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Abstract—The sequential partial-update least mean square
(S-LMS)-based algorithms are efficient methods for reducing
the arithmetic complexity in adaptive system identification and
other industrial informatics applications. They are also attrac-
tive in acoustic applications where long impulse responses are
encountered. A limitation of these algorithms is their degraded
performances in an impulsive noise environment. This paper
proposes new robust counterparts for the S-LMS family based on
M-estimation. The proposed sequential least mean M-estimate
(S-LMM) family of algorithms employ nonlinearity to improve
their robustness to impulsive noise. Another contribution of this
paper is the presentation of a convergence performance analysis
for the S-LMS/S-LMM family for Gaussian inputs and additive
Gaussian or contaminated Gaussian noises. The analysis is impor-
tant for engineers to understand the behaviors of these algorithms
and to select appropriate parameters for practical realizations.
The theoretical analyses reveal the advantages of input normal-
ization and the M-estimation in combating impulsive noise. Com-
puter simulations on system identification and joint active noise
and acoustic echo cancellations in automobiles with double-talk
are conducted to verify the theoretical results and the effectiveness
of the proposed algorithms.

Index Terms—Adaptive echo cancellation (AEC), adaptive noise
cancellation (ANC), double-talk, impulsive noise, least mean
M-estimate (LMM), least mean square (LMS), partial-update
adaptive filters, performance analysis, system identification.

I. INTRODUCTION

SYSTEM measurement/identification is frequently encoun-
tered in many applications such as adaptive control,

acoustic and speech processing, digital communications [1], ul-
trasonic nondestructive testing [2], power system measurement
[3], interference suppression in industrial and biomedical engi-
neering [4], etc. To cater for time-varying signal statistics and to
reduce arithmetic complexity, adaptive filtering algorithms are
usually employed to iteratively identify the impulse response of
unknown linear systems [5]. The well-known least mean square
(LMS) [6] algorithm and its input normalization variant, the
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normalized LMS (NLMS) algorithm [7], are widely used in
many system identification problems because of their numer-
ical stability and computational simplicity. However, in some
applications such as acoustic signal processing and network
echo cancellation, higher order adaptive filters are usually re-
quired to model the acoustic paths with long impulse responses.
Many algorithms have been proposed to reduce the power
consumption and arithmetic and implementation complexities
of the LMS and NLMS algorithms. Partial update (PU) [8]–
[13] is an efficient technique which only updates a portion of
the filter coefficients at each iteration. It is very attractive for
implementation in hardware, very large scale integration, and
digital signal processors.

PU adaptive filtering algorithms can be broadly categorized
into two classes. The first class updates the coefficients us-
ing certain data-dependent selection criteria. Examples are the
M -max NLMS algorithm [9], the selective-block-update
NLMS algorithm [10], the L∞-norm-based algorithm [11], the
set-membership PU-NLMS algorithm [12], etc. These algo-
rithms may have a faster convergence rate than those using fixed
updating strategies. However, coefficient selection unavoidably
increases the computational complexity and may suffer from
convergence problems for nonstationary signals due to data-
dependent updating [13]. On the other hand, the second class
of algorithms uses predetermined updating schemes to update
the filter coefficients. Representative algorithms include the
periodic LMS algorithm [14] which updates all the filter coeffi-
cients periodically at every P th iteration and the sequential PU
LMS (S-LMS) algorithm [14] which partitions the coefficients
into nonoverlapping groups and updates them sequentially at
each iteration. These algorithms are simpler to implement and
are found to be more stable for certain nonstationary signals
than the first class of algorithms [13]. Furthermore, a new
stochastic PU LMS (SPU-LMS) algorithm, which randomly
schedules coefficient updating, was proposed in [13] to improve
the stability of the S-LMS algorithm. Other variants of the
S-LMS algorithm include the sequential block LMS (SB-LMS)
algorithm for active noise control problems [15] and the se-
quential block NLMS (SB-NLMS) algorithm [16], which are
the block implementation of the S-LMS algorithm and its
normalized version, the sequential NLMS (S-NLMS) algo-
rithm, respectively. The latter has also been used in adaptive
echo cancellation (AEC) systems to reduce the implemen-
tation complexity [17]. Another S-NLMS algorithm with
modified Huber (MH) nonlinearity, called the sequential
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block PU normalized least mean M-estimate (LMM) algo-
rithm, was also proposed and analyzed in [18], where a
different form of normalization based on the constrained
minimization approach in [10] was developed. Because of the
difference in the normalization used, its convergence analy-
sis is also considerably different from those studied in this
paper. In this paper, we collectively call the S-LMS/NLMS,
the SB-LMS/NLMS, and the SPU-LMS/NLMS algorithms as
the S-LMS family of algorithms.

Driven by the practical implementation advantages of the
S-LMS family, there is also considerable interest in their
performance analysis. Important performance measures for
adaptive filters include the initial convergence rate, the steady-
state excess mean square error (MSE) (EMSE) over the ideal
Wiener filter after convergence, the ability to track time-varying
systems, and the computational complexity. Other important
design issues include the maximum step size to achieve stable
operation and to achieve a desired EMSE. Results concerning
the convergence behavior of the S-LMS algorithm under the
stationary signal and small step size assumptions were reported
in [14]. Similar conclusions and convergence conditions for the
SPU-LMS algorithm have also been obtained recently in [13].

A disadvantage of the S-LMS family of algorithms is that
they are based on least square (LS) estimation as in the con-
ventional LMS algorithm, and hence, their performance will
deteriorate considerably when the desired signal is corrupted
by impulsive noise [20], [24]–[28], [32]–[34], [37], [44], [45].
Such noise may arise naturally or from other man-made in-
terference. In this paper, we derived a new class of robust
S-LMS algorithms, called the sequential LMM (S-LMM)
family, with improved performance in an impulsive noise en-
vironment. They are nonlinear versions of the conventional
S-LMS family and are based on robust M-estimation [19] and
adaptive threshold selection (ATS). The latter two techniques
have been successfully employed in the LMM and transform
domain normalized LMM algorithms [20] for robust filtering
in an impulsive noise environment. The resultant algorithms
are called the S-LMM/NLMM, SB-LMM/NLMM, and the
SPU-LMM/NLMM algorithms, respectively. They are also col-
lectively called the S-LMM family of algorithms.

Another contribution of this paper is a study of the con-
vergence performance of the S-LMS and S-LMM families of
algorithms. This is particularly useful to speech processing
and other applications, where Gaussian random processes are
commonly employed to model the signals involved. The mean
and mean square convergence analyses of these algorithms are
treated in a single framework using Price’s theorem [21], [22]
with Gaussian inputs and additive Gaussian or contaminated
Gaussian (CG) noises. The novelty of the analysis lies in
handling the normalization, evaluating the expectations that are
specific to the S-LMS family of algorithms, and dealing with
the error nonlinearity. To our best knowledge, the performance
analysis of the S-NLMS, the SB-LMS/NLMS, and the SPU-
NLMS algorithms and their nonlinear versions are unavailable
in the literature. The results so obtained comply with the
conclusions of previous works in [13] and [14] for the PU-LMS
algorithm and also provide new findings due to the effects of
normalization and nonlinearity. Moreover, when the decimation

Fig. 1. Adaptive system identification.

factor C is equal to one, all the analyses will reduce to those
of the standard LMS/LMM/NLMS/NLMM algorithms. The
robustness of the new S-LMM family of algorithms in CG noise
is also theoretically analyzed. The validity of the analytical
results is verified through extensive simulations, and they are
in good agreement with each other. A useful guideline for step
size selection to achieve a given EMSE is given, and major
equations for convergence analysis and performance measures
of the various S-LMS/S-LMM algorithms are also summarized
in the form of a table in [36]. Computer simulations on system
identification and joint adaptive noise cancellation (ANC) and
AEC in automobiles with double-talk are conducted to verify
the theoretical results and the effectiveness of the proposed
algorithms. The rest of this paper is organized as follows.
In Section II, the S-LMS family of algorithms are reviewed,
and their robust counterparts are proposed. Their convergence
performance analyses are given in Section III. The computer
simulations are conducted in Section IV. Finally, the conclu-
sions are drawn in Section V.

II. S/SB/SPU-LMM/NLMM ALGORITHMS

A. S-LMS Family of Algorithms

Consider the adaptive system identification problem in Fig. 1
where an input signal x(n) is applied simultaneously to an
L-order adaptive transversal filter with weight vector W (n) =
[w1(n), w2(n), . . . , wL(n)]T and an unknown system to be
identified with an impulse response W ∗ = [w1, w2, . . . , wL]T .
X(n) = [x(n), x(n − 1), . . . , x(n − L + 1)]T is the input vec-
tor. (·)T denotes the transpose of a vector or a matrix. e(n) is
the estimation error.

