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We present the global phase diagram of the extended boson Hubbard model on a simple cubic lattice by
quantum Monte Carlo simulation with the worm update algorithm. Four kinds of phases are supported by this
model, including superfluid, supersolid, Mott, and charge density wave (CDW) states, which are identified in the
phase diagram of chemical potential μ versus nearest-neighbor interaction V . By changing the chemical potential,
a continuous transition is found from the Mott phase to a superfluid phase without breaking the translational
symmetry. For an insulating CDW state, adding particles to it gives rise to a continuous transition to a supersolid
phase, while removing particles usually leads to a first-order transition to either a supersolid or superfluid phase.
By tuning the nearest-neighbor interaction, one can realize the transition between two insulating phases, Mott
and CDW, with the same particle density, which turns out to be first order. We also confirm the result in Phys.
Rev. B 79, 094503 (2009) that a supersolid phase with average particle density less than 1/2 can exist in a small
region of the μ-V phase diagram.
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I. INTRODUCTION

Lattice models of interacting bosons and fermions such as
the Hubbard model and its various generalizations are usually
strongly correlated systems exhibiting various phases with
competing orders, which are of fundamental interest in fields
of both condensed matter and cold atomic physics. Interests in
both types of Hubbard models have been renewed recently
since they can be realized in cold atomic gases loaded in
optical lattices (for a review see Refs. [1] and [2] and references
therein). Unlike fermions, there is a natural superfluid order for
free bosons at zero temperature driven by the kinetic energy.
When the interaction is switched on, the bosons are likely to
be localized in various crystalline patterns, which may coexist
with superfluid order3–6 to give a realization of an intriguing
“supersolid” state that has been pursued since the 1950s.7–10

Recently, people have observed the nonclassical rotational
inertia in solidified 4He,11,12 implying a possible supersolid
state, which, in spite of the controversy over this topic, has
also triggered extensive studies on various boson Hubbard
models.

Experimentally, the boson Hubbard model can be used
to mimic granular superconductors, where the Cooper pairs
are described as bosons and which has been studied by
Fisher et al.13 two decades ago. With only an onsite repulsive
interaction, they showed that bosons can form either a Mott
insulating state with integer filling or a superfluid state.
Such a Mott-superfluid transition has been studied extensively
with various numerical methods.14–19 Recent experimental
progress in a cold atomic system provides another realization
of the boson Hubbard model by loading atoms into an
optical lattice with possible long-range interactions through
the dipole interaction20–22 or mediated by other intermediate
states or fermions.23–25 In addition, the boson models also
share similarities with quantum magnets; for example, the
uniaxial magnetization corresponds to insulating states of

the boson Hubbard model (see, e.g., Ref. [26]), while the
easy-plane magnetization corresponds to the superfluid state.
Hence, the studies on the boson Hubbard model may shed
light on some common issues of strongly correlated lattice
models.

Generally speaking, boson models with interactions at zero
temperature have two principal phases: (i) the superfluid and
(ii) the incompressible insulating state, which are favored
respectively by kinetic and interaction energies and can
coexist. Depending on the features of the interaction terms,
there are several types of insulating phases, such as Mott,
valence bond crystal, and charge density wave (CDW). Note
that, in this article, we define the incompressible states with
oscillating density profile as CDW, although the bosons may
not carry charges.

The extended boson Hubbard (EBH) model with onsite U

and nearest-neighbor V interactions is a minimal model in
favor of CDW and supersolid phases, which has the form

Ĥ = −t
∑
〈i,j〉

(b̂†i b̂j + b̂
†
j b̂i) + U

2

∑
i

n̂i(n̂i − 1)

+V
∑
〈i,j〉

n̂i n̂j − μ
∑

i

n̂i , (1)

where b̂
†
i (b̂i) is the creation (annihilation) bosonic operator at

site i, t is the hopping amplitude, n̂i = b̂
†
i b̂i is the particle

number, μ is the chemical potential, and 〈i,j 〉 runs over
all nearest neighbors. Recently, Hamiltonian Eq. (1) and its
hard-core version (equivalent to the quantum spin-1/2 XXZ

model) with different underlying lattices have been extensively
studied in different parameter regimes.5,6,27–34 However, a
global phase diagram of the three-dimensional (3D) EBH
model [Eq. (1)] is still lacking. Because there is no sign
problem for the EBH model, the quantum Monte Carlo (QMC)
simulation is the most convenient tool for this purpose. The
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worm algorithm35–37 will be invoked to study Hamiltonian (1)
on a simple cubic lattice, together with other perturbation and
mean-field approaches.

