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AN AIS-BASED OPTIMAL CONTROL FRAMEWORK FOR
LONGEVITY AND TASK ACHIEVEMENT OF MULTI-ROBOT
SYSTEMS

RayMOND CHING MAN CHAN AND HENRY YinG Kg1 LAv

Department of Industrial and Manufacturing Systems Engineering
The University of Hong Kong, Hong Kong Island, Hong Kong, China

ABSTRACT. Extending the longevity of autonomous agent system in real life
application is a difficult task, especially in applications which require continu-
ous high system performance. This paper presents a novel decentralized bal-
ancing controlling architecture for longevity and achievement in multi-agent
robot systems based on several artificial immune systems (AIS) designs and
principles. Simulation experiments have verified the proposed architecture has
good capability to efficiently minimize the trade-off in system achievement
while maintaining system sustainability, even in very demanding situations.

1. Introduction. Being a new paradigm for organizing Artificial Intelligent (AI)
applications, in the past decade, there are many researches being done on multi-
agent system (MAS) [1, 2, 3, 17, 18, 19]. MAS has already demonstrated its flexibil-
ity in tackling complex non-linear problems, such as data mining [32, 39], decision
mining [34], intrusion protection |27, 33}, linguistic evolution [5], material handling
[16, 22], traffic control [4], robot coordination [29, 39], etc. Many complex real-life
cooperative systems can benefit from MAS control, including automated production
systems, modern distribution centres and warehouses, port container terminals and
transportation systems that are indispensable in modern logistics businesses.

In MAS based robotic system, also known as multi-robot system (MRS), there
are usually a team of autonomous robot agents which are operated individually
but are also coordinated to target some team achievements. Therefore, the overall
achievements of MRS are directly affected by the number of usable robot agents
inside the system and agent failures should be prevented in order to uphold system
reliability. Unfortunately, due to unforeseen circumstances happened in real situa~
tion, the longevity of MRS usually requires sophisticated mechanisms to maintain
[10, 11, 25, 28). When failure prevention and recovery mechanisms applied in place
to maintain the number of usable agent in system, the additional resources spending
on agent maintenances, however, do adversely introduce significant trade-off to the
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overall system achievement and performance in terms of efficiency and effectiveness.
The way for minimizing the trade-off between longevity and achievement of MRS
is crucial for future development of MRS.

To tackle the mentioned problem, this paper presents a novel decentralized adap-
tive balancing control architecture which is motivated from biological theory of im-
munology to control the recovery process of multiple agent nodes and optimize the
trade-off between overall achievement and longevity of MRS. Simulation studies
were made to verify its validity on balancing the resources being use to maintain
system sustainability and performance.

2. Artificial immune system. Inside our body, one of the most complex and self-
maintained cooperative defence system in the world - the Human Immune System
(HIS), which co-operate trillions of immune cells to rapidly response and protecting
us from unpredictable invasion and attack of foreign pathogens such as bacteria
and virus [8, 12]. The HIS involves two kind of immune response : innate immune
response and adaptive immune response [24]. Innate immune response serves as
the first barrier which prevents pathogens entering our body and minimizes the
likelihood of being infected; while the adaptive immune response serves as the second
barrier which activates if pathogens evade from innate immune response and help
us recover from infection by producing antibodies for fight pathogens [31]. By
extracting the concepts behind those sophisticated cooperative mechanisms in HIS
as metaphors and engineering paradigms, immune-based Al system can be built for
solving different real problems. Those systems using these immune-based paradigms
are known as Artificial Immune Systems (AIS).

The theoretical framework of AIS has been broadly studied in the field of Arti-
ficial Intelligence (AI) [8, 9, 12, 15, 37, 38]. Several studies concerning distributed
multi-agent system control have been carried out previously and shown the AIS-
based control framework having desirable performance and flexibility for multi-agent
coordination. Dasgupta [7] proposed a general framework for multi-agent decision
support system; Lau & Wong [21] developed a distributed multi-agent control frame-
work to effectively control a group of agents with different capabilities; Lu & Lau
[23] created a real-time cooperative control framework for networked multi-agent
systems.

