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In a recent work [Potter and Lee, Phys. Rev. Lett. 105, 227003 (2010)], it was demonstrated by means of
numerical diagonalization that the Majorana end states can be localized at opposite ends of a sample of an
ideal spinless p-wave superconductor with the strip geometry beyond the strict one-dimensional limit. Here, we
reexamine this issue and study the topological quantum phase transition in the same system. We give the phase
diagrams of the presence of Majorana end modes by using of Z2 topological index. It is found that the topological
property of a strip geometry will change in an oscillatory way with respect of the sample width.

DOI: 10.1103/PhysRevB.84.054532 PACS number(s): 71.10.Pm, 74.20.Rp, 74.78.−w

I. INTRODUCTION

Recently, there is a growing interest in searching for Ma-
jorana fermions in the condensed matter physics community.1

Unlike traditional fermions, Majorana fermions are their own
antiparticles and are expected to obey non-Abelian statistics.2,3

Due to novel properties of the Majorana particles, it has
been proposed that they can be used in realizing the fault-
tolerant topological quantum computation protected from
local decoherence.4–8 The early experimental efforts were
focused on the γ = 5/2 fractional quantum Hall state,9,10

in which the Majorana fermions are expected to be charge
e/4 quasiholes. Other proposed candidate materials include
the p-wave superconductors,2,11–13 in which the Majorana
fermions are zero-energy single-particle states trapped in
vortex cores and superfluids in the 3He-B phase.14,15 Re-
cently, several new suggestions have been proposed to
look for Majorana fermions, such as topological insulators
proximate to an s-wave superconductor,16–24 a semicon-
ducting thin film sandwiched between an s-wave super-
conductor and a magnetic insulator,25–27 one-dimensional
(1D) semiconductor-superconductor heterostructures based
on quantum wires,28–30 noncentrosymmetric superconductors
with broken time-reversal symmetry,31,32 and s-wave super-
fluid of ultracold atoms.33 Although extensive efforts have
been made, direct evidence of Majorana fermions is still
absent. Thus, it is still a challenging mission to produce and
detect the mysterious Majorana particles.

In his pioneering work, Kitaev5 found that Majorana
particles can be localized at the ends of a 1D px + ipy su-
perconducting wire. In a recent paper,34 Potter and Lee moved
beyond the strict 1D limit and explored further the notion of
Majorana end states in quasi-1D px + ipy superconductors.
They considered a spinless p-wave superconductor with finite
width, and showed by means of numerical diagonalization
that the Majorana end states can be localized at opposite ends
of a sample with the strip geometry. We also note that a
similar set of ideas on Majorana fermions in the quasi-1D
wires was discussed by Wimmer et al.35 (see Appendix C
of the supplement of Ref. 35). Very recently, searching for
Majorana fermions in multiband semiconducting nanowires
has attracted much attention and also opens a new path in
the challenging field.36–39 In this paper, motivated by the

work by Potter and Lee,34 we reexamine an ideal spinless
quasi-1D px + ipy superconductor and study the topological
quantum phase transition in the this system. Firstly, based
on the tight-banding model, we give Majorana edge modes
localized at boundaries of a sample with the sufficiently large
width, and through analytical solutions in a model calculation
for a strip of finite width, we find that two Majorana fermions
on the two edges can couple together to produce a gap in the
excitation spectrum under the periodic boundary condition
along the longitudinal direction. Then, we give the phase
diagrams of the presence of Majorana end modes in quasi-1D
sample by using of Z2 topological index. We find that the
topological property of a strip geometry will change in an
oscillatory way with respect of the sample width.

The paper is organized as follows: in Sec. II, we shall
give a square-lattice tight-binding model to describe a spinless
p-wave superconductor. In Sec. III, we shall investigate the
behaviors of Majorana edge states localized at boundaries of
the sample with finite width, and the energy gap opened due to
the coupling of two Majorana fermions at opposite boundaries
is given through analytical solutions in a model calculation.40

In Sec. IV, we shall calculate the Z2 topological index and
plot the phase diagrams of the presence of Majorana end
modes in the quasi-1D p-wave superconductors. By analyzing
the phase diagrams, we shall then give the findings in the
topological quantum phase transition in quasi-1D spinless
p-wave superconductors based on the tight-binding model.
We shall summarize our conclusions in Sec. V.