The system described by the EBH model can give rise to
a charge-ordered crystal at commensurate fillings. The first
one is for half filling ρ = 0.5, and the corresponding solid
state is labeled CDW I. Doping particles into this state can
lead to a supersolid state.5,6 However, as shown in Ref. [5],
doping holes into it makes it act quite differently, which may
not result in a supersolid state with ρ < 0.5, but in a phase
separation between superfluid and CDW I states, which signals
a first-order phase transition. Their argument is based on the
two following observations: (i) Taking one particle out of a
perfect CDW crystal with half filling costs almost no potential
energy but only chemical potential. At the same time, the
hopping hole also gains a kinetic energy which is quadratic
in t (∼t2). For a perfect CDW crystal, these three processes
are balanced, so one cannot take one particle out. (ii) The
CDW phase breaks the translational symmetry, leading to
a twofold degenerate ground state. If holes are doped into
the domain wall between these two degenerate phases, the
kinetic energy gained is proportional to t . Hence, the CDW
phase is unstable toward domain wall formation if the hole
density exceeds L−1 for an Ld lattice, although it is still
stable against losing one particle. This argument perfectly
explains the first-order phase transition from the CDW I to the
superfluid state with ρ � 0.5, but it fails in two circumstances.
The first is that, in one dimension, the kinetic energy is
always linear in t , and the corresponding transition is of the
Kosterlitz-Thouless type.6 The other is that, if V is comparable
to t , the kinetic energy of holes is also linear in t , which may
result in the supersolid phase with the particle density less than
half filling (see Sec. II B). This can be verified by mean-field
calculations.32,38

At unitary filling, the ground state can be either a uniform
Mott insulator with one particle per site or a charge-ordered
crystal with two particles on one sublattice and empty on the
other one which is labeled CDW II. There is a critical region
around U ∼ zV , where the two states with different translation
symmetries become degenerate; however, they are separated
thermodynamically (i.e., any local perturbation cannot take
one to the other). Correspondingly, the transition between
them is a first-order transition. Note that the aforementioned
transition from the superfluid to CDW I state by tuning the
chemical potential is weak first order.27 Far less attention has
been paid to the region with zV ∼ U by now, of which the
details are given as part of the phase diagram in this article. To
plot the ground-state phase diagram, we focus on the case with
small hopping and average particle density near to or smaller
than 1. For larger t or ρ, we expect essentially no new physics.

This article is organized as follows. In Sec. II, we shall
present the global phase diagram. The details of the order
parameters will be discussed in Sec. III. The conclusion will
be given in the last section.

II. GLOBAL PHASE DIAGRAM

A. Classical case with t = 0

We start from the classical case without hopping. The
energy per site of the ground state is a function of the particle

numbers on the two sublattices nA and nB :

ε(0)(nA,nB ) = −μ

2
(nA + nB) + zV

2
nAnB

+ U

4
[nA(nA − 1) + nB(nB − 1)], (2)

where the coordination number z = 6 for the simple cubic
lattice. The states can be labeled by (nA,nB ). The Mott states
correspond to nA = nB , and the CDW states with nA �= nB

break the translational symmetry, which is twofold degenerate.
In this article, we define the state (1,0) as the CDW I state
and (2,0) as the CDW II state and, for convenience, we only
consider nA > nB for the CDW states.

For μ < 0 the ground state is a vacuum without any
particles. As the chemical potential is increased (μ > 0), the
particles are loaded into one sublattice to form a charge-
ordered pattern with nA = 1 and nB = 0 (i.e., the CDW I state).
If we further increase the chemical potential, more particles are
loaded into the cubic lattice, which fill either the empty sites
if zV/U < 1 to form a uniform Mott state or the occupied
sites if zV/U > 1, leading to a CDW II state. In the Mott
state, each particle interacts with its nearest neighbors, which
effectively lowers the chemical potential to μ − zV , and then
the critical line between the CDW I and Mott states is simply
μ = zV . The critical line between the CDW I and II states is
a horizontal line μ = U because the chemical potential only
needs to compensate the onsite interaction U for adding new
particles.

