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Abstract. Vector Fitting (VF) has been introduced as a partial-fraction basis response fitting
methodology for over a decade. Because of its reliability and versatility, VF has been applied and
extended to a number of areas. In this book chapter, we will discuss the applications of VF in
the context of macromodeling of linear structures in signal/power integrity analyses. We will also
discuss main features of VF along three directions: data, algorithms and models. Two practical ex-
amples are given to demonstrate the merits of VF. An alternative P-norm approximation criterion is
proposed to enhance the accuracy of the macromodeling process.
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INTRODUCTION

Vector Fitting (VF) [1] is a numerical technique for sampledresponse-matching system
identification (macromodeling), which involves iterativelinear least-squares solves with
a partial fraction basis. In contrast to other system identification techniques for broad-
band (from DC to GHz) system identification, VF avoids ill-conditioned calculation, and
therefore works in a more robust and efficient manner. Furthermore, its theoretically-
simple and versatile framework can easily incooperate various constraints by introduc-
ing a variety of extensions to many areas. VF has also been used in modeling of dif-
ferent electrical systems [1, 2] and extended to different areas, for example, filter de-
sign [3, 4, 5], power network analysis [6, 2] and electromagnetic (EM) simulation [7, 8].

The idea of VF was firstly introduced for transmission line transient modeling in [9].
The underlying idea of VF is to replace the approximated (or initialized) poles with an
improved set of poles through implicit weighting (the pole relocation technique), which
thereby improves the approximation iteratively. VF approximates an underlying system
to a new system using partial fraction basis with real or complex conjugate poles. A num-
ber of generalizations and extensions have been proposed for better VF performance and
integration with various identification requirements. VF has been thoroughly discussed
in [10, 11]. Its variants have been widely used in industrialelectronic design workflows
for addressing signal integrity issues.

This paper acts as an extended tutorial on VF on top of [12]. Wefirst give a brief
introduction to the signal/power integrity issues and the basic formulation of VF. Then
we discuss the applications of VF in system identification. Finally an alternativeP-norm
approximation criterion in VF is proposed for approximation enhancement, which is
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FIGURE 1. Common macromodeling flow in signal integrity analyses.

verified through numerical examples.

LINEAR MACROMODELING: SYSTEM IDENTIFICATION
PROBLEM IN SIGNAL/POWER INTEGRITY

Electronic systems, such as smartphones, computers and high-definition televisions,
have become essential to our daily lives. From a system perspective, these electronic
systems contain modules of integrated circuits (ICs), e.g.,memory, datapath, control
and input-output circuitry. Modules are connected by interconnect (viz. wire) and power
networks, including via holes, sockets, power/ground planes, wires, connectors and
chip packages. In low-speed circuit operation, interconnect networks perform as ideal
wires, which do not distort transmitted signals, and the electronic system functions well
according to the functional-level design.

However, with the increasing operation frequency and decreasing feature size of
ICs, high-frequency effects, such as signal delay, crosstalk, interconnect dispersion
and mutual couplings, have become dominant factors limiting system performance.
Therefore, signal integrity verification and design have become popular practices in
the IC design process. Signal integrity analysis can be donethrough checking the eye
diagram of transmission channels on a circuit board from measurement or simulation.
Accurate and efficient modeling is required to capture high-frequency behaviors of
systems for pre-layout simulation in the design phase, so asto ensure consistent signal
transmissions and reliable power distributions in high-speed electronic systems [13,
2, 14]. However, a full-wave electromagnetic (EM) analysisover a global system is
impractical. Reduced models with similar properties to the original systems are therefore
demanded.

For structures with complicated geometry, such as packages, circuit boards and radio-
frequency (RF) objects, data-driven linear macromodeling is usually applied. A com-
mon macromodeling flow is shown in Fig. 1. The sampled structure responses can
be obtained by exciting one input port at a time and computingor measuring the re-
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sponses at the output ports (Response Characterization). By approximating the sam-
pled frequency-dependent or time-dependent system response data, a macromodel is
generated to replace the original large-order system by a smaller-order one with simi-
lar input-output (I/O) behaviors (Macromodeling). The macromodel is used to produce
spectra and waveforms for signal integrity analysis and/orcoupled with other circuit
model blocks (e.g., logic devices) for global simulation (Simulation). Peripheral pre-
and post-processing techniques are used to modify the macromodel characteristics and
enhance the simulation performance.

