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We address recent spin transport experiments in ultracold unitary Fermi gases. We provide a theoretical
understanding for how the measured temperature dependence of the spin diffusivity at low T can disagree with
the expected behavior of a Fermi liquid (FL), while the spin susceptiblity, following the experimental protocols,
is consistent with a FL picture. We show that the experimental protocols for extracting the spin susceptibility
implicitly reflect a FL viewpoint; relaxing this leads to consistency within but not proof of a pseudogap-based
theory. Our transport calculations yield insight into the observed suppression of the spin diffusion constant at
lower T .
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Recent measurements associated with mass transport [1]
and spin transport [2] in ultracold Fermi gases and superfluids
are of great interest principally because they provide detailed
information about the excitation spectrum, thereby strongly
constraining microscopic theories. Equally important are their
widespread implications for a host of different strongly
correlated systems, ranging from guark-gluon plasmas to
high Tc cuprates. A commonality of these materials is the
short mean free paths that lead to “near-perfect fluidity” [1],
“bad metallicity” [3], and now bad spin conductivity [2].
The latter are Fermi-gas-based materials with small spin
diffusivities Ds that approach the quantum limited value h̄/m

as the temperature is lowered. Importantly, the nature of the
excitations in these Fermi gases is currently under debate [4,5]
and a controversy has emerged as to whether the associated
normal state of these superfluids is a Fermi liquid (FL) or
whether it contains an excitation (pseudo)gap.

The goal of this Rapid Communication is to address the
recent spin transport experiments by Sommer et al. [2] that
measure the spin diffusivity Ds , the spin diffusion-associated
lifetime τs(T ) (which enters into the spin conductivity σs),
and thereby deduce the spin susceptibility χs = σs/Ds . There
are mixed features that have been experimentally reported
for these transport variables, both consistent and inconsistent
with FL theory, so that a single self-consistent description
of the phenomenology was apparently not possible. The
way in which the present Rapid Communication resolves
this discrepancy is to present a careful calculation of the
spin conductivity and susceptibility. When the pseudogap is
included in the transport properties, one recovers a consistent
interpretation of both χs and Ds , in contrast to the FL approach,
which leads to a mixed interpretation. We show that the
quantity σs can only be assumed (as in Ref. [2]) to be simply
proportional to the relaxation time within a FL description. In
the presence of a pseudogap, the carrier number that enters
into the spin conductivity is temperature dependent. This is
physically reasonable, since a gap in the fermionic excitation
spectrum above the transition at Tc in the unitary gas must
reduce the number of carriers in the normal state, leading to a
temperature-dependent carrier number.

Before embarking on the detailed calculations, it is useful to
list some of the key findings and results. The spin susceptibility
can be related to the spin conductivity as χs ≡ σs/Ds , where
the left-hand side, in a FL picture, can be written as

χFL
s ≡ n

m
τs(T )/Ds,

n

m
= const. (1)

Here n/m corresponds to the usual transport definition for
the carrier number divided by (bare) mass, e.g., n/m =
(2/3)

∑
(∂ξp/∂p)2(−∂f (ξp)/∂ξp) for quasiparticle dispersion

ξp, where f is the Fermi function. By contrast, in our non-FL
pseudogap model, we will show using spin-spin correlation
functions that the spin conductivity is of the general form

σ pg
s =

[
n

m
(T )

]
eff

τs(T ) = 2

3
τs

∑
p

v2
p

(
− ∂f (Ep)

∂Ep

)
. (2)

Here Ep =
√
ξ 2

p + �2, where � is the pairing gap, and vp =
∂Ep/∂p. The spin susceptibility in the presence of a pseudogap
(derived from the spin-spin correlation functions) is

χs =
∑

p

(
− ∂f

∂Ep

)
. (3)

To obtain the above results, we begin with the general
spin-spin correlation function called Qs

00(q,ω). It follows
from Eq. (6) and Ref. [6] that the spin conductivity is
σs = − limω→0 limq→0(ω/q2)Im Qs

00(q,ω)/π . Any consistent
theory of the spin transport must be compatible with the f-sum
rule ∫ ∞

−∞
dω ωχ ′′(q,ω)/π = nq2/m, (4)

where χ ′′(q,ω) = −Im Qs
00/π . We have analytically verified

this to be satisfied in the approach below. From the spin-
spin correlation function, one derives the spin susceptiblity
χs = ∫ ∞

−∞ dω χ ′′(q,ω)/πω which, in the present case, leads
to Eq. (3).

The physics of transport in the unitary gas is complicated
because the pseudogap in the normal state [7,8] requires that
both fermions and fermionic pairs be considered. In recent
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papers [6,9], we have included both types of quasiparticles
in addressing the observed anomalously low shear viscosity
[1] both above and below Tc, as well as magnetic and
nonmagnetic Bragg scattering [6]. While previous studies
of spin transport in the cold Fermi gases have employed,
for example, quantum Monte Carlo calculations, Boltzmann
transport, and variational approaches [10,11], we choose
to use the Kubo formalism that more readily addresses
conservation laws and sum rules. The underlying theory is
a BCS-BEC crossover theory in a t-matrix formulation [8].
At T = 0, the system is in the BCS ground state where
there are only superconducting pairs characterized by the gap
�sc. For temperatures 0 < T � Tc, there is a comixture of
superconducting pairs, noncondensed pairs characterized by
the gap �pg, and fermionic quasiparticle excitations.