Similarly, by studying the instability of adding particle to
a state (nA,nB), one can determine all the phase boundaries
between different classical insulating states, as shown in Fig. 1.
There is a special vertical line zV/U = 1, on which many
states can coexist with the same free energy. For example, on
the boundary between the Mott and CDW II states, there are
actually three macroscopic states, which are (1,1), (2,0), and
(0,2). In fact, some of them only exist on this line in the absence
of hopping terms; for example, states (3,1) and (1,3) on the
boundary between the Mott (2,2) and CDW (4,0) states. These
degenerate states are macroscopic and cannot be smoothly

0 1 2
0

1

2

3

4

zV
U

µ
U

CDW (1, 0)

CDW (2, 0)

CDW (3, 0)

CDW (4, 0)

Mott
(1, 1

)
CDW

(2,
1)Mott

(2,
2)

FIG. 1. (Color online) Phase diagram with zero hopping t = 0,
where the states are labeled by the particle numbers on two sublattices
(nA,nB ) with the assumption nA � nB . The states with nA < nB can
be obtained by inversion. The CDW states with one sublattice empty
on the right side. Some states can only exist on the thick solid green
line; for example, states (3,1) and (1,3).
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transformed into each other by local perturbations (i.e.,
there are infinitely high barriers between these macroscopic
states).

B. Case for finite t

For the case with finite hopping t , the particles (holes)
adding to an insulating state can gain kinetic energy, which
results in the shrinking of insulating areas in the phase diagram
(Fig. 2) compared with the classical case (Fig. 1). In three
dimensions, these mobile bosons condense at low temperature,
leading to superfluidity, which enriches the phase diagram.
There are four phases for the EBH model characterized by the
following three quantities: the particle density ρ, the superfluid
density ρs ,39 and the solid structure factor S�π at momentum
�π = (π,π,π ) with

ρs = m
〈
W 2

x + W 2
y + W 2

z

〉/
(3βL),

(3)

S�π = 1

N2

∑
�r,�r ′

e−i �π ·(�r−�r ′)〈n�rn�r ′ 〉,

where Wx , Wy , and Wz are the winding numbers along the x,
y, and z directions, respectively, β is the inverse temperature,
and m = 1/(2t) is the effective mass of the bosons. In the
insulating Mott and CDW states, particles are localized by
the interaction and the local particle number is quantized as
in the classical case. The pure superfluid state has nonzero

 0

 0.5

 1

 1.5

 2

 0.2  0.4  0.6  0.8  1  1.2  1.4

μ/
U

zV/U

Mott

CDW II

CDW I

SS
SF

SF

SF

SS

SF

 0.14

 0.18

 0.22

 0.36  0.38

CDW I

SSSF

FIG. 2. (Color online) The phase diagram in the μ/U vs zV/U

plane for the extended Bose Hubbard model on a simple cubic lattice,
where U = 40t and the lattice size is 12 × 12 × 12. Four kinds of
phases including the superfluid (SF), supersolid (SS), Mott, and CDW
states are identified. The CDW states are further classified as I and
II by the filling numbers. The solid lines with circles are the phase
boundaries calculated by QMC simulations, and the dotted lines are
from the perturbation calculations. The green lines are second-order
phase boundaries, and the red lines are first order. The inset is a zoom
near the tip of the CDW I lobe, where one can find a narrow region
below the lobe corresponding to a supersolid phase with the filling
less than one half. For details of order parameters one may refer to
Figs. 5 and 6.

superfluid density ρs and a vanishing solid structure factor S�π ,
while both are finite in the supersolid phase.

Figure 2 is the phase diagram determined by the QMC
simulation with the worm update algorithm, where the solid
lines with circles are the QMC results and the dotted lines are
from the perturbation expansion in the strong-coupling limit31

where the insulating states become unstable against adding
or removing particles. It is seen that the perturbation results
agree quite well with those of the QMC simulation in part of
the phase diagram, but it is still not applicable in some regions
since it cannot deal with the superfluid order.