The desired signal d(n) of the adaptive filter is assumed to
be corrupted by an additive noise ηo(n)

d(n) = XT (n)W ∗ + ηo(n). (1)

The update equations for the S-LMS family of algorithms
can be written as

e(n) = d(n) − XT (n)W (n) (2)

W (n + 1) =W (n) + µSX(n)X(n)e(n) (3)

for the S/SB/SPU-LMS algorithms and

W (n + 1) = W (n) + µ
SX(n)X(n)e(n)
ε + αXT (n)X(n)

(4)
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TABLE I
LIST OF SX (n) FOR THE S-LMS/LMM FAMILY OF ALGORITHMS

TABLE II
LIST OF COMPUTATIONAL COMPLEXITY OF THE S-LMS/LMM

FAMILY OF ALGORITHMS (ATS)

for the S/SB/SPU-NLMS algorithms, where µ is a constant
step size parameter controlling the convergence rate and steady-
state error of the algorithm. ε is a small positive value used
to avoid division by zero, or it can be derived from some
prior knowledge of the signal power. In the latter, α can serve
as a weighting factor between the prior and instantaneous
input signal power estimates. Otherwise, it is usually chosen
to be one. SX(n) = diag(s1(n), . . . , sL(n)); si(n) ∈ {0, 1},
i = 1, 2, . . . , L, is a diagonal selection matrix. At time instant
n, when si(n) is equal to one, the corresponding element wi(n)
in W (n) will be updated. When SX(n) = I , which is the
identity matrix, (3) and (4) will reduce to the conventional LMS
and NLMS algorithms, respectively. In the S-LMS algorithms,
W (n) is divided into C nonoverlapping groups which are up-
dated sequentially. The elements of SX(n) are thus P = L/C
equally spaced or consecutive ones (and zeros elsewhere), and
they are shifted cyclically as time propagates. Consequently,
only P coefficients are updated per iteration. SX(n) for the
S-LMS family of algorithms and their computational complex-
ities are summarized in Tables I and II, respectively.

B. S-LMM Family of Algorithms

Many techniques have been proposed to combat the adverse
effects of impulsive noise on adaptive filters. They include the
median-filtering algorithms [24], [25], the nonlinear clipping
approaches [26], [27], and the approaches in [20] and [28]
which are based on robust statistics [19]. The LMM [20] and
the recursive least M-estimate (RLM) [28] algorithms are two
effective algorithms derived by using robust M-estimation, and
their improved robustness in impulsive noise and performance

Fig. 2. (a) MH function ρ(e). (b) ψ(e), the score function of ρ(e).

comparison with other relevant algorithms were thoroughly
discussed in [20] and [28]. In this paper, we propose and study
the convergence performance of an extension of the S-LMS
family of algorithms using M-estimation for robust filtering in
an impulsive noise environment. Next, we shall derive these
algorithms which are referred to as the S-LMM family of
algorithms.

In the LMM algorithm, an M-estimate distortion mea-
sure Jρ = E[ρ(e(n))] is minimized, where ρ(e), as shown in
Fig. 2(a), is chosen as the MH function [19]

ρ(e) =
{

e2/2, 0 ≤ |e| < ξ
ξ2/2, ξ ≤ |e|. (5)

ξ is a threshold parameter used to suppress the effect of outliers
when the estimation error e is very large. Other M-estimate
functions such as Hampel’s three-part redescending function
[29] can also be used. Notice that, when ρ(e) = e2/2, it reduces
to the conventional MSE criterion. Like the LMS algorithm, Jρ

is minimized by updating W (n) in the negative direction of
the instantaneous gradient vector ∇̂W ρ. Therefore, the gradient
vector ∇W (Jρ) is approximated by ∇̂W ρ = ∂ρ(e(n))/∂W =
−ψ(e(n))X(n), and ψ(e) = ∂ρ(e)/∂e is the score function,
which is shown in Fig. 2(b). The following LMM algorithm
can be obtained:

W (n + 1) = W (n) − µ∇̂W ρ = W (n) + µψ (e(n)) X(n).
(6)

It can be seen that, when |e(n)| is smaller than ξ, ψ(e(n)) is
equal to e(n), and (6) becomes identical to the LMS algorithm.
When |e(n)| > ξ, ψ(e(n)) will become zero. Thus, the LMM
algorithm can effectively reduce the adverse effect of the large
estimation error on updating the filter coefficients. In the ATS
method in [20] and [28], e(n) is assumed to be Gaussian dis-
tributed except when being corrupted occasionally by additive
impulsive noise, and the following robust variance estimate is
proposed:

σ̂2
e(n) = λσσ̂2

e(n − 1) + c1(1 − λσ)med (Ae(n)) (7)

where λσ is a forgetting factor that is close to but smaller than
one, c1 = 2.13 is the finite sample correction factor, med(·)
is the median operator, Ae(n) = [e2(n), . . . , e2(n − Nw + 1)],
and Nw is the length of the data set. Using (7), the following
adaptive threshold ξ can be obtained:

ξ = kξσ̂e(n) (8)
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where kξ is a constant used to control the suppression of
impulsive interference and a reasonable value of kξ is 2.576,
and the window length Nw is usually chosen between five
and nine [18]. In the case of a long sequence of impulses
such as the double-talk encountered in AEC, the length of the
median filter can be increased. If necessary, kξ can be increased
slightly so that the AEC can track slow-varying channels while
suppressing the double-talk. Following the same argument in
deriving the LMM algorithm, we can extend the S-LMS family
to the following:

W (n + 1) = W (n) + µSX(n)ψ (e(n)) X(n) (9)

for the S/SB/SPU-LMM algorithms and

W (n + 1) = W (n) + µ
SX(n)ψ (e(n)) X(n)
ε + αXT (n)X(n)

(10)

for the S/SB/SPU-NLMM algorithms. The S-LMM family is
rather similar to its S-LMS counterpart, except that e(n) is now
passed through a nonlinearity ψ(e(n)). The convergence per-
formance of the LMS algorithm with error function nonlinearity
was studied in [30]. Another related algorithm is the dual-sign
LMS [31] algorithm. This was later studied in [26] and [32]
by Koike and in [20], [28], and [33] using robust statistics. In
[20] and [28], the threshold parameter ξ in the MH function
is continuously updated as in (8), which greatly improves the
convergence speed and steady-state error. Moreover, it has been
found recently that the use of ATS and a class of nonlinearity
called the M-nonlinearity can be conveniently analyzed [34].
The score function of the M-nonlinearity can be written as
ρ′ξ(e) = ψξ(e) = eq(e/ξ), where q(e/ξ) is the score function
and ξ is the threshold parameter. It covers most M-estimate
functions and several commonly used error nonlinearities [34].

III. MEAN AND MEAN SQUARE CONVERGENCE ANALYSES

In this section, the convergence performance analysis of the
S-LMS and S-LMM families of algorithms will be studied.
In Section III-A1 hereinafter, the mean convergence analysis
of the algorithm in Gaussian input and additive noise will be
presented. We want to study under which condition will the
mean weight vector converge to the desired Wiener solution. A
difference equation in the mean weight-error vector is obtained
from which we can determine the maximum step size for
the mean weight vector to converge to the desired solution.
Different special cases, such as the M-estimation- and LS-based
algorithms, will be separately treated in the remarks. If the
mean weight-error vector converges, the recursive algorithm
is asymptotically unbiased with respect to the desired Wiener
solution. To characterize the variations of the weight vector
about its mean value, the mean square convergence analysis
of the algorithm will be studied in Section III-A2 hereinafter.
A difference equation involving the covariance matrices of
the weight-error vector at successive time instants is derived
from which we can study the condition on the step size for
its convergence and the steady-state EMSE over the Wiener
solution as a result of recursive adaptation. Two special cases,
namely, the small step size and uncorrelated cases, will be

studied in detail because of their importance and mathematical
simplicity. In Section III-B, the analysis in Section III-A will be
further extended to the case of Gaussian input with CG noise
to model additive impulsive noise. The improvement of the
M-estimate algorithms over the LS-based adaptive filters will
be quantified theoretically. A summary of the major results is
listed in [36].

The main contributions of the analysis include the follow-
ing: 1) the use of Price’s theorem [21], [22] to handle the
nonlinearity variates in the algorithms and its extension [34]
for the CG noise case; 2) the introduction of new special
functions to decouple the difference equations describing the
mean and mean square behaviors, and 3) the exploitation of
the structural property of the selection matrix in the S-LMS
family to evaluate the various important quantities such as step
size bounds and EMSE. To simplify the analysis, we make
the following assumptions, which are commonly used in the
literature.

Assumption 1: The input signal x(n) is an ergodic process
which is Gaussian distributed with a zero mean and an autocor-
relation matrix RXX = E[X(n)XT (n)].

Assumption 2: The additive noise ηo(n) is assumed to
be a Gaussian noise (ηo(n) = ηg(n)) for the analysis in
Section III-A hereinafter. For the analysis in Section III-B
hereinafter, ηo(n) is modeled as a CG noise [35] which is
a frequently used model for analyzing impulsive noise. More
precisely, it is given by

ηo(n) = ηg(n) + ηim(n) = ηg(n) + b(n)ηw(n) (11)

where ηg(n) and ηw(n) are both independent and identically
distributed (i.i.d.) zero-mean Gaussian sequences with vari-
ances σ2

g and σ2
w, respectively. b(n) is an i.i.d. Bernoulli ran-

dom sequence whose value at any time instant is either zero
or one, with occurrence probabilities Pr(b(n) = 1) = pr and
Pr(b(n) = 0) = 1 − pr. The variances of the random processes
ηim(n) and ηo(n) are then given by σ2

im = prσ
2
w and σ2

ηo
=

σ2
g + σ2

im = σ2
g + prσ

2
w, respectively. Moreover, we can see

from (11) that the CG noise is equal to ηo(n) = ηg(n) when
b(n) = 0, and ηo(n) = ηΣ(n) = ηg(n) + ηw(n) when b(n) =
1, with their respective variances given by σ2

g and σ2
Σ = σ2

g +
σ2

w. Accordingly, the probability distribution function of this
CG distribution is given by

fηo
(η) =

1 − pr√
2πσ2

g

exp
(
− η2

2σ2
g

)
+

pr√
2πσ2

Σ

exp
(
− η2

2σ2
Σ

)
.

