UT )T is spherically symmetric. We write

M =
(
M1

M2

)
=

(
M11 M12

M21 M22

)
and note that log T = α + βTX + ε,W = X + U, can be equivalently written as

M
(

log T

W

)
= M

(
α + βTX

X

)
+ M

(
ε

U

)
.

Thus, we can perform the proposed method on M(log Yi,WT
i )T to obtain esti-

mators for (a,b), where (a,b) satisfy

a + bTM2

(
α + βTX

X

)
= M1

(
α + βTX

X

)
for any X. We can subsequently solve for (α, β) to obtain α̂ = (M11−MT

21b̂)−1â,
β̂ = (M11 − MT

21b̂)−1(MT
22b̂ − M12) and use the delta method to further make

inference on (α̂, β̂) based on that of (â, b̂).

Proof of Theorem 1. From the convergence property of the Kaplan-Meier
estimator (Fleming and Harrington (1991)), for parameters (a,b) in a compact
set, we have

Ψn(a,b) = n−1
n∑

i=1

∆i

Ĝ(Yi)

∑
τ∈Q

ωτρτ

(
log Yi − aτ − bTWi√

1 + |b|2

)

= n−1
n∑

i=1

∆i

G(Yi)

∑
τ∈Q

ωτρτ

(
log Yi − aτ − bTWi√

1 + |b|2

)

+n−1
n∑

i=1

∆i{G(Yi) − Ĝ(Yi)}
Ĝ(Yi)G(Yi)

∑
τ∈Q

ωτρτ

(
log Yi − aτ − bTWi√

1 + |b|2

)

= E

E

 ∆i

G(Yi)

∑
τ∈Q

ωτρτ

(
log Yi − aτ − bTWi√

1 + |b|2

) ∣∣Wi, Yi


 + op(1)

= E
∑
τ∈Q

ωτρτ

(
log Ti − aτ − bTWi√

1 + |b|2

)
+ op(1)

= E
∑
τ∈Q

ωτρτ

{
εi − bTUi + (α − aτ ) + (β − b)TXi√

1 + |b|2

}
+ op(1)

= E
∑
τ∈Q

ωτρτ

{
ε1 +

α − aτ + (β − b)TXi√
1 + |b|2

}
+ op(1)



966 YANYUAN MA AND GUOSHENG YIN

uniformly in (a,b). Here, we base the arguments on the spherical symmetry
property of (εi,UT

i )T , specifically (εi − bTUi)/
√

1 + |b|2 and ε1 have the same
distribution and both are independent of Xi. Thus, we have now obtained that
Ψn(a,b) converges to E

∑
τ∈Q ωτρτ

{
ε1 + (α − aτ + (β − b)TXi)/(

√
1 + |b|2)

}
.

Since for τ ∈ Q, E {ρτ (ε1 − q)} = 0 has a unique solution qτ , we have that
Eρτ

{
ε1 + (α − aτ + (β − b)TXi)(

√
1 + |b|2)

}
has a unique solution at b = β

and aτ = α+qτ

√
1 + |b|2 = ατ . Now we consider any sequence of the minimizers

(α̂, β̂). First, (α̂τ − ατ )/
√

1 + |β̂|2 is bounded for any τ , otherwise, Ψn(α̂, β̂)
would be unbounded (note that ρτ are non-negative functions). We assume a

subsequence of
{

(α̂ − α)/
√

1 + |β̂|2, (β̂ − β)/
√

1 + |β̂|2
}

converges to (ac,bc).

Then, due to the minimization property,

E
∑
τ∈Q

ωτρτ

(
ε1 +

α − aτ + (β − b)TXi√
1 + |b|2

)
≤ E

∑
τ∈Q

ωτρτ (ε1 − cτ )

for an arbitrary set of cτ ’s. Particularly, we let cτ = qτ ; because of the uniqueness,
we have ac = bc = 0, and the result is shown.

Proof of Theorem 2. Note that, except for the noise caused by discontinu-
ity at the Op(1) terms, the residuals are exactly zero, the first order derivative
of Ψn(α, β) in (2.4) is zero at the minimum. Thus, we take the derivative of
Ψn(α, β) with respect to (α, β) and evaluate it at (α̂, β̂); as long as the regres-
sion curve passes only finitely many observations, we have

Op(1) = n
∂Ψn(α̂, β̂)
∂(αT , βT )T

=
n∑

i=1

∆i

Ĝ(Yi)
si(α̂, β̂)

=
n∑

i=1

∆i

Ĝ(Yi)
si(α,β) +

n∑
i=1

∂

∂(αT , βT )
E

{
∆isi(α∗, β∗)

Ĝ(Yi)

}(
α̂ − α

β̂ − β

)

=
n∑

i=1

si(α, β) +
n∑

i=1

{
∆i

G(Yi)
−1

}
si(α, β) +

n∑
i=1

∆i{G(Yi)−Ĝ(Yi)}
G(Yi)Ĝ(Yi)

si(α, β)

+n

[
∂E {si(α, β)}

∂(αT , βT )
+ op(1)

](
α̂ − α

β̂ − β

)
, (A.1)

where (α∗T , β∗T )T lies on the line segment between (α̂T , β̂
T
)T and (αT , βT )T .

