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A magnetoconductivity formula is presented for the surface states of a magnetically doped topological

insulator. It reveals a competing effect of weak localization and weak antilocalization in quantum

transport when an energy gap is opened at the Dirac point by magnetic doping. It is found that, while

random magnetic scattering always drives the system from the symplectic to the unitary class, the gap

could induce a crossover from weak antilocalization to weak localization, tunable by the Fermi energy or

the gap. This crossover presents a unique feature characterizing the surface states of a topological

insulator with the gap opened at the Dirac point in the quantum diffusion regime.
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Topological surface states, composed of an odd number
of massless Dirac cones, are peculiar to three-dimensional
(3D) topological insulators [1–3]. Electrons in these states
have a helical spin structure in momentum space, and
acquire a � Berry’s phase after completing a closed tra-
jectory adiabatically around the Fermi surface. The �
Berry phase could lead to the absence of backscattering
[4], weak antilocalization [5], and the absence of Anderson
localization [6,7]. In the quantum diffusion regime (mean
free path � system size � phase coherent length), an
electron maintains its phase coherence after being scat-
tered by static centers for many times. As a result, the
destructive interference due to the� Berry phase can give a
quantum enhancement to the classical electronic conduc-
tivity, leading to weak antilocalization (WAL) [8,9].
Applying a magnetic field tends to break the destructive
interference, giving rise to negative magnetoconductivity
(MC), a key signature of WAL. WAL is expected in sys-
tems with symplectic symmetry. Much effort has been
devoted to observing WAL in graphene [5,10–13].
However, graphene has two valleys of gapless Dirac cones
with opposite chiralities, and the intervalley scattering will
inevitably suppress WAL [5,10–13]. In contrast, the sur-
face states of recently discovered topological insulators
Bi2Te3 and Bi2Se3 have only one helical Dirac cone
[14–16], and WAL is intrinsic to them. Many observations
of WAL in Bi2Te3 and Bi2Se3 have been reported recently
[17–22]. In particular, there is great interest in the effect of
magnetic doping, which is considered to be an efficient
way to open an energy gap in the Dirac cone by breaking
time reversal symmetry (TRS) [23–25]. This gap is ex-
pected to give rise to many interesting phenomena, such as
Majorana fermion [26], topological magnetoelectric effect
[27], and quantized anomalous Hall effect [28]. These
developments call for a thorough theoretical investigation
on WAL in topological insulators, in particular, in the
presence of magnetic doping.

In this Letter, a MC formula is presented for the mag-
netically doped surface states of a topological insulator
[Fig. 1(a)]. We assume that the mean field produced by
magnetic doping may open a uniform gap at the Dirac
point [24,25] [Fig. 1(b)], and the local fluctuation over
the mean field can scatter conducting electrons in a random
fashion [Fig. 1(c)]. With the help of the diagrammatic
technique [5,8–10,29–35], we obtain the MC formula,
which consists of two competing terms. Besides the
WAL term due to the gapless Dirac fermion, an extra
weak localization (WL) term arises as a result of the gap
opening. We find that either the gap or the magnetic
scattering can drive MC of the system from WAL to a
parabolic dependence on the magnetic field (�B2). Further
increasing the gap/Fermi energy ratio may drive the system
to WL after reaching the B2 regime. A crossover from
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FIG. 1 (color online). (a) A topological insulator with mag-
netic doping on the top surface. (b) Magnetic doping may open a
gap (�) at the Dirac point of the surface states [24,25]. EF is the
Fermi energy measured from the Dirac point. � tilts in-plane
spin polarization of the massless Dirac fermion out of plane,
leading to the deviation from the � Berry phase. (c) Scattering of
an electron by random magnetic impurities. Dashed lines repre-
sent the trajectory of the electron.
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WAL to WL is thus expected, tunable by the size of the
TRS-breaking gap or the position of Fermi energy. Beyond
the theories for non-Dirac systems with strong spin-orbit
coupling [30] or strong ferromagnetism [36], the observa-
tion of the crossover will provide an important signature in
transport experiments for the existence of a TRS-breaking
gap in the topological surface states.