II. MODEL

We consider a two-dimensional (2D) Kitaev model of
spinless p-wave superconductors on a square-lattice, which
is described by the following Hamiltonian5,34

H =
L∑

j=1

n∑
α=1

[−μc
†
j,αcj,α − (tc†j,αcj,α+1 + |�|cj,αcj,α+1

+ tc
†
j,αcj+1,α + i |�| cj,αcj+1,α + h.c.)], (1)

where c
†
j,α creates an electron on site (j,α), t (> 0) is the

hopping amplitude, μ is the chemical potential, |�| (> 0) is
the p-wave pairing amplitude, and the lattice spacing is taken
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as unity. Here, we assume a strip geometry in which the lattice
site numbers are L along the x-axis direction and n along the
y-axis direction (the sample width direction), which totals N =
nL fermionic sites. First, one introduces a periodic boundary
condition along the x-axis direction, i.e., c

†
L+1,α = c

†
1,α , and

uses the Fourier transform of the operator c
†
j,α ,

c
†
j,α = 1√

L

∑
q

c†α (q) e−iqj , (2)

where q = qx is the wave vector along the x-axis, and −π �
q � π . In terms of the new creation and annihilation operators
c†α (q) and cα (q), the Hamiltonian Eq. (1) can be rewritten as

H =
∑

q

n∑
α=1

{−(μ + 2t cos q)c†α(q)cα(q)

− [tc†α(q)cα+1(q) + |�|cα(q)cα+1(−q)

+ i|�|e−iqcα(q)cα(−q) + h.c.]}. (3)

Then, we define a set of the operators γ2α−1 (q) and γ2α (q) as

γ2α−1(q) = i[c†α(−q) − cα(q)], (4)

γ2α(q) = c†α(−q) + cα(q), (5)

which satisfies the anticommutation relation {γ †
m(q),γn(q ′)} =

2δmnδqq ′ and γ
†
m(q) = γm(−q). In fact, γm(0) is just a Majorana

fermion operator due to γ
†
m(0) = γm(0). In the basis of the news

operators γ2α−1(q) and γ2α(q), the Hamiltonian Eq. (3) has the
following form:

H = i
1

4

∑
q

∑
η,κ

Bη,κ (q) γη (−q) γκ (q) , (6)

where the elements of the 2n × 2n matrix B (q) are given as

B2α,2α = −B2α−1,2α−1 = −2i |�| sin q, (7)

B2α,2α−1 = −B2α−1,2α = −μ − 2t cos q, (8)

B2α,2α+1 = −B2α+1,2α = −t − |�| , (9)

B2α−1,2α+2 = −B2α+2,2α−1 = t − |�| , (10)

and the else elements are zero.
If we consider also the periodic boundary condition along

the y-axis direction, the bulk excitation spectrum of a 2D
square-lattice Kitaev model is given by

E(q) = {[2t(cos qx + cos qy) + μ]2

+ 4|�|2(sin2 qx + sin2 qy)}1/2. (11)

In general, the spectrum Eq. (11) has a gap, but the gap
will close when μ = −4t at q = (qx,qy) = (0,0) or μ = 4t

at q = (±π, ±π ) or μ = 0 at q = (0, ±π ) and q = (±π,0).
Actually, |μ| = 4t is a phase transition line. For a strip
geometry with the periodic boundary condition along the
x-axis direction and the open boundary condition along the
y-axis direction, if the sample width is sufficiently large (i.e.,
the lattice site numbers n is much larger than superconducting
coherence length ξ0 ∼ t/ |�|), a pair of gapless chiral edge
modes per boundary always present for −4t < μ < 0 and
0 < μ < 4t . In the former parameter region, the gapless points
are present at q = qx = 0, and in the latter at q = ±π . The

FIG. 1. (Color online) The excitation spectrum obtained by
numerical diagonalization of the Hamiltonian Eq. (3) with the
parameters n = 100, �/t = 0.5. (a) μ/t = −2.0; (b) μ/t = 2.0. The
(red) solid and dashed lines correspond to the edge modes, which are
localized at opposite boundaries of the sample, respectively.

excitation spectra obtained by numerical diagonalization of
the Hamiltonian Eq. (3) with n = 100 are plotted in Fig. 1,
where the chiral edge modes are shown inside the bulk gap
and the energies of chiral edge modes are ±2 |�| sin q. It is
interesting to note that different from the continuum model, the
minimum of the edge dispersion shifts from q = 0 to q = π

as one goes from negative to positive μ in the tight-binding
model. This result can be understood based on the fact that if in
the whole 1D Brillouin zone (−π � q � π ) the gapless points
are present at both q = 0 and ±π , the edge modes with the
spectrum ±2 |�| sin q would intersect Fermi energy (assumed
inside the excitation gap) four times (an even multiple of two),
which violates the topological stability.41–43 Hence, the edge
modes must merge into the excitation spectrum at finite q, and
the gapless points occur either at q = 0 or q = π , but not at
both.44

As the sample width is decreased, due to the finite size
effect, the wave functions of the edge modes on opposite edges
overlap and mix, thus the spectrum reopens a gap. In Sec. III,
we will focus on this issue.

