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Transmission of photons through open-air or optical fibers is an important primitive in quantum-information
processing. Theoretical descriptions of this process often consider single photons as information carriers and
thus fail to accurately describe experimental implementations where any number of photons may enter a detector.
It has been a great challenge to bridge this big gap between theory and experiments. One powerful method for
achieving this goal is by conceptually squashing the received multiphoton states to single-photon states. However,
until now, only a few protocols admit a squash model; furthermore, a recently proven no-go theorem appears
to rule out the existence of a universal squash model. Here we show that a necessary condition presumed by
all existing squash models is in fact too stringent. By relaxing this condition, we find that, rather surprisingly,
a universal squash model actually exists for many protocols, including quantum key distribution, quantum state
tomography, Bell’s inequality testing, and entanglement verification.
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Quantum communication is an important branch of re-
search in quantum-information processing. Many quantum
communication schemes (such as the well-known quantum
key distribution (QKD) protocol — the Bennett-Brassard-1984
protocol (BB84) [1]) are qubit-based. Analyses of qubit-based
protocols assume that the source emits a single photon
into the channel, which also emits a single photon to the
receiver. However, in practice, experimental equipment falls
short in guaranteeing such a pure single-photon environment;
also we cannot assume that the eavesdropper in QKD is
well behaved and always sends single-photon signals to the
receiver. This gives rise to multiphoton problems at the source
and the receiver. The source problem is due to the use of
practical photon sources that occasionally emit more than
one photon into the channel, whereas the receiver problem
is due to the channel emitting a multiphoton signal into the
receiver (because of channel noise, eavesdropping attacks,
or multiphoton signals from the source). Current detectors
are threshold detectors (such as standard InGaAs or silicon
avalanche photodiodes) that are incapable of revealing the
number of incoming photons; they only produce a click if the
input signal contains one or more photons.

Due to the multiphoton problems at the source and the
receiver, it is unclear whether all single-photon-based quantum
communication schemes can run as expected from their
original design and analyses. For QKD, the source problem
was first solved by Gottesman et al. [2] and was further solved
with great performance enhancement with decoy states [3]
when a weak coherent source is used. Also, the source problem
can be solved by using a single-photon source [4]. On the
other hand, the receiver problem was solved only recently
using squash models [5,6] [for the BB84 protocol] and other
techniques [7,8] [for the BB84, Bennett-Brassard-Mermin
1992 (BBM92), and six-state protocols]. Unlike the decoy-
state solutions to the source problem, the receiver solutions
are protocol-specific, meaning that the receiver problem has
to be solved separately for each qubit-based protocol.

Given that there are many qubit-based protocols in addition
to the ones mentioned (such as the Scarani-Acin-Ribordy-

Gisin 2004 protocol (SARG04) [9], N -state [10], and six-state
SARG04 protocols [11]), it is not effective to study them
one by one to check whether each admits a squash model or
to tackle each with a specific technique. Here we extend the
power of squash models and solve the receiver problem in
a general way that is applicable to virtually all qubit-based
protocols, including QKD protocols and qubit tomography.

The squash model approach [2] to the receiver problem is
to construct a virtual protocol by arguing for the conceptual
presence of a predetection quantum operation, called a squash
operation, that maps the channel’s multiphoton output state
to a single-photon one. Therefore the channel output of the
virtual protocol is a qubit, to which any analyses that assume a
qubit input to the receiver (which we simply call qubit-based
analyses in this paper) can be applied. Because we can regard
that the virtual protocol could have been run, the inferred
statistics of the virtual protocol can be used in an existing
qubit-based analysis as if these statistics are of the real protocol
considered in the analysis. Notice that a virtual protocol is
not implemented in practice. It is simply a proof technique.
Therefore when analyzing a real protocol, the key question is
whether the real protocol admits a universal squash operation
and thus a virtual qubit protocol. A squash model was shown
to exist for the BB84 [5,6] and the BBM92 protocols [5] but
was proved [6] not to exist for the six-state QKD scheme with
active basis selection [12]. In summary, previous works show
that a universal squash operation does not exist. This is a highly
disappointing result because it appears to mean that for each
protocol, one has to prove its security by a specific method.