(12)

It should be noted that the ratio rim = σ2
im/σ2

g = prσ
2
w/σ2

g

is a measure of the impulsive characteristic of the CG noise.
Assumption 3: W (n), x(n), and ηo(n) are statistically in-

dependent (the independence assumption [6]). It is a good
approximation for a large value of L and is commonly used
to simplify the convergence analysis of numerous adaptive
filtering algorithms. Interested readers are referred to [13]
for a comparison of the results obtained from the indepen-
dence assumption and the general case of mixing signals for
the SPU-LMS algorithm. The Gaussian input assumption in
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Assumption 1 makes the problem mathematically tractable
and allows accurate close-form expressions to be obtained in
many important cases. Finally, we denote W ∗ = R−1

XXP dX

as the optimal Wiener solution, where P dX = E[d(n)X(n)] is
the ensemble-averaged cross-correlation vector between X(n)
and d(n).

A. Mean and Mean Square Behaviors in Gaussian Noise

1) Mean Behavior: From (10), the weight-error vector
v(n) = W ∗ − W (n) for the S/SB/SPU-NLMM algorithms
can be written as

v(n + 1) = v(n) − µSX(n)ψ (e(n)) X(n)
ε + αXT (n)X(n)

(13)

where W ∗ is the optimal weight vector previously defined.
ψ(e(n)) is a clipping nonlinearity, which is usually chosen
from the M-nonlinearity family [34]. When it is equal to e(n),
(13) reduces to the conventional S/SB/SPU-NLMS algorithms.
Taking the expectation over {v,X, ηg} on both sides of (13)
yields

E [v(n + 1)] = E [v(n)] − µH̃ (14)

where E[·] denotes the expectation over {v(n),X(n),
ηg(n)} (also written as E{v,X,ηg}[·] for clarity), and H̃ =
E{v,X,ηg}[SX(n)ψ(e(n))X(n)/(ε + αXT (n)X(n))]. Drop-
ping the time index of SX(n), X(n), e(n), and ηg(n),
one gets

H̃ = E{v,X,ηg}
[
SXψ(e)X/(ε + αXT X)

]
= E{v}[H1]

(15)

where H1 = E{X,ηg}[SXψ(e)X/(ε + αXT X)|v] and the
second equation is obtained from the independence assumption
of ηg(n), W (n), and x(n) in Assumption 3.

All the algorithms in the S-LMS/LMM family share a
common structural property: There are C different and inde-
pendent combinations for SX , which are denoted by S

(i)
X ,

i = 1, 2, . . . , C. Each of them possesses an equal occurrence
probability of pi = 1/C. It then follows that ΣC

i=1S
(i)
X = I .

Since X is stationary and S
(i)
X is independent, we get

H1 = ΣC
i=1piE{X,ηg}

[
S

(i)
X ψ(e)X/(ε + αXT X)|v

]
=

(
ΣC

i=1S
(i)
X

)
· piH

=
1
C

H (16)

where H = E{X,ηg}[ψ(e)X/(ε + αXT X)|v] is evaluated in
[36, App. A] to be

H ≈ ψ′
(
σ2

e(n)
)
UΛDΛUT v(n) (17)

where ψ′ (σ2
e) =

∫ ∞
−∞ (ψ′(e)/

√
2πσe) exp(−(e2/2σ2

e))de,
σ2

e(n) = vT (n)RXXv(n) + σ2
g , RXX = UΛUT is the

eigenvalue decomposition of RXX , U is some orthogonal
matrix, and Λ = diag(λ1, λ2, . . . , λL) contains the corre-

sponding eigenvalues. DΛ is a diagonal matrix with its ith
diagonal entry given by the following Abelian integral function
[34], [36]:

[DΛ]i,i =Ii(Λ)

=

∞∫
0

exp(−βε)
[

L

Π
k=1

(2αβλk+!1)−1/2

]
(2αβλi+1)−1 dβ.

(18)

For a given ψ(e), ψ′(σ2
e) can be evaluated analytically or

numerically. Substituting (15)–(17) into (14), the following
difference equation in the mean weight-error vector is obtained:

E [v(n + 1)] =
(
I − µ

C
Aψ

(
σ2

e(n)
)
UΛDΛUT

)
E [v(n)]

(19)

where ψ′(σ2
e) is simply written as Aψ(σ2

e). DΛ and Aψ(σ2
e)

result from the use of normalization and nonlinearity, respec-
tively. For the conventional LMS algorithm, DΛ and Aψ(σ2

e)
are equal to the identity matrix and one, respectively. For no-
tation convenience, we also use σ2

e(n) and σ2
e interchangeably

and replace the approximate sign in (17) by the equality sign.
Equation (19) can also be written in the natural coordinate
V (n) = UT v(n) as

E [V (n + 1)] =
(
I − µ

C
Aψ

(
σ2

e(n)
)
ΛDΛ

)
E [V (n)] .

(20)

This is equivalent to the following L scalar first-order finite
difference equations:

E [V (n + 1)]i =
(
1 − µ

C
Aψ

(
σ2

e(n)
)
λiIi(Λ)

)
E [V (n)]i

(21)

where E[V (n)]i is the ith element of the vector E[V (n)] for
i = 1, 2, . . . , L. We discuss the LMS-based algorithm and the
LMM-based algorithms separately in the following remarks.

Remarks: (R-A1): S/SB/SPU-LMS/NLMS algorithms:
For the conventional S/SB/SPU-LMS/NLMS algorithms,
ψ(e) = e, and ψ′(σ2

e) = Aψ(σ2
e) = 1. In particular, when

DΛ = I , the analysis reduces to the S/SB/SPU-LMS
algorithms. The mean weight vector of the S/SB/SPU-NLMS
algorithms will converge if∣∣∣1 − µ

C
λiIi(Λ)

∣∣∣ < 1, for all i’s (22)

and the corresponding maximum step size satisfies

µmax < 2C/ (λiIi(Λ)) , for all i. (23)

It can be shown in [33] that the maximum value of λiIi(Λ)
occurs also at the largest eigenvalue λmax. Denoting the corre-
sponding value of Ii(Λ) by Ii_λmax(Λ), we get the following
bound for the maximum possible step size for the convergence
of the mean weight-error vector:

µmax < 2C/ (λmaxIi_λmax(Λ)) . (24)

Compared with the LMS-based algorithms, the step size of the
normalized algorithms is changed by a factor 1/Ii_λmax(Λ).
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TABLE III
LIST OF Aψ(σ2

e), Bψ(σ2
e), AND Cψ(σ2

e) FOR RELATED ALGORITHMS

When µ = C/(λmaxIi_λmax(Λ)), the fastest convergence
rate is

1 − 2λminIi_λmin(Λ)
λmaxIi_λmax(Λ)

. (25)

It is limited by the mode corresponding to the small-
est eigenvalue λmin with the corresponding value of Ii(Λ)
given by Ii_λmin(Λ). The smaller the value in (25), the faster
the convergence rate will be. From the definition of Ii(Λ),
it can be shown that Ii_λmin(Λ)/Ii_λmax(Λ) ≥ 1. In other
words, the eigenvalue spread λmax/λmin is reduced by a fac-
tor Ii_λmax(Λ)/Ii_λmin(Λ) after the normalization. Therefore,
under the stated assumptions, the convergence rate of the
normalized algorithms will always be faster than their LMS
counterparts if the eigenvalues are unequal. When C = 1,
(23) reduces to the conventional LMS and NLMS algorithms
[34], [37]. Compared with them, the convergence rate of the
sequential PU algorithms is decreased by a factor of C for the
same step size µ, which also agrees with the result for the
SPU-LMS algorithm in [13, eq. (11)]. As conclude in [13],
the SPU-LMS algorithm is more attractive than the S/SB-LMS
algorithms, which may diverge for certain signals due to the
predetermined updating strategy. A similar argument applies to
the SPU-NLMS algorithm.

(R-A2): M-nonlinearity and the LMM/NLMM-based al-
gorithms: For general M-nonlinearity other than ψ(e) = e,
(19) or (20) becomes a set of nonlinear difference equations.
A general solution is rather difficult to obtain because the
term Aψ(σ2

e) is dependent on the MSE. For DΛ = I , C =
1, (i.e., the LMS-based algorithms) and the dual-sign non-
linearity, (21) agrees with the result in [31]. When the er-
ror function nonlinearity [30] is considered, (19) also agrees
with the result in [30]. The case for the NLMS and NLMM
algorithms with general M-nonlinearity was studied in [34].
It was found that (21) provides a good approximation at
the steady state of the normalized algorithms and for the
S-NLMM algorithm with ATS. It should be noted that no
such approximation is used in the variants of the LMS al-
gorithms. Overall, we can see that the sequential updating
will reduce the effective step size by a factor of C since

the weight vector is only partially updated in a sequential
manner with a period of C. Similar to the conclusion ob-
tained in [34], if AMH(σ2

e) is not made adaptive, an in-
appropriately chosen ξ may lead to a very small value of
AMH(σ2

e) and, hence, of the step size, leading to slow adap-
tation. For the ATS in (8) and the M-nonlinearity, AMH(σ2

e)
is maintained approximately at AMH(σ2

e) ≈ erf(kξ/
√

2) −
(2kξ/

√
2π) exp(−(k2

ξ/2)) (if σ̂2
e ≈ σ2

e ), which is a constant
and is slightly less than one. The degradation in the convergence
rate over their LMS/NLMS-based counterparts is therefore
minimal. Interested readers are referred to [34] for more details.