Compared with the classical case in Fig. 1, the CDW I state
is detached from its insulating neighbors (i.e., the Mott, CDW
II, and vacuum states). The upper boundary of the vacuum state
is actually lowered below μ = 0 due to the hopping of bosons,
which is not shown in Fig. 1. The gaps between the different
insulating states are filled with the superfluid and supersolid
phases. The lower boundary of the CDW I state is a critical
line on which there occurs a phase separation between the
superfluid and CDW I phases, which breaks the U(1) gauge
symmetry and the translational symmetry, respectively. The
transition between them is weak first order, across which
the particle density and superfluid density exhibit a jump.
Considering the correspondence between the EBH model and
spin models, this transition is similar to the spin-flopping
process in the two- or three-dimensional anisotropic XXZ

model in the presence of a magnetic field pointing along the
z axis, which is equivalent to the EBH model in the hard-core
limit.40–42 As explained in Ref. [5], this first-order phase
transition with a particle-number jump is due to the fact that the
CDW I phase is unstable toward the domain wall formation
if the filling number exceeds L−1, although it is still stable
against doping one hole.

Doping particles upon the CDW I phase by increasing the
chemical potential does not lead to a first-order transition
as in the hard-core EBH model (or equivalently the XXZ

model), where the particle-hole symmetry makes the upper
and lower boundaries of the CDW I phase identical. In
the case of soft-core bosons, these additional particles can
move upon the alternating charge-ordered background with
the effective hopping amplitude t2, which can Bose condense
at zero temperature without destroying the staggered-density
order, and thus leads to a supersolid state with ρ > 0.5. This
transition is second order, as shown by the solid green line in
Fig. 2 where all the second-order phase boundaries are green to
distinguish them from the first-order phase boundaries, which
are red.

Continuously increasing the chemical potential upon the
supersolid phase, two different situations occur: (1) For
zV < U , the particles like to occupy the empty sites, which
weakens the CDW order and is accompanied by the occurrence
of superfluid order. Until some critical filling ρ < 1, the
CDW order is completely destroyed and a pure superfluid
state appears with the translational symmetry restored. The
transition is second order. (2) For zV > U , the additional
particles are added to the occupied sites so that the CDW
order is actually enhanced until finally entering into another
insulating state (i.e., CDW II) through a first-order phase
transition, for which the reason is the same as that from
the superfluid with ρ < 0.5 to CDW I. In this sense, the
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staggered-density order in supersolid phase is inherited from
the CDW I state and is not related to the CDW II state, since
doping holes into the CDW II state cannot smoothly result in
the supersolid state.

As shown in a previous study,5 doping holes into the CDW
I state may not lead to the supersolid state with ρ < 0.5
on a two-dimensional square lattice, contrary to the case of
doping particles. The reason is that the CDW I state has
twofold degeneracy. As long as enough particles are removed,
the insulating state becomes unstable toward the formation
of domain walls between the two degenerate states, but can
still be stable against losing one particle. This explains the
particle-density jump across the first-order phase boundary
between the superfluid and CDW I phases and that between
the supersolid and CDW II phases. However, this argument
is invalid for V close to t that is around the tip of the CDW
I lobe, where we show below that the kinetic energy gain by
doping one hole into the CDW I state is also linear in t , which
can cause instability of the CDW I state toward a supersolid
state without the formation of domain walls. Suppose that one
particle is taken from a CDW I state; the hole left behind moves
in an effective staggered potential, which is, roughly speaking,
0 in one sublattice and (z − 2)V in the other. Solving this
single-particle problem, one estimates that the kinetic energy
gain �K is

�K = −tz

⎡
⎣V

2t

(
1 − 2

z

)
+

√
1 +

(
V

2t

)2 (
1 − 2

z

)2
⎤
⎦

−1

,

(4)

which is about −2.88t in the cubic lattice near the tip of the
CDW I lobe where V ∼ 2.4t (see Fig. 2). As a consequence,
a supersolid phase with ρ < 0.5 occurs, whose boundary is
plotted in the inset of Fig. 2. This result has already been
obtained in Ref. [32] by extrapolating the QMC (stochastic
series expansion method) results to the thermodynamic limit
and by a mean-field calculation.