Despite the previous no-go theorem, here we show that,
rather surprisingly, a universal squash operation actually exists
and it can readily be applied to a wide range of protocols.
This means that these real protocols automatically admit a
virtual qubit protocol to which we can apply a qubit-based
analysis. This leads to convenience in the security analyses of
real protocols. In fact, our squash model together with decoy
states allows qubit-based security proofs of the six-state QKD
scheme with active basis selection to directly carry over to
practical implementations. The success of our approach lies
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FIG. 1. Detection system used by Bob for one basis, where a set
of waveplates (WP) selects the basis and a polarizing beamsplitter
(PBS) splits the signal into two arms for detection by two threshold
detectors (D0 and D1). Here the incoming signal consists of three
photons and one is (two are) collapsed in detector D0 (D1).

in that we relax a stringent requirement to reproduce the
exact statistics (as required by existing squash models) and
we recognize that most protocols do not need exact statistics
to function (bounds on statistics also suffice).

We discuss our result assuming the following settings [13]:
(1) Alice and Bob run a prepare-and-measure QKD protocol

where Alice sends single-photon signals (each encoding a
qubit in polarization) to Bob through a quantum channel
controlled by Eve, who can control the number of photons
entering Bob’s detection system.1

(2) Bob’s incoming photons are restricted to a single optical
spatiotemporal mode.

(3) For simplicity, we assume that Bob uses active basis
selection for his measurements so that his detection system
projects the incoming signal onto the eigenstates of only one
basis.2

(4) Bob’s detection system consists of two threshold de-
tectors plus possibly other linear optical elements (a repre-
sentative structure is shown in Fig. 1). All photons in the
same spatiotemporal mode entering each detection setup are
measured and collapsed individually.

(5) The threshold detectors have perfect efficiencies and no
dark counts. Thus all incoming photons are collapsed.

Our proof can be illustrated pictorially as shown in Fig. 2.
Each situation i can be regarded as a positive operator-valued
measure (POVM) Ei(U,n) acting on the channel’s n-photon
output state performed by Bob, where U is the unitary
transform in the detection setup.3 The essence is to link the
real situation 3 (with threshold detectors and the possibility of
double-click events) to the ideal situation 1 (consisting of a
universal squash operation). Situation 1 serves as the virtual
qubit protocol because the squash operation can be regarded as
part of the channel. The key is to show that the statistics of the
virtual protocol can be determined from the real protocol so
that they can be used in a qubit-based analysis as if the virtual
protocol is run. Situations 1 and 3 are connected by their
respective POVM equivalences (situations 2 and 4), which are

1Thus, we assume that the source problem is solved by using a
single-photon source.

2We have also analyzed the case for passive basis selection [13].
3Quantum non-demolition (QND) measurements are implicitly

assumed in the virtual protocols, without loss of generality, to be
used by Bob to determine the input photon number throughout the
proof, and are not implemented in practice.

special cases of classical postprocessing for a detection setup
with photon-number-resolving (PNR) detectors (situation 5).
Since POVMs 2 and 4 are different degradations of POVM 5,
the measurement statistics of POVMs 2 and 4 are related.
This means that the statistics of the virtual qubit protocol with
POVM 1 can be inferred from that of the real protocol with
POVM 3. We discuss the elements of our proof as follows.

(A) State representation. We write an n-photon pure state
in tensor product form and then impose bosonic symmetry by
symmetrizing the state.4 Similarly, an n-photon mixed state
can be dealt with as a mixture of pure states. Let ρ denote the
density matrix of an n-photon state. A squash operation is a
quantum operation that takes an n-photon state as input and
produces a single-photon state as output.

(B) Universal squash operation. We define our universal
squash operation as the mapping from ρ to ρqubit, where
ρqubit = Tr(ρ) over any n − 1 photons is the reduced density
matrix of one photon. It does not matter which n − 1 photons
we trace over, and the same ρqubit will result due to the bosonic
symmetry. We denote this mapping as �n→1(ρ) = ρqubit. Note
that �n→1 is a valid quantum operation.