Then (A.1) holds uniformly for (α̂, β̂) in a compact support. From the defini-
tion of F(u), N c(u), R(u), Mc(u), G(u), and S(u), using a martingale integral
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representation (Gill (1980, p.37)), we have

G(t) − Ĝ(t)
G(t)

=
∫ t

0

Ĝ(u−)
G(u)

dMc(u)
R(u)

=
∫ L

0

I(t ≥ u)Ĝ(u−)
G(u)

dMc(u)
R(u)

=
∫ L

0

I(t ≥ u)
nG(u)Ŝ(u−)

dMc(u).

Let F̃(s, u) be F̂(s, u) evaluated at (α, β),

F̃(s, u) =
1

nŜ(u−)

n∑
i=1

∆isi(α, β)I(Yi ≥ u)
Ĝ(Yi)

,

we obtain

n−1/2
n∑

i=1

∆i{G(Yi) − Ĝ(Yi)}
G(Yi)Ĝ(Yi)

si(α, β)

= n−1/2
n∑

i=1

∆isi(α, β)
Ĝ(Yi)

∫ L

0

I(Yi ≥ u)
nG(u)Ŝ(u−)

dMc(u)

= n−1/2

∫ L

0

F̃(s, u)
G(u)

dMc(u) = n−1/2
n∑

i=1

∫ L

0

F(s, u)
G(u)

dMi
c(u) + op(1).

Using the property (Robins and Rotnitzky (1992, p.313))

∆i

G(Yi)
= 1 −

∫ L

0

dMc
i (u)

G(u)
,

we have

n−1/2
n∑

i=1

{
∆i

G(Yi)
− 1

}
si(α, β) = −n−1/2

n∑
i=1

∫ L

0

si(α, β)
G(u)

dMc
i (u).

Inserting this into (A.1), we have

−
[
∂E{si(α, β)}

∂(αT , βT )
+ op(1)

] {
n1/2

(
α̂ − α

β̂ − β

)}
= n−1/2

n∑
i=1

si(α, β) − n−1/2
n∑

i=1

∫ L

0

si(α, β) − F(s, u)
G(u)

dMc
i (u) + op(1).

Because si(α, β) is F(0) measurable, the two terms on the right side here are un-
correlated. Thus, we have that n1/2(α̂T −αT , β̂

T −βT )T ∼ N(0,A−1B(A−1)T ),
where A and B are given in (3.1). Note that the form of B2 is a result of the
Martingale Central Limit Theorem.
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Calculation of A and B1 in Theorem 2.
Write

ξiτ =
log Yi − a − bTWi√

1 + |b|2

=
εi − bTUi√

1 + |b|2
−

{√
1 + |β|2√
1 + |b|2

qτ +
a − ατ√
1 + |b|2

+
(b − β)TXi√

1 + |b|2

}
= ε1 − ciτ .

It can be verified that

si(a,b) =



ωτ1{I(ξiτ1
≥0)−1+τ1}

−
√

1+|b|2
...

ωτk
{I(ξiτk

≥0)−1+τk}
−
√

1+|b|2∑
τ∈Q ωτ

I(ξiτ≥0)−1+τ

−
√

1+|b|2

(
Wi + ξiτb√

1+|b|2

)


,

E{si(a,b)} =



ωτ1 [τ1−E{F (ciτ1
)}]

−
√

1+|b|2
...

ωτk
[τk−E{F (ciτk

)}]
−
√

1+|b|2∑
τ∈Q ωτ

[
E{XiF (ciτ )}√

1+|b|2
+ bE(ciτ )τ−bE{ciτ F (ciτ )}

1+|b|2

]


,

where F (·) is the cumulative distribution function of ε1. Take the derivative
of E{si(a,b)} with respect to (a,b) and evaluate it at (α, β), calculate the
expectation of si(α, β)⊗2, denoting the variance of ε1 as σ2

ε , to get

A =
(

A11 AT
21

A21 A22

)
, B =

(
B11 BT

21

B21 B22

)
,

where

A11 =
1

1 + |β|2
diag {ωτ1f(qτ1), . . . , ωτk

f(qτk
)} ,

A21 =
−β

(1 + |β|2)3/2
{ωτ1qτ1f(qτ1), . . . , ωτk

qτk
f(qτk

)} ,

A22 =
∑
τ∈Q

ωτf(qτ )
1 + |β|2

{
ΣX +

q2
τββT

1 + |β|2

}
,
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B11 =
1

1 + |β|2



ω2
1τ1(1 − τ1) ω1ω2τ1(1 − τ2) · · · ω1ωkτ1(1 − τk)

ω1ω2τ1(1 − τ2) ω2
2τ2(1 − τ2) · · · ω2ωkτ2(1 − τk)

...

ω1ωkτ1(1 − τk) ω2ωkτ2(1 − τk) · · · ω2
kτk(1 − τk)


,

B21 =
−β

(1 + |β|2)3/2

[
ωτ1

∑
τ

ωτqτ (τ1 − ττ1), . . . ,

ωτj

∑
τ∈Q

ωτqτ{min(τ, τj) − ττj}, . . . , ωτk

∑
τ

ωτqτ (τ − ττk)
]

B22 =
∑

τ,τ ′∈Q

ωτωτ ′
{min(τ, τ ′) − ττ ′}

1 + |β|2

×
{
ΣX +

qτqτ ′

1 + |β|2
ββT + (1 + |β|2)σ2

ε (I + ββT )−2

}
.
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