We describe the magnetically doped surface states of a
3D topological insulator by the massive Dirac modelH in a
random impurity potential UðrÞ. The Hamiltonian of the
massive Dirac model is given by

H ¼ �ð�xky � �ykxÞ þ hz�z; (1)

where �x;y;z are the Pauli matrices. � ¼ @vF, with vF the

Fermi velocity. The �z term represents a gap opened by

breaking TRS, with hz ¼ 1
2g�BBþ �

2 , where the first term

is the Zeeman energy of the out-of-plane magnetic field B,
with g the g factor and �B the Bohr magneton. � is the
gap opened at the Dirac point [24,25], it originates
from the mean field produced by magnetic doping. The
Hamiltonian describes two energy bands as shown in
Fig. 1(b). In this work, we assume that the Fermi energy
EF is tuned into the gap of the 3D bulk bands, and inter-
sects with the upper band of the surface states, which is
the only band included in the calculation. Its band disper-

sion is given by �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k2 þ h2z

q
and the wave function

c kðrÞ ¼ ½a;�iei’b�Teik�r= ffiffiffi
S

p
, where tan’ � ky=kx, k is

the wave vector, a � cos�2 , b � sin�2 , and cos� �
hz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2z þ �2k2

q
, S is the area. In this work, all the physical

quantities will be evaluated at the Fermi energy EF at
low temperatures. The density of states at EF is NF ¼
EF=ð2��2Þ. The scattering by nonmagnetic and magnetic
impurities is modeled by the random potential

UðrÞ ¼ X
i;�

ui����ðr�RiÞ; (2)

where � runs over 0, x, y, z. �0 is the 2� 2 unit matrix.Ri

are the positions of the randomly distributed impurities. ui0
depicts the potential at Ri for nonmagnetic impurity, and
uix;y;z for magnetic impurity. Note that uix;y;z do not repre-

sent the total local exchange field produced by the impurity
at Ri, but the local fluctuation over the mean field
that gives the gap. Therefore, hUðrÞiimp ¼ 0 and we can

still assume the random potential is delta-correlated
hUðrÞUðr0Þiimp � �ðr� r0Þ, where h� � �iimp means average

over impurity configurations, and we follow the practical
assumption that different types of impurity scattering are
uncorrelated [10].

The quantum interference correction to conductivity
of Dirac fermions can be calculated by the diagrams in
Fig. 2, which are different from those for the usual two-
dimensional electron gas (2DEG) [8,9,31,32] in several
aspects [5,10,29]. (i) Besides the conventional maximally

crossed diagram (bare Hikami box) in Fig. 2(a), two
dressed Hikami boxes in Fig. 2(b) are also needed; each
gives �1=4 as the bare Hikami box for the gapless Dirac
cone. (ii) The ladder diagram correction to the bare
velocity vx

k � ð1=@Þ@�k=@kx [Fig. 2(d)] must be taken

into account, which corrects the velocity to ~vx
k ¼ 2vx

k for

the gapless Dirac cone. We generalize these conclusions
for the gapless case to the gapped Dirac cone as follows.
The arrowed lines in Fig. 2 stand for the impurity-

averaged retarded (R) and advanced (A) Green’s functions

GR=A
k ð!Þ ¼ 1=ð!� �k � i@=2	Þ, where under the first-

order Born approximation, the impurity-induced self-
energy is given by the total scattering time 	, with
@=	 � 2�

P
k0 hjUk0kj2iimp�ð!� �k0 Þ, where Uk;k0 �

hc kðrÞjUðrÞjc k0 ðrÞi is the scattering amplitude between
two momenta. It can be separated into 1=	 ¼ 1=	e þ
1=	m, where the nonmagnetic elastic scattering time 	e is
given by @=	e ¼ 2�NFn0u

2
0ða4 þ b4Þ and the total

magnetic scattering time 	m can be separated into
1=	m ¼ 2=	x þ 1=	z, with @=	z ¼ 2�NFnmu

2
zða4 þ b4Þ

and @=	x ¼ 2�NFnmu
2
xð2a2b2Þ. In-plane isotropy (ux ¼

uy) is assumed. u0 depicts the average scattering strength

for nonmagnetic impurities, while ux;y;z for magnetic im-

purities. n0 and nm are concentrations of nonmagnetic and
magnetic impurities, respectively. 	e and 	m are related to
the elastic scattering length ‘e and magnetic scattering
length ‘m by ‘e ¼