054532-2
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III. MAJORANA EDGE STATES IN THE BOUNDARIES
OF p-WAVE SUPERCONDUCTORS

Here, we introduce a two-component field operator for each
site α along the y-axis direction:

d̂α (q) = 1

2

[
γ2α−1 (q)
γ2α (q)

]
. (12)

The Hamiltonian Eq. (6) can be expressed in the terms of
two component creation and annihilation operators d̂†

α (q) and
d̂α (q) as

H =
∑
q,α

{d̂†
α(q)Ê d̂α(q) + [d̂†

α(q)T̂ d̂α+1(q) + h.c.]}, (13)

where

Ê = −2|�| sin qσz − (μ + 2t cos q)σy, (14)

T̂ = −tσy − i|�|σx, (15)

with σi (i = x,y,z) being the Pauli matrices. We define the
single particle states of the form

� (q) =
∑

α

d̂†
α (q) ψα |0〉 , (16)

where |0〉 is the vacuum state annihilated by the operator d̂α (q),
and ψα = (ψα1,ψα2)T is the two-component amplitude with
index α. An open-boundary condition ψα=0 = ψα=n+1 = 0 is
introduced along the sample width direction. The correspond-
ing Schrödinger equation is given by

Ê (q) ψα + T̂ (q) ψα+1 + T̂ † (q) ψα−1 = ε (q) ψα. (17)

Note that Eq. (17) is analog to the equation given in studying
edge modes of topological insulators based on the tight-
binding model.44–46

We study solutions of the form ψα ∼ λαψ with λ being a
general complex number.47 First, substituting the ansatz into
Eq. (17), we have

[Ê (q) + λT̂ (q) + λ−1T̂ † (q)]ψ = ε (q) ψ. (18)

Thus, the secular equation gives an equation about λ and ε (q):

(t2 − |�|2)z2 + 2t(μ + 2t cos q)z

= ε2 − 4|�|2(1 + sin2 q) − (μ + 2t cos q)2, (19)

where z = (λ + λ−1). Note that if λ is a solution, so is λ−1.
Thus, for every exponentially increasing solution, there exists
another one which exponentially decreases.47 Four roots of λ

are given by

λ1,2 =
z± +

√
z2± − 4

2
, λ3,4 =

z± −
√

z2± − 4

2
, (20)

where z± are two roots of z in Eq. (19). We define two of four
roots of λ as λ±, which satisfy the relation |λ−1

± | < 1, and then
the other two roots of λ are λ−1

± satisfying |λ−1
± | > 1.

Now we consider the edge states. For convenience, a
symmetric boundary condition is used in the following, that
is ψα̃=−Y/2 = ψα̃=Y/2 = 0. Here, Y = n + 1, and the new

index α̃ = α − (n + 1)/2. Thus, for the wave function ψα̃ =
(ψα̃1,ψα̃2)T , we have an analytical expression:48

ψα̃1 = c̃+f+ (q,α̃) + c̃−f− (q,α̃) , (21)

ψα̃2 = d̃+f+ (q,α̃) + d̃−f− (q,α̃) , (22)

where

f+(q,α̃) = cosh(λ̃+α̃)

cosh(λ̃+Y/2)
− cosh(λ̃−α̃)

cosh(λ̃−Y/2)
, (23)

f−(q,α̃) = sinh(λ̃+α̃)

sinh(λ̃+Y/2)
− sinh(λ̃−α̃)

sinh(λ̃−Y/2)
, (24)

with λ̃± = ln λ±. The nontrivial solution for the coefficients
c̃± and d̃± in the wave functions leads to a secular equation:

(t2 − |�|2)(cosh2 λ̃+ + cosh2 λ̃−) + 2 |�|2
= 2t2 cosh λ̃+ cosh λ̃− − T |�|2 sinh λ̃+ sinh λ̃−, (25)

with

T = tanh(λ̃+Y/2)

tanh(λ̃−Y/2)
+ tanh(λ̃−Y/2)

tanh(λ̃+Y/2)
. (26)

Equations (20) and (25) give the energy dispersions and the
values of two characteristic quantities λ± = eλ̃± .