(C) Equivalence of POVMs 1 and 2.
Theorem 1. POVMs 1 and 2 are equivalent, i.e., E1(U,n) =

E2(U,n).
This theorem is a direct consequence that the bit value

outputs of situations 1 and 2 have the same statistics for
any n-photon input state and any unitary transform U . This
result is nontrivial and its proof is discussed in Supplementary
Materials.5 Since the squash operation in situation 1 can
be regarded as part of the channel, it is valid to apply the
result of any single-qubit-based analysis to situation 1 and, by
theorem 1, to situation 2.

(D) Equivalence of POVMs 3 and 4. It is easy to see
that the real situation with threshold detectors (situation 3) is
equivalent to another special classical postprocessing method
for a detection system with PNR detectors (situation 4). Thus,
E3(U,n) = E4(U,n).

(E) Relationship between POVMs 2 and 4. Both situations 2
and 4 are special cases of classical postprocessing of the same
detection setup with PNR detectors (situation 5). Thus all
measurements could really be performed in that same setup
and no counterfactual arguments are made. Since POVMs 2
and 4 are different degradations of POVM 5, the statistics of
POVM 4 can be used to infer the statistics of POVM 2.

For qubit-based QKD protocols, the statistic of interest
is the error rate eb between Alice and Bob for basis b. We
emphasize that this error rate refers to the qubit error rate
in situation 1, where a squash operation exists. Thus there

4We note that our formalism and result are fully consistent with
the standard Hong-Ou-Mandel effect [C. K. Hong, Z. Y. Ou, and
L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)] in quantum optics
because we have imposed bosonic symmetry in our wave function.

5Hayashi [7] also considered before using the same probabilities
to select the bit values in Situation 2 and discussed the resultant
bit-value statistics for the rectilinear basis being equivalent to an
operation identical to our �n→1. Even though this idea is common
among our works, it is used in different contexts and followed by
different analyses [13].

020303-2



RAPID COMMUNICATIONS

UNIVERSAL SQUASH MODEL FOR OPTICAL . . . PHYSICAL REVIEW A 84, 020303(R) (2011)

Λ ⊗

⊗

∋

...  ⊗

≥

⊗

ε

≥
≥

≥ ≥

≥
≥

≥ ≥

⊗

ε

*

*

*

FIG. 2. (Color online) Relationship map for the five situations used to prove our universal squash model. The POVM corresponding to
each situation is shown in a dashed box. The goal is to link the real situation (situation 3) with the ideal situation (situation 1) consisting of the
universal squash operation.

In situation 1 (a virtual protocol), an n-photon state enters a detection system comprising the squash operation �n→1, a set of waveplates
(acting as unitary transform U ), a polarizing beamsplitter, and two detectors. The universal squash operation �n→1 maps n photons to one.
We do not specify whether the detectors are photon-number-resolving (PNR) or threshold detectors, since after the squash operation, only one
photon remains. The output of the detection system is a bit value corresponding to the detector that has a click. This is a single-qubit situation
since we can regard the squash operation as part of the channel.

In situation 2 (a virtual protocol), an n-photon state enters a detection system comprising a set of waveplates (acting as unitary transform
U⊗n), a polarizing beamsplitter, and two PNR detectors, followed by a classical postprocessor. The classical postprocessor serves as the classical
analog of the squash operation �n→1 and outputs a bit value according to probabilities given by the detectors’ clicks. More concretely, suppose
that detectors D0 and D1 register k0 and k1 photons, respectively. Then the classical postprocessor in situation 2 outputs event “bit i” (i = 0,1)
with probability ki/(k0 + k1).

We show that POVMs 1 and 2 are equivalent (see theorem 1 and Supplementary Materials for proof).
Situation 3 (the real protocol) is similar to situation 2 with the PNR detectors replaced by threshold detectors. Situation 3 outputs event “bit

i” if only detector Diclicks (i = 0,1) and event “double clicks” if both detectors click. Situation 4 is also similar to situation 2 with a difference
in the postprocessing part. Here, the postprocessing only announces one of three events corresponding to a single click for “0,” a single click
for “1,” and a double click. It is easy to see that situations 3 and 4 produce the same output statistics for the same input state. In this paper, we
consider only those protocols for which situations 3 and 4 are equivalent.

