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Photonic crystal patterns on the indium tin oxide layer of an InGaN/GaN light-emitting diode are

fabricated via nanosphere lithography in combination with dry etching. The silica spheres acting as

an etch mask are self-assembled into a hexagonal closed-packed monolayer array. After etching,

the photonic crystal (PhC) pattern is formed across the indium-tin-oxide (ITO) films so that the

semiconductor layers are left intact and thus free of etch damages. Despite slight degradation to the

electrical properties, the ITO-PhC light-emitting diodes (LEDs) exhibit enhancements of their

optical emission power by as much as 64% over an as-grown LED. The optical performances and

mechanisms of the photonic crystal LEDs are investigated with the aid of rigorous coupled wave

analysis and finite-difference time-domain simulations. VC 2011 American Institute of Physics.

[doi:10.1063/1.3631797]

I. INTRODUCTION

In recent years, GaN-based light-emitting diodes (LEDs)

have been widely used in a wide range of domestic, industrial,

and scientific products such as desk lighting, panel display

backlighting, and illuminations for microscopy, just to name a

few. The growing demand for blue light LEDs has also

prompted the development of devices with maximal external

quantum efficiency, which is determined by both internal

quantum efficiency (IQE) and light extraction efficiency

(EQE). IQE has been greatly enhanced over the years due to

massive improvements in crystal quality. IQEs exceeding 70%

have been demonstrated from metalorganic chemical vapor

deposition (MOCVD) grown material on sapphire substrates.1

However, due to the large refractive contrast at the nitride–air

interface, the majority of light emitted from the MQWs is

totally internally reflected, resulting in low EQE.2 Numerous

approaches have been adopted to efficiently extract light from

devices and prevent unwanted guiding modes, such as geomet-

rical shaping,3 micro-LEDs,4 and surface roughening.5 These

methods rely on the formation of non-parallel surfaces to mini-

mize reflections, albeit at different dimensional scales. Surface

texturing techniques, however, involve plasma etching of the

top p-GaN contact layer, and the plasma damage induced will

significantly degrade electrical conduction in the device due to

increased Ohmic contact resistance and leakage currents, thus

sacrificing the overall efficiency. Plasma damage of the p-n

junction has also been shown to affect the device lifetime.6

Instead of directly processing the GaN layer, surface roughen-

ing of the indium tin oxide (ITO) current spreading layer has

been demonstrated as an alternative method for improving

light extraction efficiency without degradation of the electrical

characteristics. In a report by Kim et al., the light output

powers of LEDs with a pillar patterned ITO contact layer by

colloidal lithography were enhanced by 10%.7 In another

report by the same authors, LEDs with a randomly textured

ITO layer using a natural mask were found to effectively boost

output powers via the scattering effect.8 For a more pro-

nounced and systematic effect, photonic crystals (PhCs) may

be formed onto the ITO layer instead. PhCs enable strong

interaction of the guided modes with the periodic structure,

offering better control over the directionality of light emission

as compared to random surface texturing. Two major proper-

ties associated with PhCs are the photonic bandgap (PBG) for

molding the flow of light and diffraction, both of which are

useful for extracting the guided modes to different extents. As

the characteristic length scales of PhC structures are on the

order of the wavelength, nano-patterning techniques are

involved during the fabrication of visible light devices, often

increasing manufacturing costs. Apart from nano-patterning

using e-beam9 or nano-imprint10 lithographic techniques,

nanosphere lithography11 (NSL) has been demonstrated as a

high-efficiency and low-cost nano-fabrication method. A self-

assembled nanosphere array is perfectly capable of patterning

the large-area periodic array required for a PhC.

The fabrication and characterization of PhC-on-ITO

LEDs patterned via NSL are reported in this paper. The self-

assembled array of spheres serves as a hard mask for pattern

transfer onto the ITO layer, resulting in hexagonally close-

packed ITO pillar arrays. Although such PhC structures do

not possess a PBG in the visible region, light extraction can

be improved via the dispersion effect. The guided modes are

effectively diffracted by the periodic refractive lattice. The

performance of the ITO-PhC LEDs is evaluated together

with an investigation of the mechanisms involved. The rigor-

ous coupled-wave analysis (RCWA) algorithm and finite-

difference time-domain (FDTD) method are employed to

investigate the effect of incorporating PhCs of different

dimensions on the performance of LEDs.