Essential to satisfying conservation laws and sum rules
is the incorporation of Ward identities and collective mode
physics. These issues are addressed in Refs. [6] and [12].
The presence of both condensed and noncondensed pairs
in transport can be accommodated with the introduction
of the usual Maki-Thompson (MT) and Aslamazov-Larkin
(AL) diagrams. These are incorporated in a fashion that is
demonstrably consistent with gauge invariance. A different
diagram subset necessarily appears in the spin response,
as compared with the mass transport (or electromagnetic
response); in the former, the AL diagrams are not present nor

do collective mode effects enter. The fermionic self-energy
that we obtain has, above Tc, been widely used in pseudogap
theories (such as those of Senthil and Lee [13] and others [14]).
It is

	(p,iωn) = −iγ + �2
pg

iωn + ξp + iγ
+ �2

sc

iωn + ξp
, (5)

where γ is the fermionic inverse lifetime associated with
noncondensed pairs. This lifetime is due to fermion-pair
interconversion and the general form for 	 in Eq. (5) has
been applied in both experimental [15] and theoretical [16] rf
studies of cold Fermi gases. In the weak dissipation limit where
γ is small, there is little distinction between condensed and
noncondensed pairs, whereas in the strong dissipation limit the
distinction is significant. In this Rapid Communication, we find
that these two approaches tend to converge for s-wave pairing
and for the lifetime parameters obtained from rf experiments.
Even though it is likely that τs is smallest at unitarity, its
effects on σs do not overwhelm the strong reduction in the
carrier number due to the excitation gap; the behavior is very
different for d-wave pairing in the cuprates.

We write the key equations first for the dc spin conductivity
in the more general strong dissipation limit and second for the
the spin-spin correlation function Qs

00(q,ω) at general (q,ω),
but in the limit in which the noncondensed pair lifetime is
relatively long:

σs = − lim
ω→0

lim
q→0

1

6m2ω
Im

∑
P

p2[GP +GP − − Fsc,P +Fsc,P − − Fpg,P+Fpg,P− ]i�l→ω+ , (6)

Qs
00(q,ω) =

∑
p

[
Ep+ + Ep−

Ep+Ep−

Ep+Ep− − ξp+ξp− − �2

ω2 − (Ep+ + Ep−)2
[1 − f (Ep+) − f (Ep−)]

−Ep+ − Ep−

Ep+Ep−

Ep+Ep− + ξp+ξp− + �2

ω2 − (Ep+ − Ep−)2
[f (Ep+) − f (Ep−)]

]
, (7)

where P + = (p + q
2 ,iωn + i�l), P − = (p − q

2 ,iωn), p± =
p ± q/2, and ω+ = ω + i0+. The quantity ωn (�l) is a

fermionic (bosonic) Matsubara frequency. Moreover, � =√
�2

sc + �2
pg appears in the excitation energy Ep. Here

FIG. 1. Transport properties in the presence of a pseudogap. Unless otherwise noted, results are normalized by their values at Tc = 0.26TF .
The plots correspond to 0.1TF < T < 0.5TF , where the rf-lifetime data are available. (a) The spin conductivity σs . The inset shows the
quasiparticle inverse lifetime τ−1

s in units Ef /h̄. (b) The spin susceptibility χs . The inset displays the temperature-dependent effective carrier
number (n/m)eff. (c) The spin diffusivity Ds with experimental data [2] in the inset.
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G = G(	) is the dressed Green’s function and one can
interpret Fsc as the usual Gor’kov Green’s function reflecting
superconducting order; however, there must also be a coun-
terpart Fpg (discussed in detail elsewhere [17] that reflects
noncondensed pairs). Interestingly, in the weak dissipation
limit, the spin transport correlation functions depend only on
the total pairing gap �. Moreover, when pseudogap effects
are dropped, these equations reduce to their usual BCS
counterparts.

We turn now to a comparison between theory and experi-
ment. In the inset of Fig. 1(a), the values of τ−1

s inferred from
rf experiments are plotted in units of EF /h̄ [9]. Given the ex-
perimental definition [2] of spin conductivity as σs = n

m�sd
, we

associate �sd, as measured experimentally, with τ−1
s . Another

important association via the microscopic Kubo calculation
leads to an identification between the spin-drag lifetime τs

and the quasiparticle lifetime γ −1; spin and “charge” or mass
are carried by the same quasiparticles. This identification was
also observed in previous Kubo calculations of spin diffusion
in 3He [18].