ffiffiffiffiffiffiffiffiffi
D	e

p
and ‘m ¼ ffiffiffiffiffiffiffiffiffiffi

D	m
p

, respectively.
D � v2

F	=2 is the diffusion constant. Considering the poor

FIG. 2 (color online). The diagrams for the quantum interfer-
ence correction to conductivity of Dirac fermions. The arrowed
solid and dashed lines represent the Green’s functions and
impurity scattering, respectively. (a) The bare [31,32] and
(b) two dressed [10] Hikami boxes give the quantum conductiv-
ity correction from the maximally crossed diagrams. (c) The
retarded Green function with the first-order Born approximation
to the impurity-averaged self-energy. (d) Ladder diagram vertex
correction to velocity[29]. (e) The Bethe-Salpeter equation for
the vertex of maximally crossed diagrams.
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surface mobility [18–20], we assume that ‘e is much
shorter than the phase coherence length ‘
, as required

by the quantum diffusion transport.
In the conductivity diagrams Figs. 2(a) and 2(b), the

vertex function � from the maximally crossed diagrams
usually is proportional to 1=q2, where q is the summation
of momenta before and after scattering. Since � diverges as
q ! 0, it contributes mainly to backscattering. This allows
us to sum k and k1 for small q first, and write the zero-
temperature conductivity correction from the bare and two
dressed Hikami boxes as

�F ¼ � e2NFv
2
F	

3sin2�

@
2

�2
vð1þ 2�HÞ

X
q

�ðqÞ; (3)

where �v comes from the correction to velocity from the
ladder diagrams in Fig. 2(d), with

�v ¼
�
1� 1

2

�
	

	e
� 	

	z

�
2a2b2

a4 þ b4

��1
; (4)

and each of the dressed Hikami boxes gives an extra �H

contribution as the bare Hikami box, with

�H ¼ � 1

2

�
1� ��1

v � 	

	x

�
: (5)

�v and �H reduce to 2 and �1=4, respectively, in the
absence of magnetic doping [5,10,29].

In Fig. 2, the total momentum is conserved on the
incoming and outgoing sides of the vertex �, allowing
the Bethe-Salpeter equation of the vertex to be written
as [5] �k�k�

¼ �0
k�k�

þP
k�
�0
k�k�

GR
k�
GA

q�k�
�k�k�

,

where k� þ k� ¼ q, k�;� are the incoming and out-

going momenta, respectively. For small q, the bare
vertex �0

k�k�
� hUk�;k�

Uq�k�;q�k�
iimp is found as

�0
k�k�

	 @

2�NF
½Aþ Beið’��’�Þ þ Cei2ð’��’�Þ�, with A ¼

ð	�1
e þ 	�1

z Þ a4

a4þb4
, B ¼ ½ð	�1

e � 	�1
z Þ 2a2b2

ða4þb4Þ � 2	�1
x �,

C ¼ ð	�1
e þ 	�1

z Þ b4

a4þb4
. Different from the usual 2DEG,

both the bare vertex �0
k�k�

and the advanced Green func-

tion GA
q�k�

are explicit functions of the momentum angle.

We propose an ansatz to the full vertex function

�k�k�
¼ @

2�NF	

X
n;m20;1;2

�nme
iðn’��m’�Þ; (6)

where �nm are the expansion coefficients independent of
’�;�. By putting the ansatz into the Bethe-Salpeter equa-

tion and expanding GA
q�k�

up to q2, we obtain the solution

to the expansion coefficients

� ¼ 2
g0 þQ2 iQþ 1

2Q
2þ

iQ� g1 þQ2 iQþ
1
2Q

2� iQ� g2 þQ2

2
64

3
75

�1

; (7)

where Q�¼Qx� iQy, Q2¼Q2
xþQ2

y, Q¼
vF	sin�ðqx;qyÞ, and the ‘‘Cooperon gaps’’

g0�2½a4þb4

a4
1=	

ð1=	eþ1=	zÞ�1�, g1�2½ 1=	

ð1=	e�1=	zÞ 2a2b2
a4þb4

�2=	x
�1�,

g2 � 2½a4þb4

b4
1=	

ð1=	eþ1=	zÞ � 1�. We note that it is crucial to

include all the off-diagonal terms of � in the calculation.
Without them, the vertex will be 2 times larger [33,34]
when going back to the gapless limit [5], and the derived
MC formula cannot recover to that for 1=4 of graphene
[10]. �ðqÞ in Eq. (3) can be obtained by letting k� ¼ k and
k� ¼ q� k in �k�k�

, and for q ! 0, ’k � ’q�k 	 �.