Situation 5 is the mother protocol that derives situations 2 and 4. Note that the detection parts of situations 2, 4, and 5 are all the same; only
their classical processing parts are different. In fact, the classical processing parts of situations 2 and 4 can be generated by that of situation 5,
which outputs the full information on the numbers of detection clicks.

is a qubit to talk about and eb is well defined. Note that
this is also consistent with the decoy-state solution to the
source problem. There the single-photon part of the source is
separately considered from the remaining multiphoton parts.
A single-photon signal coming from the source may arrive at
Bob as a multiphoton signal (due to Eve’s manipulation) which
is squashed into a single-photon signal with our result. Thus,
the single-qubit error rate is also well defined in this case.

We bound this single-qubit error rate as follows. Note that a
single click in situation 4 immediately tells us that a definite bit
value would have been obtained in situation 2, and we directly

use this bit value for the evaluation of the error rate. On the
other hand, a double click in situation 4 tells us nothing about
the bit value it corresponds to in situation 2. To overcome this,
we recognize that we do not need to know the definite bit value
since all we care about are bounds on the error rate. Our key
idea is to bound the range of possible error rates by using the
most pessimistic and optimistic values for double-click events.
Specifically, a double-click event counts as an error bit (correct
bit) for the calculation of the upper (lower) bound on the error
rate. Suppose that the number of test bits for basis b is Nb,
where Nb = N

s,c
b + N

s,e
b + Nd

b . Here, N
s,c
b , N

s,e
b , and Nd

b are

020303-3



RAPID COMMUNICATIONS

CHI-HANG FRED FUNG, H. F. CHAU, AND HOI-KWONG LO PHYSICAL REVIEW A 84, 020303(R) (2011)

the correct single-click events, erroneous single-click events,
and double-click events, respectively. Then the error rate of
the test bits is bounded by

eL
b = N

s,e
b

Nb

� eb � N
s,e
b + Nd

b

Nb

= eU
b . (1)

Corollary 1. (Single-qubit description) We regard the
original quantum channel followed by the squash operation
�n→1 in situation 1 as the effective single-qubit quantum
channel. Thus we can ascribe a single-qubit description to
the actual received signals and the associated channel error
statistics are bounded by Eq. (1).

This allows us to apply any single-qubit-based security
analysis to qubit-based QKD protocols whose qubit assump-
tion is violated in practical implementation due to the reception
of multiphotons. For entanglement-based QKD protocols (in
which an entanglement source sends two signals, one to Bob
and one to Alice), corollary 1 may be applied to each of the
two parties.

Postselection of key bits in QKD. In QKD, test bits are
used for parameter estimation and key bits are for producing
the final secret key. Since the double-click key bits have
ambiguous bit values, we propose to discard them. The bounds
given in Eq. (1), established by the test bits, also serve as the
bounds for the key bits before discarding. After discarding,
the bounds for the remaining key bits can be computed by
considering the worst-case statistics of the discarded bits.
Specifically, the error rate of basis b for the key measured in
basis b∗ after discarding is

eL
b N

key
b∗ − N

key,d
b∗

N
key,s
b∗

� e
key
b � eU

b N
key
b∗

N
key,s
b∗

, for b �= b∗, (2)

where N
key,s
b∗ (Nkey,d

b∗ ) is the number of single-click (double-
click) events among all the N

key
b∗ = N

key,s
b∗ + N

key,d
b∗ key bits,

and e
U,L
b are given in Eq. (1). In practice, the double-click

rate is very small and thus our bounds in Eqs. (1) and (2) are
rather tight. Consequently, the key generation rate we get is
very close to the theoretical limit when the double-click rate
is zero. This means that we have restored the advantage of
the six-state QKD protocol over the standard BB84 protocol
in terms of the key generation rate. Also, in comparison,
the key generation rate of our method is almost as good
as that of protocol-specific methods such as Refs. [5,6] in
general [13].

Conclusions. The use of threshold detectors has been
a major obstacle in bridging the practical experiments on
quantum protocols and their theoretical qubit-based analyses.
In this Rapid Communication we provide a universal solution
that allows the translation of existing analyses that assume
single-photon inputs to ones that can handle multiple-photon
inputs detected with threshold detectors. We emphasize that,
in addition to QKD, our work also applies to quantum state
tomography, Bell’s inequality testing, and entanglement veri-
fication [13]. Furthermore, our universal squash model enables
not only reduction to qubits but also to high-dimensional
states [13].
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