It can be seen from the inset that the lifetime increases
for lower temperatures since interconversion processes cease
when noncondensed bosons disappear; in this way fermions
become long lived. That the interconversion between fermions
and bosons is the physical origin of this lifetime suggests
that τs is smallest for the unitary gas [17], where the number
of bosonic pairs and fermions is roughly comparable. This
appears consistent with the findings in Ref. [2]. Importantly,
both the magnitude and the temperature dependences of the
inverse lifetimes (�sd and τ−1

s ) are in rough agreement.
The main body of Fig. 1(a) presents a plot of the spin

conductivity σs as deduced from Eq. (7) and independently
checked via the strong dissipation Green’s function form of
Eq. (6). Importantly, even though the lifetime is longer as
temperature is lowered, because of a gap in the fermionic
excitation spectrum the conductivity becomes very small at
low T . This reflects the effective carrier number as defined
in Eq. (2).

The calculated spin susceptibility χs is shown in the
main body of Fig. 1(b). This has the expected temperature
dependence associated with a pseudogap. Plotted in the inset of
Fig. 1(b) is the effective carrier number (n/m)eff [Eq. (2)] as a
function of temperature. As also seen in plots of σs , the quantity
(n/m)eff vanishes with decreasing temperature due to the
pairing gap. Finally, in Fig. 1(c), we plot the microscopically
computed spin diffusivity Ds = σs/χs derived from χs and
σs . Importantly, we find the spin diffusivity is suppressed
at low temperatures, reflecting the suppression in the spin
conductivity σs as a result of the reduced number of carriers.
The experimentally measured Ds is shown in the inset of
Fig. 1(c). As in the theory, Ds is found to decrease at low
T . It appears [2] to approach the universal quantum limit h̄/m.

We turn now to Fig. 2, which plots the spin susceptibility
derived following the protocol in Ref. [2] [Eq. (1)]. We use
the superscript “FL” to emphasize that this analysis builds in
a FL interpretation by assuming that the carrier number in
the spin conductivity is a constant in temperature and that
no excitation gap is present. In this case, one can see that
the spin susceptibility increases for low temperature. This is
distinctly different from what is plotted in Fig. 1(b) reflecting

FIG. 2. (Color online) Plot of the theoretically deduced
Fermi-liquid spin susceptiblity χFL

s ≡ n

m
τs(T )/Ds based on the

experimental protocol assuming that n/m is constant in temperature
(and normalized by the Tc value). The inset plots experimental [2]
χFL

s , in units 3n/2EF .

the presence of a pseudogap. Nevertheless, it can be seen
following this protocol that χFL

s exhibits a T dependence
similar to that reported experimentally; the low T upturn is
more marked in the calculation. By adjusting τs(T ) to be more
in line with the counterpart experiment, one can arrive at better
agreement between this χFL

s and the data. We stress, however,
that Fig. 2 should not be assumed to support this FL-based
interpretation,- but rather to establish that if the behavior for
σs is assumed to be FL like, the computed χs will also be so,
as in the experiment of Ref. [2].

In this Rapid Communication, we have not proven one way
or the other whether there is strong evidence for a pseudogap
associated with the experimental results presented in Ref. [2].
What we have established is that the inferences from the
experimentally obtained spin susceptibility [2], which are used
to support FL theory, implicitly assume the absence of a gap.
They are based on Eq. (1), which presumes a FL-like behavior,
so that one cannot make independent inferences about the
absence of a pseudogap. Other evidence against a pseudogap
based on thermodynamics of a balanced unitary gas [4] can be
countered by noting that the same thermodynamic power fits
can be found for a non-FL (for example, in BCS theory below
Tc). Recent experiments [5] that address the low T normal
phase associated with a Fermi gas of arbitrary imbalance are
also problematic since the only theoretical phase diagram [19]
(of which we aware) addressing where pseudogap and FL
phases are stable predicts this low T phase should be a FL, as
is observed [5].

A suggestion for establishing how to rule in or out a
pseudogap in the normal phase of the unitary gas is discussed
in Ref. [20]. Essential is that one first confirms the known
characteristics of the superfluid phase, such as a suppressed
spin susceptibility and entropy, and then establish that these
features persist somewhat above the transition. These observa-
tions are the counterpart of those first applied to the cuprates.

Of great interest is the relation between spin and mass
transport. Because spin and “charge” or mass are carried by the
same quasiparticles, even in the presence of a pseudogap [6],
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spin and mass transport behave similarly leading to “near-
perfect fluidity,” bad metallicity [3], and bad spin conductivity,
which has been discussed here. Indeed, the analysis applied
in this paper was used to anticipate that the anomalously
low shear viscosity [9] of the normal state should persist
down to T ≈ 0, as now observed [1]. As in Ref. [21], we
find the excitation gap, which suppresses the carrier number
[Eq. (2)] is responsible for this behavior. It would similarly
explain bad metallicity [3] in the pseudogapped high Tc

superconductors [17]. It is striking that recent experiments
from the high Tc community [22] have tended to focus on the

temperature dependence of the effective number of carriers
(in the presence of a pseudogap) and argue that it will affect
transport “because neff may be changing with T .” These com-
monalities highlight the importance of the ultracold gases as
powerful simulation tools for a wide class of condensed matter
systems.

This work is supported by NSF-MRSEC Grant No.
0820054. C.C.C. acknowledges the support of the US De-
partment of Energy through the LANL/LDRD Program.
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