II. EXPERIMENTAL DETAILS

A schematic diagram illustrating the process flow of

ITO-PhC LEDs in this work is depicted in Fig. 1. The
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InGaN/GaN LED wafers are grown on a c-plane sapphire

substrate via MOCVD, with embedded multi-quantum wells

designed for emission at around 470 nm. A 200 nm thick

transparent ITO coating is deposited via sputtering as a cur-

rent spreading layer, as shown in Fig. 1(a). The ITO-PhC

structure is patterned via NSL, beginning with the dispensing

of a colloidal suspension onto the surface of the wafer using

a micro-pipette. The colloidal suspension is prepared by mix-

ing silica spheres with mean diameters of 500 nm, 700 nm,

and 1000 nm suspended in de-ionized water with an anionic

surfactant sodium dodecyl sulfate. The spheres self-assemble

naturally and uniformly across the ITO layer with the aid of

spin-coating at optimized conditions. The rotation speed is

varied between 140 and 200 rpm, depending on the sphere

diameter, for a duration of 10 min, resulting in the formation

of a monolayer of spheres over an area of approximately

(8� 8) mm2. The self-assembled hexagonal closed-packed

array serves as an etch mask, the pattern of which is subse-

quently transferred to the ITO layer via inductively coupled

plasma (ICP) etching. The etch parameters are set to 500 W

of coil power and 150 W of platen power at 5 mTorr of

chamber pressure, using a gas chemistry comprising 15

SCCM of Cl2 and 10 SCCM of Ar (SCCM denotes cubic

centimeters per minute at standard temperature and pres-

sure). Photolithographic patterning defines 600 lm by 300

lm mesa regions, followed by dry etching to expose the n-

GaN layer. Another photolithographic step is performed to

define the contact pad regions for metallization. The p-pads

and n-pads are deposited via e-beam evaporation, and the

wafer is subjected to rapid thermal annealing at 500 �C in N2

ambient to form Ohmic contacts. For comparison, an un-

patterned LED of identical dimensions is fabricated along-

side it. The chips are diced by ultraviolet nanosecond laser

micro-machining and die-bonded onto TO-headers, followed

by Al wire-bonding. The surface morphologies of PhC LEDs

are imaged by field-emission scanning electron microscopy

(FE-SEM) using a Hitachi S-4800 system. The optical char-

acteristics of the packaged LEDs are measured in an Ocean

Optics 2 in. integrating sphere with a fiber-coupled radiomet-

rically calibrated spectrometer (Ocean Optics HR-2000).

The optical simulations are performed using RSoft software

packages.

III. RESULTS AND DISCUSSIONS

Figure 2(a) shows an ordered hexagonal monolayer of

nanosphere. In order to minimize the occurrence of defects

such as dislocations and vacancies and avoid the formation

of multiple layers, which disrupts the desired hexagonal pat-

tern, the spin-coat rotation speed must be optimized. With

decreasing sphere dimensions, an increase in the spin veloc-

ity (this centrifugal force) is required in order to overcome

the viscosity of the suspension. The optimized speeds for

achieving a high-quality monolayer array are determined to

be 200, 160, and 140 rpm for nanosphere diameters of 500,

700, and 1000 nm, respectively. After dry etching, periodic

hexagonal-closed-packed ITO pillar arrays are formed with

triangular air-gap voids between adjacent pillars exposed, as

shown in Fig. 2(b). The etch depths of pillars are around 100

nm, corresponding to an etching duration of 90 s, as esti-

mated from the SEM image in Fig. 2(c) captured at a tilted

angle of 30�. Figures 2(d)–2(f) show the resultant PhC struc-

tures after sphere removal with pillar diameters of 500, 700,

and 1000 nm, respectively.

Electroluminescence (EL) measurements are conducted

on the packaged and un-encapsulated PhC and unpatterned

FIG. 1. (Color online) Schematic diagrams showing the process flow: (a)

the starting wafer; (b) silica spheres spin-coated onto the ITO layer; (c) pat-

tern transfer to the ITO layer via ICP etching followed by sphere removal;

(d) mesa definition via photolithography; (e) exposure of the n-GaN region

after dry etching; and (f) metal pad deposition via e-beam evaporation.