3. Extending longevity with AIS-based control. Inspiring from the distributed
self-organized property of human immune systems [13, 20] , immune network the-

ory [14], danger theory [26] and other earlier studies [7, 21, 23], we developed

an Immune-Based Cooperative Sustainment Framework (IBCSF) [6] based on the

mechanism between innate response and adaptive response. Through a two-level

behaviour control model as the core of the design with the concept of sustainment

(Figure 1), it adopts the immunity-based regulation mechanisms to control when

the system restores the failed agent nodes and extends the system longevity in

situation where exists some unpredictable agent failure.

In our immune system, innate immune response serves as the first barrier which
tries to stop pathogens entering our body and minimizes the chance of being in-
fected; while adaptive immune response activates if pathogens evade from innate
response and produces antibodies to fight and recover from infection [31]. In IBCSF,
there are also two lines of defence which are similar to HIS. Self sustain response

MULTL-ROBOT OPTIMAL LONGEVITY CONTROL 47

1 ling of defence ¢ 2 line of defence
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F1GURE 1. The two-level defence mechanism in HIS and IBCSF [6]

serves as the first barrier to minimize the chance of agents failure while coopera-
tive sustain response triggers when there are agent failures occurred and helps the
system to recover.

The reasons of having two levels of defence are that the two different responses
have their own strengeths and we cannot depend on one level only. Neither one kind
of responses will be sufficient to protect the system alone. Even only one pathogen
is evaded from the innate response, we may still suffer from serious illness. On
the other hand, we do not want to stop the innate immune response and have
the adaptive immune response to fight for all the pathogens because activating
adaptive immune response may introduce some side-effects, such as fever - a kind
of undesirable symptoms.

The design of the two-level sustainment responses in IBCSF shares the same
characteristics with innate and adaptive response in HIS as mentioned above.

4. AIS-based adaptive balancing architecture. Based on the concept of IBCSF,
we have extended the framework and develop new adaptive Longevity and Achieve-
ment Balancing Control Architecture (LABCA) for MRS. As depicted in Figure 2,
there are two layers of concurrent adoptive controls in the proposed LABC archi-
tecture, namely adoptive achievement control layer and adoptive longevity control
layer. These two control mechanisms are operated simultaneously inside each in-
dividual agent and are connected through an artificial immune system - network
of antibodies and cytokines. The hehaviors of each agent are adjusted from time
to time based on expected system throughput, individual agent’s perceptions, in-
dividual agent’s experiences and co-stimulations between other agents, to allow
the system to keep a reasonable achievement rate while maintaining the system
longevity in different dynamic environments.

The two controls are separated because they serve different purposes and behave
in opposite way.

The adaptive achievement control targets ordinary tasks, which is responsible to
perform system designed objective, such as production, delivery, patrol, etc. The
control can be further divided into individual level and cooperative level, according
to the number of agents involved in the behaviours.
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FIGURE 2. Design of the Longevity and Achievement Balancing
Architecture (LABCA)

Above this, we have a layer called adaptive longevity control, which is responsible
for sustainment operations that preserve the system life. Inside this control layer,
there are two further levels of agent failure detection and agent restoring behavioral
controls for reducing the amount of effort and resource required to keep the agents
alive: 1) Collective Sustainment, which provides the ability for agents to recognize
system failures and solve problems that beyond the capabilities of any individual
agent; 2) Individual Sustainment, which provides the ability for individual agent to
recognize problems itself and try to solve those problems before it goes beyond its
own capabilities.

4.1. Concept of sustainment. The concept of sustainment is crucial for building
the LABCA. Sustainment is defined as the necessary operation that is used to guard
and increase the system sustainability, such that the system maintain its functions
and remain productive for a longer time. Its meaning is different from maintenance,
as sustainment includes maintenance, and not limited to repairing operations and
replacement of components. Rescheduling processes and reallocating resources are
also considered as a kind of sustainment because they help to extend the system
life in different ways. In this paper, sustainment response refers to a strategic
sustainment operation series.

Sustainment response is the most important concept in the proposed architecture
and it remains our major concern in the operation to prevent unpredictable system
failure. The two levels of sustainment response: Individual Sustainment Response
and Collective Sustainment Response in LABCA form indispensable defenices for
MRS to recover from different degrees of agent failures and play an important role
in maintaining the balance between system performance and sustainability. The
key factors and considerations of individual sustain response and collective sustain
response will be explained in details in the following section.

Individual sustainment. Individual sustainment is the self-governing pro-
tection strategic operations performed by individual agents. While innate response
stops infection in HIS, individual sustainment is the first barrier of protection mech-
anism which stops an agent from failure. An example of individual sustainment
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action can be a resolution to stop partially damaged agent from its normal function
and undergo repairing progress before the agent becomes completely malfunctioning
(See Figure 3).