When the sample width is sufficiently large, i.e., in the limit
of n → ∞, we can find two chiral edge modes with energy

ε± (q) = ±2 |�| sin q, (27)

and

λ± = − (μ + 2t cos q) ±
√

(μ + 2t cos q)2 − 4t2 + 4 |�|2
2 (t + |�|) .

(28)

For nonzero q, the eigenstates for ε± > 0 become concentrated
on one edge or the other, depending on the sign of q, that is
the left-moving and right-moving edge modes are localized
at the opposite boundaries, respectively.2 Equation (27) is
consistent with the result by numerical diagonalization (see
Fig. 1). Interesting to note the cases of q = 0 (for μ < 0) and
π (for μ > 0); one has zero-energy mode ε (q = 0/π ) = 0,
which corresponds to the Majorana edge state in p-wave
superconductors.2

Actually, there are no exact ε = 0 modes for a finite-width
sample. One of the key features for the solution of a finite
width is the gap Eg opening for the energy dispersion of the
edge state. From Eqs. (20) and (25), one has

ε2 − 4|�|2 sin2 q = 2t(μ + 2t cos q)(cosh λ+ + cosh λ−)

+ (μ + 2t cos q)2 + 4t2 cosh λ+ cosh λ−
− 2T |�|2 sinh λ+ sinh λ−; (29)

thus, it can be found that a finite-energy gap Eg at q = 0 (for
the case of μ < 0) is approximately

Eg � |�|
√∣∣∣∣2μ (μ + 4t)

t2 − |�|2
∣∣∣∣e−n/l0 , (30)
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and at q = π (for the case of μ > 0)

Eg � |�|
√∣∣∣∣2μ (μ − 4t)

t2 − |�|2
∣∣∣∣e−n/l0 , (31)

where l−1
0 = min(|ln |λ+|| , |ln |λ−||), and l0 denotes the lo-

calization length of the edge mode. The gap Eg will
decrease exponentially with increase of the width of the
strip.

IV. MAJORANA END STATES IN QUASI-1D p-WAVE
SUPERCONDUCTORS

In a recent work by Potter and Lee,34 two well-isolated
Majorana end states localized at opposite ends of the strip
geometry have been obtained by numerical diagonalization
of the Hamiltonian Eq. (1). Here we will give the phase
diagrams of the presence of Majorana end modes in quasi-1D
p-wave superconductors by using topological arguments due
to Kitaev.5 To this aim, we consider the 2n × 2n matrix B (q)
in the Hamiltonian Eq. (6). The matrix B is an antisymmetric
matrix when q is equal to zero or π , such that we can
calculate the Pfaffians PfB (0) and PfB (π ). The topological
property of the system described by the Hamiltonian Eq. (6)
is characterized by a Z2 topological index (Majorana number)
M:

M = sgn [PfB (0)] sgn [PfB (π )] = ±1, (32)

where +1 corresponds to topologically trivial states and −1 to
topologically nontrivial states (i.e., the existence of zero mode
Majorana end states).5,28,32,36

For the simplest case, there is only one lattice site along
the y-axis direction (i.e., n = 1). This case is just the
Kitaev original model.5 Two 2 × 2 antisymmetric matrices
are

Bn=1 (0/π ) =
[

0 μ ± 2t

− (μ ± 2t) 0

]
, (33)

and PfBn=1 (0/π ) = μ ± 2t , where “+” and “−” correspond
to the cases of q = 0 and π , respectively. The Majorana
number for the case of the strict 1D limit is

Mn=1 = sgn (μ + 2t) sgn (μ − 2t) ; (34)

thus, we have the topologically nontrivial condition

2 |t | > |μ| (|�| 	= 0) . (35)

Equation (35) is the result of Kitaev,5 who demonstrated for a
long open chain (in the limit of L → ∞) there are zero-energy
Majorana end states localized near per boundary point under
the condition Eq. (35). However, if the chain length L is finite,
there is a weak interaction between two unpaired Majorana
fermions.5 Following the method given in Sec. III, we can
also obtain the energy gap opened due to the finite-size effect
approximately as