Finally, we collect the most divergent terms of the vertex

�ðqÞ 	 @=ð�NF	Þ
g0 þ ð1þ 1

g1
ÞQ2

� @=ð�NF	Þ
g1 þ ð1þ 1

g0
þ 1

g2
ÞQ2

: (8)

Zero-field conductivity correction �Fð0Þ can be calcu-
lated by performing the integral over q in Eq. (3) between
1=‘e and 1=‘
, respectively [5]. In the presence of the

perpendicular magnetic field B, q2 will be quantized
into q2n ¼ ðnþ 1=2Þð4eB=@Þ � ðnþ 1=2Þ=‘2B, where n
labels the Landau levels. Summation over n gives the
conductivity correction �FðBÞ at finite field [8]. The mag-
netoconductivity ��ðBÞ � �FðBÞ � �Fð0Þ is found for
‘2B=‘

2
e 
 1 as

��ðBÞ¼ X
i¼0;1

�ie
2

�h

�
�

�
‘2B
‘2


þ‘2B
‘2i

þ1

2

�
� ln

�
‘2B
‘2


þ‘2B
‘2i

��
; (9)

with � the digamma function,

�1¼��2
vð1þ2�HÞ

2ð1þ 1
g0
þ 1

g2
Þ ; ‘�2

1 ¼ g1
2‘2sin2�ð1þ 1

g0
þ 1

g2
Þ;

�0¼�2
vð1þ2�HÞ
2ð 1g1þ1Þ ; ‘�2

0 ¼ g0
2‘2sin2�ð 1g1þ1Þ;

(10)

and 1=‘2 � 1=‘2e þ 1=‘2m. In the absence of magnetic im-
purities, �0 ¼ 0, �1 ¼ �1=2, one predicts WAL with a
prefactor �1=2, consistent with the experimental
observations [18–20]. For a finite gap, because �0 and �1

have opposite signs, the MC formula has two competing
contributions, �1 leads to WAL, �0 to WL. ‘0 and ‘1
give corrections to ‘
, in particular, when they are much

shorter than ‘
. This formula is the key result of this

work.
We first examine the limit of weak magnetic scattering,

i.e., ‘m 
 ‘
 [17–20]. We plot MC for different �=2EF in

Fig. 3(c). For �=2EF ¼ 0, MC shows a positive cusp,
which is the signature of WAL. As �=2EF increases, MC
gradually develops a B2 dependence, and the system
evolves into the unitary regime. Further increasing
�=2EF will change the sign of MC from negative to
positive, i.e., a WL-like MC. Different from the usual
2DEG, the WL-like MC here has a prefactor�1=2, instead
of 1 [31]. This can be seen in Fig. 3(a), where we show the
weight factors of the competing WL and WAL terms in the
MC formula. In the limit of small �=2EF, �1 overweighs
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�0, so MC is mainly contributed by WAL, with the maxi-
mal prefactor �1=2. In the limit of large �=2EF, �1

vanishes and �0 goes to 1=2, then we have WL with the
maximal prefactor 1=2. As shown in Fig. 3(b), either ‘1 for
small�=2EF or ‘0 for large�=2EF is much larger than ‘
,

this keeps the system well inside the quantum diffusion
regime, and protects WAL or WL. For intermediate
�=2EF, where both the WL and WAL terms contribute,
the weak B2 MC indicates that the system is driven from
the quantum to classical diffusion regime due to the effec-
tive reduction of ‘
 by the much shorter ‘0 and ‘1. The

crossover from WAL to WL by changing �=2EF can be
understood with the Berry phase [4], which is readily
evaluated for the surface band c kðrÞ as

� i
Z 2�

0
d’

�
c kðrÞ

��������
@

@’
c kðrÞ

�
¼ �

�
1� �

2EF

�
: (11)

It gives � for WAL when �=2EF ¼ 0, and 0 for WL when
� ¼ 2EF. A similar argument was also given for the gap
opened by the finite size effect [37]. In the limit of strong
magnetic scattering ‘m � ‘
, both WAL and WL are

suppressed, as shown in Fig. 4. On the other hand, because
the Fermi energy in the ratio �=EF can be controlled
independently by gate voltage [18,19], it is possible to
observe the transition from negative to positive MC by
tuning the gate voltage even in this limit.
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