The key factors in the adaptive sustainment control are how and when the indi-
vidual sustainment operation should be triggered.

Individual sustainment are considered as a less expensive sustainment opera-
tion, as the agents are still in a functional state and are able to trigger individual
sustainment response by themselves.

Slightly

Unpredictable
Damage

Serious Damage

Complete
Repair

individual Serious
Sustairunent Damage

Repairing

Cofllective
Sustainment

Ficure 3. Different Stages of Agent in LABCA

Collective sustainment. Collective Sustainment is the group strategic pro-
tection operations performed by several agents, aiming to make the system survive
longer in environments with uncertain factors leading to serious agent failures. This
inter-preservation strategy starts whenever agent failure occurs in the system and
helps repairing the failed agents or take over the task of the failed agents. A typical
example of collective sustainment action can be a rescue action, such as a function-
ing agent discovers a failed agent and sends it back to the repair station.

Collective sustainment operations are considered as the costliest sustainment
operation. As the failed agent is not able to trigger individual sustainment, the
operation requires the involvement of other functioning agents. Because the func-
tioning agents are spending time and efforts to undergo maintenance instead of
performing useful work, collective sustainment usually effect in reduce the effective
performance of the system at a particular period of time.

The key considerations in the adaptive sustainment control are how collective
sustainment control can be highly adaptive to target the uncertainly failure factors
and to balance between system performance and sustainability. -
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Immune System AlS-based LABC Architecture

Self Agents

Non-self Tasks, Failed Agents

Anti-body Pair of Conditions with Strategic Behaviours
Antigen Set of Conditions in the Environment
Antigen Presenting Cell (APC) Sustainment Evaluator

Innate Response Individual Sustainment Behaviour

Adaptive Response Collective Sustainment Behaviour

Stimulus Agent Failure

Suppression Agent Recovery

TABLE 1. Relationships between the LABCA and the immune system

4.2. Operational scheme. In HIS, antibodies are circulate through the blood
and lymph systems in our body to respond with antigens in a distributed coop-
erative manner {24]. On the surface of antibodies, there are some special binding
areas known as paratopes and idiotypes. Paratopes are structures that allow the
antibodies to identify the antigen of foreign pathogen (non-self) and react corre-
spondingly; idiotypes are structures that allow co-stirnulation between antibodies
to regulate immune response [35]. The mappings between immune system and the
LABCA are shown in Table 1.

The control of sustainment operations and behaviours are done using suppression
and stimulation mechanisin based on immune network theory [32]. During normal
operation (See Figure 4), the condition around the system environment is perceived
by the agents as perceptions through different detectors and sensors. The sustain-
ment evaluator would then process the perceptions and evaluate the current systemn
situation. After generating conception about the situation, the signal would then
presented to the sustainment reactor which stimulates or suppress the actions that
agents decide to make.

Sydem Environment

Perception Behaviors
Normal
Suppress Response
Sudainment |Conception | Susminment Spax
Evaluator Reactor
Stimulns Sudainment
Response

Ficure 4. Flow of operation from perception to behaviours

Inside the sustainment reactor, the behavioural decision making mechanism are
formulated by two anti-bodies, the Normal Behaviour Antibody, N-Cell, and Sus-
tainment Behaviour Antibody, S-Cell. Conceptions of an agent are modelled as the
paratopes which are the combinations of situations that can be detected by the sen-
sors of an agent. Once an agent detected a specific signal from the environment, the
intake conception set would be matched with the set of antibodies in the reactor.
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Affinity is calculated by the number of conceptions matched. Details structure of
antibodies can be found in Figure 5.

Paratope Idictype

[ Conceptions l Actions Co-stimulas ]

- Direction of Obstad es - Approaching Tasks -Suppressed

- Direction of Tasks - Avoid Obstades N Cell Actions

-Concentration of Agents - Contirme Explore - Stimulated N

- Distance from Base - Completing Tasks N Cell Actions Cell

- Signd Strength

-Type of Signa Normal
Behavior

Paratope 1diotype

Coneeptions Actions Co-stitmmilus !

- Existence of Failed Agent - Individual Sustai - Supp i

- Concentration of Agents Action Sets N Cell Actions

- Agent Health Level - Collective Sustain - Suppressed

- Location of Faled Agent  Action Sets 8 Cell Actions

- Distanee fom Base - Stimulated

- Sustanment Index N Cdl Actions .