FIG. 2. FE-SEM images showing (a) ordered hexagonal monolayer arrays

of nanospheres on a GaN LED wafer, (b) the nanosphere-coated sample after

ICP etching, and (c) a close-up view of the ITO nano-pillars and the result-

ant nano-pillar arrays with diameters of (d) 500, (e) 700, and (f) 1000 nm.
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LEDs by collecting the emitted light with a 2 in. integrating

sphere optically coupled to a radiometrically calibrated spec-

trometer. Figure 3(a) shows plots of the EL intensity versus

the injection current for the devices, from which it is

observed that the PhC LEDs exhibit strong enhancements in

light emission over the unpatterned LED. At an injection

current of 100 mA, the output powers of PhC LEDs with pil-

lar diameters of 500, 700, and 1000 nm were enhanced by

64.6%, 39.1%, and 31.2%, respectively. The current-voltage

(I-V) characteristics of the LEDs are plotted in Fig. 3(b). The

forward voltages at 20 mA dc current are 3.30, 3.28, 3.26,

and 3.25 V for PhC LEDs with diameters of 500, 700, and

1000 nm and the unpatterned LED, respectively. The slopes

of the I-V curves in the linear region (thus series resistance)

are also identical. The I-V data testify to the fact that nano-

structuring of the ITO layer does not degrade the electrical

characteristics of the LEDs, an important consideration for

minimizing power consumption.

Figures 4(a)–4(d) show plan-view microphotographs of

the PhC LEDs operated at 5 mA with pillar diameters of 500,

700, and 1000 nm, together with the as-grown LED. As the

ITO layer is not degraded by the micro-structuring, uniform

emission is maintained. The PhC LEDs also appear brighter

with decreasing pillar diameters. Compared with the PhC

LEDs, the emission along the edges is significantly stronger

than in the planar regions for the as-grown LED, because the

guided photons either are reabsorbed within the active layer or

escape through the sidewalls. The PhC LEDs, in contrast,

offer an enhanced emission intensity over the entire planar

surface. In order to investigate the function of the patterned

ITO layer, a reflectivity simulation is performed based on the

RCWA algorithm. The defined unit cell was as shown in the

inset of Fig. 5(a), and a k¼ 450 nm beam was incident onto

the periodic array. At the ITO (nair ¼ 1.9)–air (nITO¼ 1.0)

interface, the critical angle determined by sin�1ðnair=nITOÞ is

�31.8�, such that incident light rays striking the interface at

angles greater than the critical angle are totally reflected, as

illustrated in Fig. 5(a). In contrast, the ITO film incorporating

PhCs serves as a light extraction layer for the suppression of

total internal reflection, so that more photons are capable of

escaping from the devices. Angular-resolved emission pat-

terns of the LEDs are determined by collecting EL intensities

with a fiber probe at different angles while maintaining a

fiber-LED separation of 50 mm. The light collected by the

fiber is channeled to an optical spectrometer. The peak EL in-

tensity at each angle is taken to plot the emission pattern, as

shown in Fig. 5(b). For the as-grown LED, the intensity drops

rapidly beyond �30�, and the full-width at half-maximum

(FWHM). divergence angles increase with decreasing pillar

diameters. The results are consistent with RCWA simulated

predictions.

In order to further evaluate the effect of PhC patterns on

LEDs, a three-dimensional FDTD simulation is carried out.

Periodic boundary conditions are applied to the x-y plane. The

simulated LED structure consists of 200 nm thick ITO/150 nm

thick p-GaN/40 nm thick MQWs/2000 nm GaN. The wave-

length of the source is set as 450 nm, and the mesh size is 20

nm. A sufficient simulation period was allowed so that the light

output signal attained steady-state. Figure 6(a) shows the

FIG. 3. (Color online) (a) Light output power as a function of injection cur-

rents and (b) I-V characteristics of PhC LEDs and as-grown LED samples.

FIG. 4. (Color online) Optical microphotographs showing emission from

ITO-PhC LEDs with pillar diameters of (a) 500 nm, (b) 700 nm, and (c)

1000 nm and (d) the as-grown LED. The devices are biased at 5 mA.