Although the maximum possible step size is, in general, dif-
ficult to obtain for arbitrary nonlinearity, a sufficient condition
for the mean weight vector of the algorithm to converge is |1 −
(µ/C)Aψ(σ2

e)λiIi(Λ)| < 1, for all i’s. If ψ′(σ2
e) is bounded

above by a constant Aψ_max, then a conservative maximum
step size is

µmax < 2C/ (Aψ_maxλmaxIi_λmax(Λ)) (26)

which yields good estimates in practical algorithms.
If µψ(e(n)) in (13) is replaced by ψQ(µe(n)), where ψQ(·)

is a quantizer function, then the aforementioned analysis can be
used to model finite word length effects of the algorithms as had
been done for the LMS algorithm in [38]. The corresponding
values of Aψ(σ2

e) and Bψ(σ2
e) for ψQ(·) are summarized in

Table III. Due to page limitation, the usefulness of this model
in quantifying the finite word length effect of the S-LMS family
is reported in [36].

2) Mean Square Behavior: By postmultiplying (13) by its
transpose and taking the expectation over {v,X, ηg}, we ob-
tain a difference equation involving the covariance matrices of
the weight-error vector at successive time instants

Ξ(n + 1) = Ξ(n) − M1 − M2 + M3 (27)

where Ξ(n) = E[v(n)vT (n)]

M1 = µE{v}

[
E{X,ηg}

[
SXψ(e)X
ε + αXT X

|v
]

vT

]
= µE{v}[H1v

T ]

≈ µ

C
Aψ

(
σ2

e

)
UΛDΛUT Ξ(n) (28)
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M2 =MT
1

=µE{v}
[
vHT

1

]
≈ µ

C
Aψ

(
σ2

e

)
Ξ(n)UDΛΛUT (29)

M3 =E{v,X,ηg}

[
µ2ψ2(e)

(ε + αXT X)
2 SXXXT SX

]

=µ2E{v}

[
E{X,ηg}

[
ψ2(e)SXXXT SX

(ε + αXT X)
2 |v

]]
=µ2E{v}[s̃3]. (30)

Note that the final expressions in (28) and (29) are obtained
by using our previous results in (15)–(17). s̃3 is the expectation
of ψ2(e)SXXXT SX/(ε + αXT X)

2
taken over {X, ηg}

conditioned on v. Using a similar approach as that previously
mentioned yields

s̃3 =
C∑

i=1

piE{X,ηg}

[
ψ2(e)S(i)

X XXT S
(i)
X

(ε + αXT X)
2 |v

]

=
C∑

i=1

piS
(i)
X s3S

(i)
X

=
1
C

(s3 ◦ Ω) (31)

where s3 = E{X,ηg}[ψ
2(e)XXT /(ε + αXT X)

2|v] and
the last equation is obtained by using the identity∑C

i=1 piS
(i)
X (B)S(i)

X = (1/C)B ◦ Ω, where B is any
matrix with an appropriate dimension and ◦ is the elementwise
(or Hadamard) product of matrices. For the S/SPU-LMS/
LMM/NLMS/NLMM algorithms, one can verify from SX(n)
in Table I that Ω = (1L/C ⊗ I), and for the SB-LMS/LMM/
NLMS/NLMM algorithms, Ω = (I ⊗ 1L/C), where 1L/C is
an (L/C) × (L/C) matrix with all entries equal to one, ⊗
denotes the Kronecker product, and I is the C × C identity
matrix. It is shown in [36, App. B] that

s3≈2Cψ

(
σ2

e

)
U

[
Λ

(
V V T ◦I(Λ)

)
Λ

]
UT+Bψ

(
σ2

e

)
UΛI ′(Λ)UT

(32)

where Bψ(σ2
e)=E[ψ2(e)]=(1/

√
2πσe)

∫ ∞
−∞ ψ2(e) exp(−(e2/

2σ2
e))de, Cψ(σ2

e) = (d/dσ2
e)E[ψ2(e)], and V = UT v. I(Λ)

is an L × L matrix, and its (i, j)th element [I(Λ)]ij is

Iij(Λ) =

∞∫
0

β exp(−βε)
[

L

Π
k=1

(2αβλk + 1)−1/2

]
· (2αβλi + 1)−1(2αβλj + 1)−1dβ (33)

and I ′(Λ) is a diagonal matrix whose ith diagonal element is

I ′i(Λ)=

∞∫
0

β exp(−βε)
[

L

Π
k=1

(2αβλk+1)−
1
2

]
(2αβλi + 1)−1dβ.

(34)

Iij(Λ) and I ′i(Λ) are another two Abelian integral functions,
and they, together with DΛ, account for the effect of normal-
ization. For more details, see [34] and [36].

For a given nonlinearity ψ(e), Bψ(σ2
e) and Cψ(σ2

e) can be
computed analytically or numerically. Substituting (28)–(32)
into (27), we have

Ξ(n + 1) ≈Ξ(n) − µ

C
Aψ

(
σ2

e

)
UΛDΛUT Ξ(n)

− µ

C
Aψ

(
σ2

e

)
Ξ(n)UDΛΛUT +

2µ2

C
Cψ

(
σ2

e

)
×

{
UΛ

[(
UT Ξ(n)U

)
◦ I(Λ)

]
ΛUT

}
◦ Ω

+
µ2

C
Bψ

(
σ2

e

) (
UΛI ′(Λ)UT

)
◦ Ω. (35)

For the S/SB/SPU-LMS/LMM algorithms, I ′(Λ) = DΛ =
I , and [I(Λ)]ij = Iij(Λ) = 1 for all i’s and j’s (i.e., I(Λ) =
1L). Equation (35) reduces to

Ξ(n + 1) ≈Ξ(n) − µ

C
Aψ

(
σ2

e

)
RXXΞ(n)

− µ

C
Aψ

(
σ2

e

)
Ξ(n)RXX

+
2µ2

C
Cψ

(
σ2

e

)
(RXXΞ(n)RXX) ◦ Ω

+
µ2

C
Bψ

(
σ2

e

)
RXX ◦ Ω. (36)

Equation (35) can be simplified further by using the natural
coordinate Φ(n) = UT Ξ(n)U to

Φ(n+1) ≈Φ(n)− µ

C
Aψ

(
σ2

e

)
ΛDΛΦ(n)

− µ

C
Aψ

(
σ2

e

)
Φ(n)DΛΛ+

2µ2

C
Cψ

(
σ2

e

)
UT

×
{[

UΛ (Φ(n)◦I(Λ)) ΛUT
]
◦Ω

}
U

+
µ2

C
Bψ

(
σ2

e

)
UT

[(
UΛI ′(Λ)UT

)
◦Ω

]
U . (37)

Due to the matrix Ω, the difference equation is considerably
more complicated than the conventional LMS/NLMS algo-
rithm. If RXX is block diagonal with the same structure as
Ω for the LMS algorithm, Aψ(σ2

e), Sψ(σ2
e) = Bψ(σ2

e)/σ2
e , and

Cψ(σ2
e) are all equal to one, I ′(Λ) = DΛ = I , and I(Λ) =

1L, then (37) will reduce to [13, eq. (12)] after taking into
account the average behavior of SX(n). Since Ω in this case
will not change the other terms in (37), it can be treated as
the identity matrix. For the NLMS algorithm, (37) will then
reduce to the difference equation similar to that of the NLMS
case with M-nonlinearity [34], [37] except for the decimation
factor C. Similarly, the EMSE can be derived as EMSE(n) =
Tr(RXXΞ(n)) = Tr(ΛΦ(n))[6]. In general, to analyze the
mean square convergence condition, we can write Φ(n) us-
ing the vec(·) notation and obtain a difference equation in
Θ(n) = vec(Φ(n)). A step size bound for convergence can
be estimated. The technical details are elaborated in [36,
App. C]. We now analyze a few interesting cases hereinafter.

Small Step Sizes: From the definition of the EMSE men-
tioned earlier, the steady-state EMSE can be computed as
EMSE(∞) = Tr(ΛΦ(∞)) = Tr(ΛΦD(∞)), where ΦD(∞)
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is a diagonal matrix whose diagonal elements are those of
Φ(∞). If a small EMSE is required, µ is usually very small,
and therefore, the fourth term on the right-hand side of (37)
is negligible. At the steady state, n → ∞, and after some
manipulations to extract the diagonal elements of Φ(∞), we
obtain

ΦD(∞) ≈ µ
Bψ

(
σ2

e(∞)
)

2Aψ (σ2
e(∞))

Λ−1D−1
Λ

×
{[

UT
((

UΛI ′(Λ)UT
)
◦ Ω

)
U

]
◦ I

}
. (38)

Hence, the steady-state EMSE is given by

EMSE(∞) ≈ µ
Bψ

(
σ2

e(∞)
)

2Aψ (σ2
e(∞))

×Tr
(
D−1

Λ UT
[(

UΛI ′(Λ)UT
)
◦ Ω

]
U

)
. (39)

For clarity, appropriate subscripts will be appended to the
symbol EMSE(∞) to differentiate the steady-state EMSE of
various algorithms.