�g � |�|
√∣∣∣∣2(4t2 − μ2)

t2 − |�|2
∣∣∣∣e−L/l̃0 , (36)

FIG. 2. (Color online) Phase diagram for the quasi-1D p-wave
superconductor model as a function of the p-wave pairing amplitude
and chemical potential for even lattice site numbers n along the
y-axis direction. “N” denotes the topologically nontrivial region in
the presence of zero-mode Majorana end states, and “T” denotes the
topologically trivial region without zero-mode states. When |�| /t =
0.1, the solid (red) lines and dotted (blue) lines guide the values of
μ/t , corresponding to the topologically nontrivial and trivial phases,
respectively. (a) n = 2; (b) n = 4; (c) n = 6; (d) n = 8; (e) n = 10.

where l̃−1
0 = min(|ln |x+|| , |ln |x−||), with

x± = −μ ±
√

μ2 − 4t2 + 4 |�|2
2 (t + |�|) . (37)

Here, l̃0 indicates the localization length of the Majorana end
states. Thus, the energy gap �g vanishes as exp (−L/l̃0) in an
open chain.5
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FIG. 3. (Color online) Phase diagram for the quasi-1D p-wave
superconductor model as a function of the p-wave pairing amplitude
and chemical potential for odd lattice site numbers n along the y-
axis direction. “N” denotes the topologically nontrivial region in the
presence of zero-mode Majorana end states, and “T” denotes the
topologically trivial region without zero-mode states. When |�| /t =
0.1, the solid (red) lines and dotted (blue) lines guide the values of
μ/t , corresponding to the topologically nontrivial and trivial phases,
respectively. (a) n = 3; (b) n = 5; (c) n = 7; (d) n = 9; (e) n = 11.

For the case of n = 2, the lattice site numbers along the
y-axis direction are two. Two 4 × 4 antisymmetric matrices
are

Bn=2 (0/π )

=

⎡
⎢⎣

0 μ ± 2t 0 t − |�|
− (μ ± 2t) 0 − (t + |�|) 0
0 t + |�| 0 μ ± 2t

− (t − |�|) 0 − (μ ± 2t) 0

⎤
⎥⎦. (38)

The direct calculation yields the Pfaffians PfBn=2 (0/π ):

PfBn=2 (0/π ) = (μ ± 2t)2 + |�|2 − t2. (39)

For the larger lattice site numbers n (�3), PfBn (0/π ) can be
also calculated analytically, and we obtain a recursion relation

PfBn (0/π ) = a±PfBn−1 (0/π ) + bPfBn−2 (0/π ) , (40)

where a± = μ ± 2t and b = |�|2 − t2. We further solve
Eq. (40) and give an analytic formula for PfBn (0/π ):

PfBn (0/π ) =
(
rn+1

1 − rn+1
2

)
√

a2± + 4b

, (41)

where

r1 =
a± +

√
a2± + 4b

2
, r2 =

a± −
√

a2± + 4b

2
. (42)

According to the Pfaffians PfBn (0/π ), one can compute M as
a function of the physical parameters and then plot the phase
diagram showing a sequence of topological phase transition
for different lattice site numbers n. Figures 2 and 3 plot the
phase diagrams for the even and odd lattice site numbers n

along the y-axis direction, respectively. The phase diagrams
of this tight-binding model have the symmetry on positive
and negative μ values; thus, here we only plot on negative
μ values because the other part on positive μ values is a
mirror image. However, this μ → −μ symmetry is not generic
to models with, say, next-nearest-neighbor hopping or next-
nearest-neighbor pairing.

We now analyze these phase diagrams. First, it is observed
that for the given value of |�| /t , the topologically nontrivial
and trivial phases alternate with the variation of the value
of μ/t . As an example, the case of |�| /t = 0.1 is shown
in Figs. 2 and 3. From Figs. 2 and 3, it is shown that the