In the presence of a kinetic term, the vertical boundary
at zV ∼ U between Mott and CDW II states does not
yet split but moves slightly to the CDW side. On this
boundary, the free energies of both states are equal. How-
ever, they have different symmetries and are separated from
each other thermodynamically. The transition between these
two insulating states is first-order, which is similar to the
conventional liquid-solid phase transition. Further doping
particles into the Mott and CDW II states leads to the reen-
trance of superfluid and supersolid states, respectively, with
density ρ > 1.

The particles or holes can hop between nearest neighbors
on a Mott background, which leads to a kinetic energy gain
linear in t . However, they can only hop among next-nearest
neighbors in a staggered-CDW background, which gives rise
to a hopping energy proportional to t2/V . Then, as t increases,
the Mott region shrinks much faster than the CDW II region,
which results in the mismatch of the phase boundary between
them as zV ∼ U (see Fig. 2). Since doping the Mott state
with holes leads to a superfluid state, one expects a boundary
between the superfluid state and the CDW II state in the critical
region at the lower end of the vertical boundary. This phase

boundary is again first order. At the upper end, the extension of
the vertical boundary separates the superfluid and supersolid
phases in a second-order phase transition.

III. ORDER PARAMETERS

In this section we give the details of the parameters ρ, ρs ,
and S�π for different μ and V . Figure 3 is the density profile
as we vary the chemical potential for several fixed values
of V , where the plateaus correspond to the incompressible
states (i.e., the Mott and CDW I and II states), with vanishing
isothermal compressibility κT ≡ ρ−2∂ρ/∂μ. Note that these
insulating states correspond to two single points ρ = 0.5 and
ρ = 1 in Fig. 4, which is the plot of superfluid density ρs and
S�π as functions of particle density ρ.

For ρ < 0.5, the particles Bose condense to form a
pure superfluid state with a nonzero ρs but vanishing S�π ,
as shown in Fig. 4. When the particle density reaches a
commensurate value ρ = 0.5, a plateau appears, implying
κT = 0, which corresponds to the incompressible CDW I state
with translational invariance broken. This transition is first
order since the particle density, as a first-order derivative of free
energy with respect to the chemical potential, is discontinuous.
This is also reflected in Fig. 4 by the fact that a segment of
particle density below the half filling is inaccessible and, at
ρ = 0.5, S�π jumps from zero to a finite value. As the particle
density exceeds 0.5, κT becomes a finite-positive value again.
At the same time the superfluidity appears continuously on the
CDW I state to form a supersolid. The corresponding transition
is second order, since the particle density ρ is continuous but
κT jumps from zero to a finite value.

Between the two plateaus at ρ = 0.5 and ρ = 1, the slope
of the ρ(μ) curve for V/t = 3, 4, and 5 (i.e., zV < U ),
shows another jump, implying that κT is discontinuous and
is a second-order phase transition from the supersolid to
superfluid phase. This transition is manifested in Fig. 4, where
ρs remains finite in the whole region 0.5 < ρ < 1.0, but S�π
vanishes at some critical values in between. Further increasing

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1  1.2

ρ

μ/U

U=40t

V=3t
V=4t
V=5t
V=9t

FIG. 3. (Color online) Average particle density ρ as a function
of chemical potential μ for different V and for U = 40t . The first
plateau at ρ = 0.5 corresponds to the CDW I phase, and the second
one corresponds to the Mott phase for V/t = 3,4,5 and the CDW II
phase for V/t = 9. The system size is 12 × 12 × 12.
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 0.2

 0.4
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 0.8
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U=40t

 0.2
 0.4
 0.6
 0.8
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 0.2  0.4  0.6  0.8  1  1.2

S
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ρ

V=3.0t
V=4.0t
V=5.0t
V=9.0t

FIG. 4. (Color online) Superfluid density ρs and solid structure
factor S�π as functions of the particle density ρ at U/t = 40. Note that
the plateaus of constant ρ in Fig. 3 are only single points here.