- Self Sustain Level Susta:m'nmt

- Collective Sustain Level Behavior
Antibody

FIGURE 5. Design of N Cell and S Cell

4.3. Dynamics. To determine when the individual sustainment operation should
be triggered by an agent, the current health (H,) of agent a is compared with its
Self Sustainment Threshold SST , which is formulated in the follow Equation 1:

th x d,

T a7
SSL = ———-———tZV (2)

TP+ C

where d, is the average damage rate suffering by Agent o per unit time according
to the history of Agent a, t is the estimated time required to wait before Agent a
can receive any maintenance, SSE is the Self Sustainment Level of Agent a that is
calculate by Equation 2, where t2 is the accumulated downtime of Agent a and th
is the accumulated working time of Agent a.

The Self Sustainment Level SSL reflects the sustainability of Agent a, where
0 < SSE <1. When the sustainability of an agent is high, the value approaches 1
and it drops as sustainability drops.

If H, > SST | individual sustain behaviours are suppressed, otherwise individual
sustain behaviours are stimulated to restore the health of an agent before complete
failure of agent.

Considering an Agent a discovering two tasks at the same time, one is involves an
ordinary mission to produce a product using one cycle of time: the other is a rescue
mission to repair a failed Agent b. If Agent a choose the former one, the production
performance of the MRS is maintained, the sustainability of the system however
would suffers; if Agent a chooses the later mission, the sustainability of the MRS
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is maintained, the productivity however suffers. In order to balance the system
performance and sustainability, we can control the participation level of agents in
collective sustainment operations by calculating the level of Collective Sustainment
CSE using Equation 3:
L Ay

S = AW (ST ®)
where A is the number of failed agents detected by Agent a, is the number of
working agents detected by Agent a, NF is the number of failure encountered by
Agent a according to its own history.

The level of collective sustainment formulates the needs of collective sustainment
operations for Agent ¢ at a particular moment and to determine the chance of
Agent a to perform the sustainment actions. If CSaL > 1, that means collective
sustainment is needed, priority for collective sustainment operation is high. If OS‘;L
trends to zero, this means the priority for collective sustainment operation is low
and the agent is relief to perform other tasks first.

5. Experiment and result. To verify and confirm the validity of our proposed
architecture, we applied it to an autonomous multi-robot system and examined the
system in Player/stage [30] simulation environments(see Figure 6),. In the experi-
ments, there are 10 robot agents working in a distribution centre. Their job is to
move cargos from inbound platforms to specific outbound platforms. Cargos arrive
in random interval with random amount. Energy of robots is consumed according
to a random rate per hour. There is a charging station inside the distribution centre
for robots to recharge themselves. If the robot runs out of energy, it will need other
agents to assist in charging, this as a result will reduce the overall throughput.
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FIGURE 6. Simulation of 10 robot agents working in distribution

centre with stochastic energy consumption. (Left : Top View;
Right : 3D View)

The individual sustainment operation in this experiment is bringing agent (ro-
bot) back to the charging station in the middle of the distribution centre before it
completely out-of-energy. Correspondingly, the collective sustainment operation is
sending out-of-energy agents back to charging station by other agents. The purpose
of the experiment is to find out whether the LABCA can help to minimizing the
trade-off in system achievement and longevity by automatically adjusting the time
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interval between each recharging, the number of out-of-energy robots leave behind
and the time for carrying out rescue action.

Since the time required for a robot to return to the charging station is propor-
tional to its distance from the base against its speed of the agent. Equation 1 can
be rewritten as:

I, xd
v . a s 4
55 T X SSL (4)
where 1, is the distance of Agent a from base area and ¥, is the average velocity of

Agent a.

The LABCA has been applied to four different robot setups with mean energy
consumption rate of 5%, 10%, 15% and 25% per hour respectively and the distribu-
tion centre is assumed to be operated a week with 24 hours a day. The experimental
results of the LABCA are given in Figure 7 and Figure 8, where results are compared
to two control systems A and B.