For the S/SB/SPU-LMS algorithms, Aψ(σ2
e) = 1, Bψ(σ2

e) =
σ2

e , and Ii(Λ)=I ′i(Λ)=Iii(Λ)=1. Equation (39) will reduce to

EMSES_LMS(∞)≈ µ

2
σ2

e(∞)Tr
(
UT

[
(UΛUT ) ◦ Ω

]
U

)
=

µ

2
(
EMSES_LMS(∞)+σ2

g

)
Tr

(
(UΛUT )

)
=

µ

2
(
EMSES_LMS(∞)+σ2

g

)
Tr(RXX).

Thus, we get

EMSES_LMS(∞) ≈
1
2µσ2

gφLMS

1 − 1
2µφLMS

(40)

where φLMS = Tr(RXX). Ignoring the second term in the
denominator, (40) will reduce to [14, eq. (31)].

For the S/SB/SPU-LMS algorithms with nonlinearity, since
σ2

e(∞) = EMSE(∞) + σ2
g , (39) is a nonlinear equation

in EMSE(∞). In particular, for the S/SB/SPU-LMM
algorithms with MH nonlinearity and ATS, AMH(σ2

e) ≈
erf(kξ/

√
2) − (2kξ/

√
2π) exp(−(k2

ξ/2)) = Ac, BMH(σ2
e) =

erf(kξσ̂e/
√

2σe)σ2
e − (2σeξ/

√
2π) exp(− (k2

ξ σ̂2
e/2σ2

e) ) ≈
erf(kξ/

√
2)σ2

e − (2kξσ
2
e/
√

2π) exp(−(k2
ξ/2)) = σ2

eAc, and
EMSE(∞) ≈ (µB(σ2

e(∞))/2Aψ(σ2
e(∞)))Tr(RXX); hence

EMSES_LMM(∞) ≈
1
2µσ2

gφLMS

1 − 1
2µφLMS

(41)

which is the same as that of the S-LMS algorithms in (40). In
other words, using ATS, the degradation due to the nonlinearity
is very small, and the LMS and LMM algorithms will give a
similar performance.

For the conventional NLMS/NLMM algorithms, C = 1, and
Ω = 1L; we thus obtain

EMSENLMS(∞) ≈ µσ2
e(∞)
2

Tr
(
D−1

Λ ΛI ′(Λ)
)

=
1
2µσ2

gφNLMS

1 − 1
2µφNLMS

(42)

where φNLMS = Tr(D−1
Λ ΛI ′(Λ)) and

EMSENLMM(∞) ≈
µB

(
σ2

e(∞)
)

2Aψ (σ2
e(∞))

φNLMS. (43)

It can be seen that the eigenvalues of RXX are scaled by
the matrix D−1

Λ I ′(Λ) as opposed to the conventional LMS
algorithm. For the MH nonlinearity, (43) reduces to

EMSENLMM(∞) ≈
1
2µσ2

gφNLMS

1 − 1
2µφNLMS

which is approximately equal to that of its NLMS counterpart.
For other values of C, it can be seen from (39) that the rotation
U will also affect the steady-state error.

Uncorrelated Inputs: If x(n) is an uncorrelated process such
as a white Gaussian input, then RXX = Λ, and (37) can be
simplified to

Φ(n + 1) ≈Φ(n) − µ

C
Aψ

(
σ2

e

)
ΛDΛΦ(n)

− µ

C
Aψ

(
σ2

e

)
Φ(n)DΛΛ

+
2µ2

C
Cψ

(
σ2

e

)
{[Λ (Φ(n) ◦ I(Λ)) Λ] ◦ Ω}

+
µ2

C
Bψ

(
σ2

e

)
[(ΛI ′(Λ)) ◦ Ω] . (44)

Its ith diagonal value can be written as follows:

Φi,i(n + 1) ≈Φi,i(n) − 2µ

C
Aψ

(
σ2

e

)
Ii(Λ)λiΦi,i(n)

+
2µ2

C
Cψ

(
σ2

e

)
Iii(Λ)λ2

i Φi,i(n)

+
µ2

C
Bψ

(
σ2

e

)
λiI

′
i(Λ). (45)

At the steady state, n → ∞, and (45) can be solved
to give Φi,i(∞) ≈ (µBψ(σ2

e)I ′i(Λ)/(2(Aψ(σ2
e)Ii(Λ) −

µCψ(σ2
e)Iii(Λ)λi))). Since EMSE(∞) = ΣL

i=1λiΦi,i(∞),
the steady-state EMSE of the NLMS with nonlinearity and
uncorrelated input is

EMSENLMS_ψ_U (∞)

≈
µBψ

(
σ2

e(∞)
)

2

×
L∑

i=1

λiI
′
i(Λ)

Aψ (σ2
e(∞)) Ii(Λ) − µλiCψ (σ2

e(∞)) Iii(Λ)
.

(46)

Here, the subscripts ψ and U represent the
nonlinearity and uncorrelated input, respectively. Since
EMSES−NLMS_ψ_U (∞) = σ2

e(∞) − σ2
g , (46) is a nonlinear

equation in σ2
e(∞). For the S/SB/SPU-NLMS algorithm with
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M-nonlinearity and ATS, Aψ(σ2
e) ≈ Aψ , Bψ(σ2

e) ≈ Sψσ2
e ,

and Cψ(σ2
e) ≈ Cψ[34]. Then, (46) can be simplified to

EMSENLMM_ψ_U (∞) ≈ 1
2
µσ2

e(∞)φNLMM_ψ (47)

where φNLMM_ψ = Sψ

∑L
i=1(λiI

′
i(Λ) / (AψIi(Λ) −

µλiCψIii(Λ))) and Sψ = Bψ(σ2
e)/σ2

e . Using again the
fact that σ2

e(∞) = EMSENLMM_ψ_U (∞) + σ2
g , (47) can be

rearranged to give

EMSENLMM_ψ_U (∞)

≈ 1
2
µφNLMM_ψσ2

g/ (1 − (1/2)µφNLMM_ψ) . (48)

Equation (45) is similar to those of the NLMM algorithm in
[34], except that Aψ , Sψ , and Cψ are divided by the factor C.
Therefore, one can estimate an upper bound of the step size for
convergence in the mean square sense by using the result in [34]
with Aψ , Sψ , and Cψ being divided by C, and it gives

µB_NLMM_ψ_Uq

=
2Aψ

SψΣL
i=1λi

[
I ′i(Λ)/ (Ii(Λ)) + 2

(
Cψ

C

)
Iii(Λ)/Ii(Λ)

] .

We now discuss the relation of the aforementioned result
with some known previous results and propose a general guide-
line for choosing the step size.

Remarks: (R-A3): LMS algorithm with M-nonlinearity:
When Ii(Λ), I ′i(Λ), Iii(Λ), and C are all equal to one, the
analysis will reduce to the LMS algorithm with general M-
nonlinearity. Using (37), it can be shown that

EMSELMS_ψ(∞) ≈
µBψ

(
σ2

e(∞)
)

2

×
L∑

i=1

λi

Aψ (σ2
e(∞))−µλiCψ (σ2

e(∞))
.

(49)

Aψ(σ2
e), Bψ(σ2

e), and Cψ(σ2
e) for some related algorithms

are summarized in Table III. These expressions agree with
the conventional NLMS algorithms with M-nonlinearity and
related algorithms [30], [31], which were studied in more detail
in [34].

As mentioned earlier, if µψ(e(n)) in (13) is replaced by
ψQ(µe(n)), where ψQ(·) is a quantizer function, then (13) with
µ = 1 (it is absorbed into the quantizer) can be used to model
the finite word length effect of the algorithms with Aψ(σ2

e)
and Bψ(σ2

e) being summarized in Table III. For simplicity, the
terms involving Cψ(σ2

e) are ignored assuming a small step. The
usefulness of this model and more simulation results can be
found in [36].

(R-A4) Step size selection for S-LMS family of algo-
rithms: Using the result in [23], it was shown in [34] that
the optimal step size of the LMS algorithm is approximately
given by µLMS,opt = λ/((L − 1)λ2 + E[x4]). Since the max-
imum possible adaptation speed of the S-LMS algorithm is
C times that of the LMS algorithm, we have µS−LMS,opt =
CµLMS,opt ≈ C/(λL) for a large L. As a result, µS−NLMS ≈

Cα, and one gets the following update with maximum possible
step size:

W (n + 1) = W (n) +
CSX(n)X(n)e(n)

(ε/α) + XT (n)X(n)
.

When C = 1, it agrees with the optimum data nonlinearity
for LMS adaptation in the white Gaussian input obtained in
[23] using calculus of variations. The MSE improvement of
the NLMS algorithms over the LMS algorithms was analyzed
in detail in [23]. In general, one could set α = 1 and vary
µ between zero and one with a small ε in (4) to achieve a
given MSE or to match a given convergence rate, such as the
maximum speed previously mentioned.