the chemical potential, the system enters the Mott phase,
which corresponds to the plateau with ρ = 1 in Fig. 3 through
a second-order phase transition. At the transition point, ρs

vanishes, as shown in Fig. 4.
For V = 9t (i.e., zV/U > 1), the second plateaus in Fig. 3

corresponds to the CDW II state, into which the system enters
directly from the supersolid phase as μ is increased. The
transition is first-order, as shown in Fig. 3 by the jump in
particle density. It is also reflected in Fig. 4 where a segment
of particle density ρ is not accessible before ρ reaches 1.

In Fig. 5, we plot the rescaled order parameters ρ̃s ≡
ρs/ρs,max and S̃�π ≡ S�π/S�π,max as functions of zV/U around

 0.2
 0.4
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 0.6
 0.8
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π
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 0.6
 0.8
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 0.359  0.36  0.361 0.362 0.363 0.364 0.365
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 0.4
 0.6
 0.8
 1

zV/U

S
~

π

ρ~s

FIG. 5. Rescaled order parameters ρ̃s and S̃�π as functions of
zV/U , which are normalized by their maxima. The upper, middle,
and bottom panels correspond to μ/U = 0.160, 0.155, and 0.145,
respectively. The supersolid phases occur in the shaded areas. The
lattice size is 12 × 12 × 12.

 0.485

 0.49

 0.495

 0.5

 0.505

 0.359  0.36  0.361  0.362  0.363  0.364  0.365

ρ

zV/U

μ/U=0.160
μ/U=0.155
μ/U=0.145

FIG. 6. (Color online) Particle density vs zV/U for μ/U =
0.160, 0.155, and 0.145.

the CDW I lobe, where ρs,max ≈ 0.6 and S�π,max ≈ 0.2. In
the plot, we take three characteristic values of the chemical
potential μ/U = 0.160, 0.155, and 0.145 from the top to
the bottom panel. In the shaded areas, when V increases, the
superfluid density ρs decreases while the solid structure factor
S�π increases, and both ρs and S�π are nonzero in this region,
indicating a supersolid state. The supersolid area becomes
more and more narrow as μ decreases, until it finally shrinks
to a point on the zV/U axis when μ/U ∼ 0.140, which
implies that two second-order phase boundaries merge into one
first-order phase boundary across which the order parameters
ρs and S�π are both discontinuous. The corresponding density
profiles are plotted in Fig. 6, where we observe that the
particle density is always smaller than 0.5 for μ/U = 0.145,
corresponding to the bottom panel in Fig. 5, until it enters
the CDW I phase, which implies that the supersolid state can
exist below half filling. For μ/U = 0.160, the situation is
different where ρ decreases as V increases, which can be
intuitively attributed to the loss of effective chemical potential
due to the nearest-neighbor interaction V in the mean-field
level. The case of μ/U = 0.155 shows an intermediate
behavior, for which the particle number first decreases then
increases slightly above 0.5 and finally reaches the CDW I
state.

IV. CONCLUSION

In this article, we present the global phase diagram
(Fig. 2) of the 3D extended Bose Hubbard model. The
EBH model exhibits four kinds of ground states, including
(1) the Mott state without breaking any symmetry, (2) the
CDW I and II states with translational symmetry broken,
(3) the superfluid state with U(1) gauge symmetry broken,
and (4) the supersolid state with both symmetries broken.
By using a QMC simulation as well as other analytical
tools, we identify the transition type between these phases.
Among them, the first-order phase boundary includes the
boundaries between the superfluid and CDW (I and II)
states and between the Mott and CDW II states. The
other boundaries are all continuous. The critical regions for
zV/U ∼ 1 and the tip of the CDW I lobe are examined
in detail. We demonstrate that, in the present 3D EBH
model, the supersolid phase with ρ < 0.5 can appear in
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a small region near the CDW I lobe where the hopping
amplitude t is comparable to the nearest-neighbor interaction
V . In this region, the general “domain wall” argument for
the nonexistence of the supersolid state with ρ < 0.5 is
no longer applicable, since it is based on the assumption
that t 
 V .
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