FIG. 5. (Color online) (a) Calculated reflection spectrum under varying inci-

dent angles. (b) Angular emission patterns of PhC LEDs and the as-grown

sample.
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FDTD simulated emission pattern from an unpatterned LED;

photons emitted outside the critical angle are seen to be totally

reflected at the flat interface. In contrast, the incorporation of

periodic PhC structures onto the ITO layer is seen to suppress

lateral guiding modes and redirect the trapped photons into

radiated modes, as illustrated in Fig. 6(b). The simulated time-

resolved light intensity plot in Fig. 6(c) shows that PhC-LEDs

with pillar diameters of 500, 700, and 1000 nm transmit 61.4%,

29.5%, and 20.0% more light than the flat-top sample, correlat-

ing well with previous experimental and simulated results.

FDTD simulations are also performed in order to study

the effects of varying pillar heights on the optical output

power. The heights of pillars are varied from 0 nm to 160

nm while the other device parameters remain unchanged.

The computed output powers are normalized with respect to

that of an un-patterned LED. From the simulated results plot-

ted in Fig. 7, it is apparent that taller pillars generally deliver

larger optical powers. It is also observed that the rate of

increase of the output power for the 500 nm PhC slows down

significantly after the pillar exceeds a height of �100 nm. As

for the 700 nm and 1000 nm PhCs, although a gradual

increase in the output power continues beyond pillar heights

of 100 nm, the higher degree of penetration into the ITO film

would degrade the lateral conductivity of the current spread-

ing layer and thus the electrical properties of device. In view

of such considerations, the height of the pillar is designed to

be �100 nm, which is half of the total thickness of the ITO

film, in order to maximize the overall device performance in

terms of both optical and electrical characteristics.

Two-dimensional PhCs are known to promote light

extraction in LEDs via two possible mechanisms. If the PhC

possesses a PBG along the plane, the lateral guiding mode can

effectively be eliminated over the range of frequencies cov-

ered by the bandgap. However, PhCs comprising closed-

packed pillar structures as fabricated via NSL do not possess

PBGs, as confirmed by the simulated TE and TM band dia-

grams shown in Fig. 8. Of course, it is possible to produce

PBG structures using NSL. In our previous report, air-spaced

nanopillar structures were fabricated by shrinking the pat-

terned sphere pattern prior to pattern transfer.12 In this way, a

PBG can be induced from such air-spaced pillar structures. In

the present study, the “weak” PhCs serve to redirect emission

from guided modes into radiative modes.13 A periodic refrac-

tive index is capable of altering the propagation behavior of a

photon, as described by the dispersion relation xðkÞ with the

light line x ¼ k0c for free-space propagation. According to

Bloch’s theorem, the dispersion curves of Bloch modes are

folded at the Brillouin zone boundary, as is evident from Fig.

8. As a result, the waveguided modes originally located below

the light line can be folded to the diffracted modes located

above the light line, and thus can be extracted, provided the

lattice constant is larger than the cutoff ðKcutoff Þ, which is

evaluated by Kcutoff � k=ðneff þ 1Þ, where neff is the effective

index of the PhC layer.14 The lattice constants of the PhC

FIG. 6. (Color online) Comparison of FDTD simu-

lations of the (a) as-grown flat-top and (b) PhC sam-

ples. (c) FDTD simulation results of the light output

power of PhCs.

FIG. 7. (Color online) Plot of FDTD-computed normalized light output

power as a function of pillar height for the 500, 700, and 1000 nm PhC

LEDs.

FIG. 8. (Color online) Simulated (a) TE and (b) TM band structures for

closed-packed pillar arrays.
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LEDs described in this study are in the range of 500 nm to

1000 nm, and thus satisfy the cutoff condition.

IV. CONCLUSION

In summary, we have demonstrated the fabrication of

LEDs with a PhC on the ITO current spreading layer, patterned

via NSL. The self-assembled hexagonal-close-packed sphere

array pattern is transferred to the ITO layer by dry etching. In

this way, the semiconductor layers are not degraded in the pro-

cess. No significant degradation to the ITO layer is observed,

so that emission uniformity and good I-V characteristics are

maintained. The emission powers increased with decreasing pil-

lar diameters. In particular, the output power of the ITO-PhC

LEDs with a diameter of 500 nm is enhanced by 64% com-

pared to the un-pattern LED. The significant enhancement can

be attributed to the dispersion behavior and diffraction property

of PhCs. The measured results are verified by simulations based

on the RCWA algorithm and the FDTD method.
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