Similar to the findings in [39] for the NLMS algorithms,
we found from the simulation results that the EMSE of the
S/SB/SPU-NLMS algorithms varies slightly with the eigenval-
ues for a given Tr(RXX). For small µS−NLMS, (40) and (41)
suggest that the S-LMS algorithm is almost independent of the
eigenvalue spread for a given Tr(RXX)(φS−LMS ≈ ΣL

i=1λi).
Therefore, the relationship between µS−NLMS and µS−LMS

for the white input case, i.e., µS−NLMS ≈ µS−LMSTr(RXX),
can be used as a reasonable approximation for the col-
ored case and α = 1. The corresponding EMSE is approxi-
mately (1/2)µS−LMSσ2

gTr(RXX) = (1/2)µS−NLMSσ2
g . From

the simulation, we also found that the EMSE of the S/SB/SPU-
NLMS algorithms will increase slightly with the eigenvalue
spread. Hence, (1/2)µS−NLMSσ2

g represents a useful lower
bound for estimating the EMSE of the S/SB/SPU-NLMS algo-
rithms. It is attractive because it does not require the knowledge
of the eigenvalues or the eigenvalue spread of RXX . The corre-
sponding estimate of the misadjustment is then (1/2)µS−NLMS.

B. Mean and Mean Square Behaviors in CG Noise

We now briefly analyze the mean and mean square behaviors
of the various algorithms in a CG noise environment. Although
Price’s theorem is originally proposed for Gaussian variates, it
was shown later in [40] that it is also applicable to independent
mixtures and, hence, Gaussian mixtures. This extension of
Price’s theorem [21], [22] was employed in the analysis of
the LMS and NLMS algorithms with MH nonlinearity and CG
noise in [37]. The case of general M-nonlinearity was treated
in [34]. Similar techniques were also employed in analyzing
the RLM [28] and other related algorithms [33] for the MH
nonlinearity.

1) Mean Behavior: Since ηo is now a CG noise as defined
in (11), it is a Gaussian mixture consisting of two components
ηg(n) and ηΣ(n), each with a zero mean and variances σ2

g and
σ2

Σ, respectively. The occurrence probability of the impulsive
noise is pr. Accordingly

E{v,X,ηo}[f(X(n), e(n))]= (1−pr)E{v,X,ηg}[f(X(n), e(n))]
+ prE{v,X,ηΣ} [f(X(n), e(n))]

(50)

where f(X(n), e(n)) is an arbitrary quantity whose statistical
average is to be evaluated. Since X(n), ηg(n), and ηΣ(n) are
Gaussian distributed, each of the expectation on the right-hand
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side can be evaluated using Price’s theorem. Consequently,
the results in Section III-A can be carried forward to the CG
noise case by first changing the noise power to σ2

g and σ2
Σ,

respectively, and then combining the two results using (50).
Recall the relation of the mean weight-error vector in (14)

E [v(n + 1)] = E [v(n)] − µH ′ (51)

where H ′ = E{v,X,ηo} [ψ (e(n)) SX(n) X(n) / (ε +
αXT (n)X(n))] = (1 − pr)H ′

g+prH
′
Σ and H ′

g and H ′
Σ

are the expectations of the term inside the brackets shown prev-
iously with respect to {v,X, ηg} and {v,X, ηΣ}, respectively.
From (16) and (17), H ′

i ≈ (1/C)ψ′(σ2
ei

(n))UΛDΛUT v(n),
i = g,Σ, where σ2

eg
(n) = E[vT (n)RXXv(n)] + σ2

g and
σ2

eΣ
(n)=E[vT (n)RXXv(n)]+σ2

Σ. U , Λ, and DΛ have
been defined in Section III-A. Hence, H ′ ≈ (1/

C)Ãψ(n)UΛDΛUT v(n), where Ãψ(n)=(1−pr)ψ′(σ2
eg

(n))+
prψ′(σ2

eΣ
(n)). Substituting this into (51) and using the natural

coordinate V (n) = UT v(n), one gets

E [V (n + 1)]i =
(
1 − µ

C
Ãψ(n)λiIi(Λ)

)
E [V (n)]i . (52)

For notational convenience, we have replaced the approx-
imate symbol by the equality symbol. This yields the same
form as (21), except for Ãψ(n). A similar argument regarding
the mean convergence in Section III-A also applies to (52). A
sufficient condition for the mean weight vector of the algorithm
to converge is |1 − (µ/C)Ãψ(n)λiIi(Λ)| < 1, for all i’s. If
ψ′(σ2

e) is bounded above by Aψ_max and so is Ãψ(n) by
Ãψ_max, then, following the argument in Section III-A, the
following conservative maximum step size is obtained:

µmax < 2C/
(
Ãψ_maxλmaxIi_λmax(Λ)

)
. (53)

The major convergence results of (53) for the LMS and
LMM families of algorithms are summarized by the following
remarks.

Remarks: (R-B1): S-LMS family of algorithms: In these
cases, Ãψ(n) = 1. Compared with the Gaussian case, the
convergence rate remains unchanged. All the conclusions in
(R-A1) apply.

(R-B2): S-LMM family of algorithms: For the
M-nonlinearity without ATS, both σ2

eg
and σ2

eΣ
can be very

large due to the large value of σ2
eΣ

and the slow decay of

the EMSE E[vT (n)RXXv(n)], as the gain Ãψ(n) = (1 −
pr)ψ′(σ2

eg
(n)) + prψ′(σ2

eΣ
(n)) can be very small initially.

This leads to nonlinear adaptation and slow convergence. Near
convergence, σ2

e(n) and Ãψ(n) will become stable. The
convergence is exponential, and the rate for the ith mode is ap-
proximately 1 − (µ/C)Ãψ(∞)λiIi(Λ). Normally, the second
term prψ′(σ2

eΣ
(n)) will be much smaller than the first one due

to the clipping property of the nonlinearity. The “asymptotic
convergence rate” of the NLMS-based algorithms with
M-nonlinearity will still be faster than their LMS counterparts
if the eigenvalues are unequal. For the NLMM-based
algorithms with ATS, this degradation is not so serious since,

if σ2
eg

 σ2
eΣ

, ÃMH ≈ (1 − pr)Ac is a constant that is close to
one if pr is not too large. Therefore, the fastest convergence
rate of these NLMM-based algorithms is still given by (25).
Consequently, in additive CG noise, the convergence rate of
the NLMM-based algorithms will also be faster than their
unnormalized counterparts if the eigenvalues are unequal.

2) Mean Square Behavior: Using a similar approach as in
Section III-A2, it can be shown that

Φ(n+1)≈Φ(n)− µ

C
Ãψ(n)ΛDΛΦ(n)

− µ

C
Ãψ(n)Φ(n)DΛΛ+

2µ2

C
C̃ψ(n)UT

×
{[

UΛ (Φ(n)◦I(Λ)) ΛUT
]
◦Ω

}
U

+
µ2

C
B̃ψ(n)UT

[(
UΛI ′(Λ)UT

)
◦Ω

]
U (54)

where C̃ψ(n) = (1 − pr)Cψ(σ2
eg

(n)) + prCψ(σ2
eΣ

(n)) and

B̃ψ(n) = (1 − pr)Bψ(σ2
eg

(n)) + prBψ(σ2
eΣ

(n)). Due to page
limitation, we only summarize the result for the small step
size case

EMSE(n)≈µ
B̃ψ(n)

2Ãψ(n)
Tr

(
D−1

Λ UT
[(

UΛI ′(Λ)UT
)
◦Ω

]
U

)
.

(55)

For the S/SB/SPU-LMM algorithms with MH nonlinearity
and ATS, Ii(Λ), I ′i(Λ), and Iii(Λ) are all equal to one.
Moreover, ÃMH(n) ≈ C̃MH(n) ≈ (1 − pr)Ac and B̃MH(n) ≈
(1−pr)σ2

eg
(∞)(erf(kξ/

√
2)−(2kξ/

√
2π) exp(−(k2

ξ/
√

2)))=
(1 − pr)σ2

eg
(∞)Ac as n → ∞. Hence, (55) can be simpli-

fied to

EMSES−LMM_SSS_CG(∞) ≈
1
2µσ2

gφLMS

1 − 1
2µφLMS

. (56)

The EMSE is still similar to their conventional LMS-based
counterparts in a Gaussian noise environment. This illustrates
the robustness of the LMM-based algorithms. For the NLMM-
based algorithm with MH nonlinearity, i.e., C = 1 and Ω = 1L,
we, in turn, obtain

EMSENLMM_SSS_CG(∞) ≈
1
2µσ2

gφNLMS

1 − 1
2µφNLMS

(57)

where φNLMS = Tr(D−1
Λ ΛI ′(Λ)). For other values of C, i.e.,

the PU algorithms, the rotation U in (38) will affect the steady-
state error. The EMSE of the conventional LS algorithms, on
the other hand, will be considerably increased with the vari-
ance and occurrence of the impulsive noises. For instance, in
the NLMS algorithm, Ãψ = C̃ψ = 1 and S̃ψ = (1 − pr)σ2

g +
prσ

2
Σ = σ2

g + prσ
2
w = σ2

η0
; then

EMSENLMS_SSS_CG(∞) ≈
1
2µσ2

η0
φNLMS

1 − 1
2µφNLMS

. (58)

The increase in the EMSE over the NLMM algorithm is

∆EMSENLMS_SSS_CG(∞) ≈
1
2µφNLMS

1 − 1
2µφNLMS

prσ
2
w. (59)
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Fig. 3. MSE curves of (a) S-NLMM/NLMS/LMM/LMS, (b) SB-NLMM/NLMS/LMM/LMS, and (c) SPU-NLMM/NLMS/LMM/LMS algorithms with impulses
in desired signal, L = 9, and C = 3.

Similar results are obtained for the LMS algorithm with
Ii(Λ) = I ′i(Λ) = Iii(Λ) = 1. We note from (59) that the im-
provement of the M-estimation algorithms over the LS-based
algorithm is proportional to the power of the impulsive compo-
nents, which is reasonable and expected.