W System A
{No Sustainment
Control}

& System B
{Simple Sustainment
Control}

Qo N WA TR

& System C
{Full LABCA Control}

Days of System Functioning

Exp A Exp B ExpC Exp D
{5%) (10%}  {15%) (25%)

Average Energy Consumption per Hour

FIGURE 7. Comparison of average longevity of robot systems with
different energy consumptions

Control system A has no sustainment control applied. Robots in system A focus
on cargo delivery rather than self sustaining, they go to the recharging station
only when they are passing nearby the station. Therefore, in all experiment setups,
system A stopped working within 2.5 days; Control system B has simple sustainment
control, which only applied the individual sustainment Equations 1 and 2 but does
not include Equation 3 for collective sustainment. As a result, the system life of
system B is extended from two to six days in different setups but still not able to
last for a week; Only System C which applied the full proposed LABCA control is
still functioning at the end of the week until the experiments ended. This clearly
shows the effectiveness of full LABCA in extending MRS longevity.

More importantly, when comparing the useful agent available throughout the
three systems (see Figure 8), without collective sustainment which control the par-
ticipation level of agent in rescue operation, the sustainment control mechanisms do
introduced overhead to the system, and the overall useful throughput of the system
B becomes lower than the system A with no sustainment control. However, the full
LABCA control mechanism helps to dramatically reduce the overhead and boost
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the averall performance of the system C. The result shows that the incorporation of
the two levels LABCA is crucial for maintaining the overall achievement of MRS.

1

5 o~ 100 7
s 3
s x o System A
] {No Sustainment
g §- Control}
< %-_" #% System B
E ] {Simple Sustainment
¥ Controf)
4!.:. [
€
g5 ExpA ExpB ExpC ExpD ® System C
g & (5%) (10%) (15%) (25%) {Full LABCA Control}
Average Energy Consumption per Hour

Figure 8. Comparison of average achievements of robot systems
with different energy consumptions

6. Conclusion and future works. In this paper, we introduce a new collective
adaptive Longevity and Achievement Balancing Control Architecture (LABCA)
that is inspired from the human immune system. The performance of the control
architecture is studied with a multi-robot system performing cooperative tasks in a
simulated environment. Although the implementation of the proposed control ar-
chitecture in the experimental study is rather simple, the result shows the capability
of the control architecture to optimally balance the activities of multi-robot system
achievement while maintaining system sustainability by automatically adjusting the
time interval between each recharging, the number of out-of-energy robots left be-
hind and the time to carry out rescue actions after agent failures detected in the
system.

Currently, we are building an experimental system with physical robots for study-
ing the architecture in real environments. We hope this architecture can be applied
to solve various real problems in multi-agent systems.
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GLOBAL OPTIMIZATION VIA DIFFERENTIAL EVOLUTION
WITH AUTOMATIC TERMINATION
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ABSTRACT. Evolutionary Algorithms (EAs) provide a very powerful tool for
solving optimization problems. In the last decades, numerous studies have
been focusing on improving the performance of EAs. However, there is a lack
of studies that tackle the question of the termination criteria. Indeed, EAs
still need termination criteria prespecified by the user. In this paper, we pro-
pose to combine the Differential Evolution (DE) method with novel elements,
i.e., the “Ciene Matrix” (GM), the “Space Decomposition” (SD) and “Space
Rotation” (SR) mechanisms, in order to equip DE with an automatic termina-
tion criterion without resort to predefined conditions. We name this algorithm
“Differential Evolution with Automatic Termination” (DEAT). Numerical ex-
periments using a test bed of widely used benchmark functions in 10, 50 and
100 dimensions show the effectiveness of the proposed method.

1. Introduction. Differential Evolution (DE) is a very competitive evolutionary
algorithm for solving real-parameter optimization problems that first appeared in
1995 in a technical report written by R. Storn and K. Price [19]. Since then, DE has
attracted particular attention and yielded a significant number of research articles.

Practitioners particularly appreciate the relative simplicity to implement and
efficiency for many optimization problems in real-world applications 17, 9, 22.
Another advantage of DE compared with other EAs is that the number of control
parameters is very low (three for the classical DE, namely, the population size
NP, the crossover rate CR and the scaling factor F'). A number of papers in the
literature extensively study the influence of these parameters on the performance
of the algorithmn [2].

As other EAs, DE is population-based and uses common features of EAs such as
recombination and selection operators. However, one of the distinctive features of
DE lies in the fact that it exploits the information about differences between trial
solutions, the latter being identified as parameter vectors, to explore the search
space. Basically, in DE, the mutation operator considers two parameter vectors
and adds a weighted difference vector to create a third parameter vector. Different
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