FIG. 4. (Color online) Excitation spectrum Em/ |�| for a square-
lattice Kitaev model obtained by numerical diagonalization of the
Hamiltonian Eq. (1) with parameters: L = 100, n = 10, |�| /t = 0.1.
m labels eigenvalues of the Hamiltonian Eq. (1). Here, only the partial
low excitation energies are presented. (a) μ/t = −1.0 (E1/ |�| =
1.09 × 10−5); (b) μ/t = −1.5 (E1/ |�| = 0.1116); (c) μ/t = −2.0
(E1/ |�| = 1.54 × 10−5); (e) μ/t = −2.5 (E1/ |�| = 0.1595).
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FIG. 5. (Color online) Excitation spectrum Em/ |�| for a square-
lattice Kitaev model obtained by numerical diagonalization of the
Hamiltonian Eq. (1) with parameters: L = 100, |�| /t = 0.1, μ/t =
−1.1. m labels eigenvalues of the Hamiltonian Eq. (1). Here, only the
partial low-excitation energies are presented. (a) n = 6 (E1/ |�| =
0.0966); (b) n = 7 (E1/ |�| = 8.21 × 10−6); (c) n = 8 (E1/ |�| =
7.39 × 10−6); (e) n = 9 (E1/ |�| = 0.1102).

phase diagrams have different properties for the even and odd
lattice site numbers n. Such an odd-even effect should be an
artifact of the tight-binding model and may not be generic to all
quasi-1D p-wave supercondurtors, since the order parameter
for Cooper pairing is presented as a model parameter, not given
by a self-consistent mean field calculation. Even in a realistic
material, the oscillation of the critical temperature with the
monolayer number of the sample was observed experimentally
as quantum confinement effect.49 It is not clear what the real
meaning of odd and even n in this model calculation, which
may have no counterpart in the continuous model as a long
wave length limit. However, the oscillation of the presence and
absence of the zero mode still clearly exhibits in the continuous
model as quantum confinement effect.

According to the topological argument above, the topo-
logically nontrivial phase corresponds to the existence of the
zero energy mode, which can be justified by the excitation
spectrum obtained by the numerical diagonalization of the
Hamiltonian Eq. (1). According to the work by Potter and
Lee,34 for sufficiently long samples (L 
 en/ξ0 ), one can find
spatially isolated zero-energy Majorana end states localized
at opposite ends of the sample with the strip geometry. In
Fig. 2(e) (with n = 10), we see that if |�| /t is fixed at 0.1, the
cases of μ/t = −1.0 and −2.0 correspond to the topologically
nontrivial phase; the cases of μ/t = −1.5 and −2.5 to the
topologically trivial phase. For the above four parameter cases,
the excitation spectra of the Hamiltonian Eq. (1) with L = 100
and n = 10 are plotted in Fig. 4. Numerical diagonalizations

show that the zero-energy modes indeed exist in the cases of
μ/t = −1.0 and −2.0; there are no zero-energy modes in the
cases of μ/t = −1.5 and −2.5. The conclusions are consistent
with the results by Potter and Lee.34

We note also an interesting property from the phase
diagrams. For some given parameters, the topological property
of a strip geometry will change in an oscillatory way with
respect to the sample width. For instance, in Fig. 2, when
the parameters |�| /t = 0.1 and μ/t = −2.0 are fixed, the
topologically nontrivial and trivial phases alternate when
the lattice site numbers n (even numbers) along the y-axis
direction change from n = 2 to n = 10. While in the cases
of the odd n, μ/t = −2.0 is a topological phase transition
line (see Fig. 3). As another example, we take the parameters
|�| /t = 0.1, μ/t = −1.1, and then from Figs. 2 and 3 it is
presented that the topologically nontrivial phases exist in the
cases of n = 2, 4, 5, 7, 8, 10, and 11; while the cases of
n = 3, 6, and 9 correspond to the topologically trivial phases.
In Fig. 5, the excitation spectra for four different sample widths
(n = 6, 7, 8, and 9) are shown. For the cases n = 7 and 8,
there are zero-energy modes in the given parameters; while
the zero-energy modes disappear in the cases of n = 6 and 9.
Thus, the topological property obtained by the phase diagrams
is consistent with the results by numerical diagonalization.

V. CONCLUSIONS

In this paper, we investigate crossover from Majorana
edge to end states in an ideal spinless quasi-1D p-wave
superconductor based on the tight-banding model. We found
the existence of Majorana edge modes when the sample width
is sufficiently large, and then through analytical solutions
in a model calculation, two Majorana fermions at the two
edges can couple together to produce a gap in the excitation
spectrum for a strip of finite width under the periodic boundary
condition along the longitudinal direction. We calculate Z2

topological index in the quasi-1D sample and plot the
phase diagrams of the presence of Majorana end modes. By
analyzing the phase diagrams, we find that for some given
parameters the topological property of a strip geometry will
change in an oscillatory way with respect of the sample
width.
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