IV. SIMULATION RESULTS

In this section, computer simulations are conducted to evalu-
ate the robustness of the proposed S-LMM family of algorithms
to impulsive noises and verify the analytical results obtained in
Section III. All simulations were performed using the system
identification model shown in Fig. 1, except experiment 3
where we consider the joint ANC and AEC in an automobile
with double-talk to illustrate the practical usefulness of the
M-estimate algorithms. The unknown system to be estimated
in experiments 1 and 2 is an order L finite impulse response
filter, and the weight vector W ∗ is randomly generated and
normalized to unit energy. The input signal x(n) is a first-
order autoregressive process x(n) = ax(n − 1) + v(n), where
v(n) is an additive white Gaussian noise sequence with a zero
mean and variance σ2

v . 0 < a < 1 is the correlation coefficient
controlling the degree of correlation among the elements of
x(n). This is usually used to model speech signals which are
correlated, and the whole setup is similar to that encountered in
an AEC. The Gaussian noise and the CG noise are generated
from (11) with appropriate parameters. The signal-to-noise
ratio (SNR) at the system output is given by 10 log 10(σ2

d0
/σ2

g),
where σ2

d0
is the power of the output signal of the unknown

system. In the AEC setting, the impulsive noise may arise from
the noisy environment such as road traffic or double-talk at
both sides. For all the LMM/NLMM-based algorithms, the MH
M-estimate function is used. All the learning curves are ob-
tained by averaging the results of 200 independent runs.

Experiment 1—Convergence Performance in Gaussian and
CG Noise: The convergence performance of the various al-
gorithms and the robustness of the S/SB/SPU-LMM/NLMM
algorithms to impulsive noise are evaluated. The MSE is used
as the performance measure. The system order L and deci-
mation factor C are chosen as nine and three, respectively.
The correlation coefficient of the input is chosen as a = 0.7.
The CG noise is generated from (11) with an impulse occur-
rence probability of pr = 0.005 and an impulsive character-

istic ratio of rim = 300. The SNR is 35 dB. For illustration
purposes, the impulsive noise is applied to the desired signal
after time instant n = 6500. From n = 1 to n = 6499, the
additive noise is ηg(n). To visualize more clearly the impact
of the impulsive noise on the desired signal, the locations of
the impulses at each experiment are fixed, but their ampli-
tudes are varied according to ηo(n). This can be realized by
generating a fixed Bernoulli sequence b(n) with pr = 0.005
and using it in all the independent runs. The step sizes of the
S/SB/SPU-LMM/LMS algorithms are set to 0.01, and those
for the S/SB/SPU-NLMM/NLMS algorithms are chosen as 0.1.
This enables all the algorithms to reach a similar steady-state
MSE. The small positive constant ε used to prevent division by
zero for the NLMS/NLMM-based algorithms is set to 0.00001,
and α is chosen to be one. The threshold parameters of the
M-estimate function in the S/SB/SPU-LMM/NLMM algo-
rithms σ̂2

e(n) and ξ are calculated from (7) and (8), respectively,
with a forgetting factor λσ = 0.99. The window length Nw is
chosen to be nine. The performances of all the tested algorithms
are shown in Fig. 3. Note that, since the MSE includes the
noise power, large MSEs are observed at the locations of the
impulses. At other locations, the MSE will mainly depend on
the performance of the algorithms and the additive Gaussian
noise component. It can be seen that all the NLMS/NLMM-
based algorithms have a faster convergence speed than their
LMS/LMM counterparts, and the LMM/NLMM-based al-
gorithms possess almost identical initial convergence per-
formances as their LMS/NLMS counterparts. The S/SB/
SPU-LMM/NLMM algorithms are considerably more robust
to impulsive noise in the desired signal than their LMS/NLMS
counterparts.

Simulations for longer filter lengths and different values of
C are performed, and similar results are obtained. Simulations
using pr larger than 0.005 are also conducted, and in general,
the performance of the algorithms will degrade gradually as
pr increases. More simulation results concerning the effects of
using different parameter values of step size, SNR, Nw, and kξ

are available in [33]. The results show that the S-LMM family
of algorithms have an improved robustness to impulsive noise
and are not too sensitive to these parameters once they are
reasonably chosen as suggested.

Experiment 2—Verification of Analytical Results: Computer
simulations were performed to verify the theoretical analysis
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Fig. 4. Mean convergence performances of the (a) SPU-LMS algorithm in Gaussian noise with L = 12, a = 0.9, and µSPU−LMS = 0.016, (b) SPU-
NLMS algorithm in Gaussian noise with L = 24, a = 0.5, and µSPU−NLMS = 0.1, and (c) SPU-NLMM algorithm in CG noise with L = 24, a = 0.5,
and µSPU−NLMM = 0.1.

Fig. 5. Mean square convergence performances of the (a) S-LMS, (b) SB-LMS, and (c) SPU-LMS algorithms in Gaussian noise with L = 12, a = 0.9, and
µS−LMS = µSB−LMS = µSPU−LMS = 0.01.

presented in Section III. Simulation results for Gaussian noise
(see Section III-A) and CG noise (see Section III-B) will be
presented. For the latter, the impulsive noise is applied to the
desired signals for the tested algorithms throughout the whole
adaptation process. Their locations are not fixed and changed
according to ηo(n) for each independent run. The system order
L and correlation coefficient a for the input signal are chosen
as L = 12 and a = 0.9, respectively. To illustrate the effect
of decimation factor C, we choose C = 1, 2, 3, and 4 for all
algorithms. The values of the special integral functions Ii(Λ),
Iij(Λ), and I ′i(Λ) defined in (18), (33), and (34), respectively,
are evaluated numerically using the method introduced in [41].
The step sizes used and other remaining simulation settings are
the same as those in experiment 1.

For the mean convergence, the norm of the mean square
weight-error vector is used as the performance measure

‖vA(n)‖2 =

√
ΣL

i=1

[
1
K

ΣK
j=1v

(j)
i (n)

]2

,

i = 1, . . . , L, ; j = 1, . . . , K

where v
(j)
i (n) is the ith component of the weight-error vector

v(n) at time n in the jth independent run. K is the total number
of independent runs, which is set to 200 in this experiment.

The theoretical results for the S-LMS family of algorithms
in Gaussian noise are computed from (21). Since the results
of the S-LMM family are also similar, they are omitted here.
For the CG noise case, we only plot the theoretical results
for the S-LMM family of algorithms from (52) because the
results are similar. To save space, Fig. 4 only shows the mean
convergence performance of the SPU-based algorithms under
selected experimental settings. A good agreement between the
theoretical and simulation results can be observed. Similar
results can be obtained for the S- and SB-based algorithms.
Interested readers are referred to [36] for more details.

For the mean square convergence of all the algorithms,
EMSE(n) = Tr(Φ(n)Λ) is used as the performance measure.
For the Gaussian noise case, the theoretical results of the S-
LMS family of algorithms are computed from (37), and for
the CG noise, those of the S-LMM family of algorithms are
computed from (54). Similarly, the experimental results are
shown in Figs. 5–8. We can see that the convergence speed
of all algorithms decreases as C increases. The theoretical
and simulation results are also in good agreement with each
other.

Due to page limitation, the simulation results on the effect
of step size µ, input covariance matrix, σ2

g , pr, and rim for
the impulsive model in (11) are not shown here. Only the
effect of the decimation factor C, which is a key parame-
ter of PU algorithms for trading performance and computa-
tional complexity, is shown. Moreover, the simulation results
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Fig. 6. Mean square convergence performances of the (a) S-NLMS, (b) SB-NLMS, and (c) SPU-NLMS algorithms in Gaussian noise with L = 12, a = 0.9,
and µS−NLMS = µSB−NLMS = µSPU−NLMS = 0.1.

Fig. 7. Mean square convergence performances of the (a) S-LMM, (b) SB-LMM, and (c) SPU-LMM algorithms in CG noise with L = 12, a = 0.9, and
µS−LMM = µSB−LMM = µSPU−LMM = 0.01.

Fig. 8. Mean square convergence performances of the (a) S-NLMM, (b) SB-NLMM, and (c) SPU-NLMM algorithms in CG noise with L = 12, a = 0.9, and
µS−NLMM = µSB−NLMM = µSPU−NLMM = 0.1.

for L = 24 and a = 0.5 can be found in the supplementary
materials [36]. As for the effect of the other parameters on
the conventional LMS/SNLMS and LMM/NLMM algorithms
in Gaussian and CG noise, interested readers are referred to
[34] for more details. It was found in [34] that, in CG noise,
the MSE performances of the LMM/NLMM-based algorithms
are considerably better than their LMS/NLMS-based coun-
terparts. Like the analytical results obtained in this paper,
the detailed convergence speed and steady-state EMSE of the
LMS/LMM/NLMS/NLMM algorithms depend on the step size,
covariance of the input, σ2

g , and pr and rim for the CG noise.
The simulation results show that similar arguments as in [34]
apply to the S/SB/SPU-based algorithms due to their close
relationship with the LMS/LMM/NLMS/NLMM algorithms.

Fig. 9. Hands-free cellular phone model.

Overall, we can see that the theoretical analysis is accurate, and
it can provide accurate prediction of the EMSE and a guideline
for choosing the step size as suggested in (R-A4).
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Fig. 10. Design results in experiment 3. (a) Spectra of the desired signal d(n) and the output of ANC e1(n). (b) Convergence curve of ‖v‖2 for various
algorithms in AEC: (1) NLMS, (2) PU-NLMS, (3) LMM, (4) PU-LMM, (5) NLMM, and (6) PU-NLMM. (c) Convergence curve of ERLE for various algorithms
in AEC: (1) NLMS, (2) PU-NLMS, (3) LMM, (4) PU-LMM, (5) NLMM, and (6) PU-NLMM. For clarity, all ERLE curves are plotted for every 100 time samples.

Experiment 3—Joint ANC and AEC in Automobiles: In this
experiment, the PU-LMM and PU-NLMM algorithms are ap-
plied to an integrated acoustic signal processing system, which
performs ANC and AEC for a hands-free cellular phone inside
an automobile [43]. As shown in Fig. 9, the system has three
inputs. They are the revolutions-per-minute (RPM) signal from
the car’s engine, the received far-end signal from the cellular
phone (RX), and the near-end signal from the microphone
(Mic). The microphone is assumed to be placed at the head-
rest of the driver’s seat, and it is used to pick up the near-
end speech signal. The ANC aims to cancel out the engine
noise recorded by the microphone by adaptively estimating
this noise and subtracting it from the microphone input signal.
A speed or rotation sensor is used to measure the RPM of
the engine and generate the RPM signal. This is then used
to generate a reference signal u(n), which consists of unit
magnitude sinusoids at the fundamental rotational frequency
of the engine and a certain number of its harmonics. The
ANC, which is implemented as an adaptive linear transversal
filter, adjusts continuously the complex amplitudes of the ref-
erence signal input u(n) to minimize the difference between
its output, which is the estimated engine noise, and that of
the microphone input. In doing so, the engine noise in the
microphone can be suppressed before transmitting to the far
end (TX) through the cellular phone. Mathematically, the error
signal e1(n) to be minimized is e1(n) = d(n) − W T

1 (n)u(n),
where d(n) is the desired signal received at the microphone,

W 1(n) = [w(0)
1 (n) · · · w

(N−1)
1 (n)]

T
is the weight vector

at time instant n of the adaptive-filter-based ANC of length N ,
and u(n) = [u(n) · · · u(n − N + 1)]T is the input signal
vector containing the reference input at time instant n. Conven-
tionally, the adaptive-filter-based ANC is updated by the LMS
or NLMS algorithms. However, impulsive interference may
appear at the desired input during double-talk, i.e., when the
speaker in the automobile tries to talk when the far-end speaker
is talking, or noisy traffic conditions. This may significantly
affect the performance of the ANC, as we shall illustrate by the
simulation results hereinafter. Therefore, we propose to update
the weight vector of the adaptive filter (ANC) by the proposed
PU-LMM algorithm, which is able to suppress the adverse
effect of the impulsive noise. For the multichannel ANC, a
filtered-s LMS algorithm and its variants have been proposed

to address the nonlinearities encountered in ANC systems [46].
This is different from the nonlinearity introduced in this paper
which is mainly used to combat the adverse effect of impulsive
noise.

To suppress the echo from the loudspeaker (see “LS“ in
Fig. 9) to the microphone, the output of the ANC is forwarded
to an AEC, which identifies the acoustic path from the loud-
speaker to the microphone by using an adaptive filter W 2

with the far-end received signal x(n) and the noise-suppressed
microphone input e1(n) as the signal input and desired input,
respectively. The AEC system output e2(n) is obtained by
subtracting the ANC output from the output of the adaptive
filter W T

2 (n)x(n), which is the estimated echo component,

and W 2(n) = [w(0)
2 (n) · · · w

(M−1)
2 (n)]

T
is the estimated

impulse response of the echo path. Hence, e2(n) = e1(n) −
W T

2 (n)x(n), where x(n) = [x(n) · · · x(n − M + 1)]T

is the input signal vector and M is the order of the filter. To
suppress the adverse effect of possible impulsive noise at the
desired input, i.e., the ANC output, the weight vector is again
updated by the proposed PU-LMM/NLMM algorithms.

In the simulation, the engine is assumed to be running at
an idling RPM of 4980, and the noise is assumed to contain
sinusoids with frequencies of 166 and 332 Hz. Following the
descriptions in [43], we assume that the sinusoid noise is given
by 0.0707[cos(2π · 166 · nT ) + cos(2π · 332 · nT )], where T
is the sampling period, and it propagates to the microphone
with an amplitude decay of 0.5. The far-end signal is a segment
of the speech signal. The double-talk is assumed to occur at
the 10 000th sample, and it is stimulated by injecting a short
segment of the speech signal of about 100 samples with a large
magnitude at the near-end microphone. Both far- and near-end
signals are sampled at 8 kHz. The SNR is set to be 15 dB.
For both LMS and LMM algorithms, the order of the adaptive
filter W 1 is 256, and the step size is 0.015, which results in a
bandwidth of about 20 Hz [43]. The decimation factor for the
PU algorithms is 16, and hence, their arithmetic complexities
are about 1/16 of their full-update counterparts. The orders of
the echo path and the adaptive filter W 2 are both chosen to be
18, and the decimation factor for the PU algorithms is three.
To achieve a similar steady-state EMSE, the step sizes for the
LMS/LMM and the NLMS/NLMM algorithms are chosen as
0.02 and 0.1, respectively.
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Fig. 10(a) shows the spectra of the system input and out-
puts by the LMS/LMM/PU-LMS/PU-LMM algorithms for the
samples in the interval from 9500 to 10 523 using a 1024-
point discrete Fourier transform with a Hamming window. It
can be seen that the LMM PU-LMS/LMM algorithms offer
similar spectra as the noise-free input spectrum while the LMS
algorithm introduces large distortions at around 166 and 332 Hz
due to the double-talk problem. Since the double-talk signal is
relatively short and has a large magnitude, it has considerable
components at the fundamental and second harmonics, i.e., 166
and 332 Hz. The LMS adaptive filter has mistaken them as a
sharp change in the engine noise and hence attenuates the signal
energy at around 166 and 332 Hz. The PU-LMS algorithm
is less sensitive to the impulsive noise possibly because the
weight vector is updated partially. On the other hand, the LMM/
PU-LMM algorithms are much less affected by the double-talk
with a sufficiently long median filter length Nw, for example,
200 (the parameters κ, λσ , and c1 are set as the same as
in the aforementioned experiments), which is able to combat
the adverse effect of the double-talk. After the double-talk,
W 1 for the LMS and PU-LMS will converge to the desired
value again. Given a sufficient long period of time, the spectra
obtained by various algorithms are very similar, and therefore,
they are not shown here to save space. Since the input u(n)
has constant input signal power, the performance of the LMS
(LMM) algorithm is the same as that of the NLMS (NLMM)
algorithm for the same EMSE. Therefore, only the former
results are shown.

Now, we study the performance of the AEC using various
algorithms. For a fair comparison, the ANC is performed using
the PU-LMM algorithm. Therefore, the input to the AEC e1

is the same for all the testing algorithms. Fig. 10(b) shows
the convergence curves of the EMSE for the algorithms tested
since this is related to the amount of the uncanceled echo. The
step sizes of the LMM, NLMS, and NLMM algorithms are
set to 0.013, 0.1, and 0.1, respectively, so that the steady-state
EMSEs of the algorithms are approximately the same. Since the
speech signal contains momentarily silence between phonemes,
the parameter ε in the NLMS and NLMM, which is also a
regularization parameter, is set to 0.3 to avoid the problem of
no excitation.

The NLMS algorithms are seen to be significantly affected
by the double-talk, while the LMM/NLMM algorithms are
rather insensitive to the double-talk. The LMM algorithm is
slightly better than the PU-LMM algorithm, which, however,
has a considerably lower arithmetic complexity. The LMS and
PU-LMS algorithms have a similar performance as the LMM-
based algorithms but are considerably more sensitive to the
double-talk. Therefore, the results are not shown for space
limitation. To further evaluate the performance of the AEC, the
echo return loss enhancement (ERLE) defined as ERLE(n) =
10 log(E[e2

1(n)]/E[e2
2(n)]) for various algorithms is shown in

Fig. 10(c). Note that, for clarity, the ERLE curves in Fig. 10(c)
are plotted for every 100 time samples. It can be seen that the
performances of the M-estimation-based algorithms are much
better than their LS counterparts in the presence of double-talk.
On the other hand, the initial convergences and EMSE of the
M-estimation algorithms are slightly impaired since some of

the error samples are suppressed due to the use of a relatively
large median filter length. The lower complexity PU algorithms
are seen to have slightly lower performances as compared with
their full-update versions.

V. CONCLUSION

New extensions of conventional S-LMS algorithms and
their convergence behaviors with Gaussian inputs and additive
Gaussian or CG noises have been presented. The S-LMM
family of algorithms proposed are nonlinear extensions of the
S-LMS algorithms. They are shown to offer improved perfor-
mances in adaptive system identification over their conven-
tional LMS/NLMS-based counterparts in an impulsive noise
environment. Difference equations describing their mean and
mean square convergence behaviors in Gaussian inputs and
Gaussian or CG noises are derived. The analytical results reveal
the advantages of the normalization in convergence speed and
the improved robustness of the S-LMM family in an impul-
sive noise environment. The theoretical results are in good
agreement with the computer simulations. Finally, a simulated
example of a joint ANC and AEC for communications inside
an automobile was conducted to illustrate the effectiveness of
the proposed algorithm in the presence of double-talk.
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