Generally, for a single-port system, macromodeling techniques intend to fit a linear
time-invariant (LTI) system to the desired continuous-time frequency domain (s-domain)
responseH (s) at a set of calculated/sampled points at the I/O ports. The model is usually
a state-space system or a rational transfer function with a set of basis{φn}

H (s) ≈
N(s)
D(s)

=
N

∑
n=1

bnφn(s)

/
N

∑
n=1

b̃nφn(s), (1)

wherẽbn,bn ∈R, N is the macromodel order. The algorithm is usually required to fit tens
of ports in the original system, where each port contains hundreds of frequency sampled
data points. Therefore, the linear structure macromodeling can be classified as a large-
scale broadband system identification problem. The system identification process must
meet several stringent constraints specific to the macromodeling process, namely, ac-
curate and physically consistent response approximation,low computation complexity,
numerically robust computation and least manual configuration during calculation.

In theL2 sense, the optimal model of a system can be obtained through minimizing
the following objective function

min

∥∥∥∥
N(s)
D(s)

−H (s)

∥∥∥∥
2
. (2)

However, this is a numerically sensitive non-linear problem with no prior information
about the exact pole and zero locations of the system being identified. The response is
usually approximated using Prony’s method [15] for a coarsesolution or other identi-
fication frameworks for a finer solution, such as continuous-time domain Sanathanan-
Koerner (SK) iteration [16] or equivalent discrete-time domain Steiglitz-McBride (SM)
iteration [17]. The objective function of the SK iteration in theith iteration is

min

∥∥∥∥∥
N(i) (s)

D(i−1) (s)
−

D(i) (s)

D(i−1) (s)
H (s)

∥∥∥∥∥
2

. (3)

By arranging the weighting functionσ (i) (s) := D(i) (s)
/

D(i−1) (s), the model parame-

ters can be determined via a least-squares problem

N(i) (s)

D(i) (s)

D(i) (s)

D(i−1) (s)︸ ︷︷ ︸
(σH)(i)(s)

−
D(i) (s)

D(i−1) (s)︸ ︷︷ ︸
σ (i)(s)

H (s) ≈ 0
. (4)
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If a monomial power series basis function is used in (4) for broadband macromodeling,
i.e.,φn(s) = sn, the traditional SK iteration approach will suffer from an ill-conditioned
Vandermonde matrix calculation [18], and thereby do not satisfy the macromodeling
requirements from a numerical perspective. Therefore, Vector Fitting (VF) is recognized
as a robust and simple broadband macromodeling technique, and has been widely
practiced. In this paper, we will discuss the macromodelingprocedure development
along three directions:

1. Data section (H (s)): Input data choices, pre-processing of data and model;
2. Algorithms section (H (s) → N(s)

/
D(s)): Identification criterion and framework

and numerical implementation;
3. Models section (N(s)

/
D(s)): Post-processing for model physical consistency and

simulation.

FORMULATION OF VECTOR FITTING (VF)

In VF, given a set of poles{αn}, (1) is approximated using a summation of partial
fraction basis and a unity basis with their model parameters{cn} andd,

H (s) ≈
N(s)
D(s)

=

(
N

∑
n=1

cn

s+αn

)
+d. (5)

By including the weighting functionσ (s), (5) is linearized into an iterative separable
denominator calculation, namely, for thetth iteration,

(
N

∑
n=1

c(t)
n

s+α(t)
n

)
+d(t)

︸ ︷︷ ︸
σH(t)(s)

≈

((
N

∑
n=1

γ(t)
n

s+α(t)
n

)
+1

)

︸ ︷︷ ︸
σ (t)(s)

H (s)
, (6)

which falls into the framework of SK iteration (4) [18, 19].
In numerical implementation, provided all poles are real and Ns frequency-sampled

data points are given, an expression from (6) is formed for each frequency-sampled point
si, i = 1,2, . . . ,Ns,

A ix = bi , (7)

where bi = H (si), A i =
[

1
s+α(t)

1

· · · 1
s+α(t)

n
1 −H(si)

s+α(t)
1

· · · −H(si)

s+α(t)
n

]
, and

x =
[

c(t)
1 · · · c(t)

N d(t) γ(t)
1 · · · γ(t)

N

]
. x are solved through stacking the row (7)

at theNs sampled points to form an overdetermined linear equations problem,

[
AT

1 AT
2 · · · AT

Ns

]T
x =

[
b1 b2 · · · bNs

]T
, (8)

where it can be solved through normal equations or a QR decomposition. The zeros of

σ (t) (s) (i.e., the new set of poles
{

α(t+1)
n

}
) can be calculated as the eigenvalues of the
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matrix

Ψ =




α(t)
1

α(t)
2

. . .

α(t)
N



−




1
1
...
1







γ(t)
1

γ(t)
2
...

γ(t)
N




T

. (9)

If the poles are unstable (i.e.,ℜ
({

α(t+1)
n

})
> 0 ), the poles are flipped against the

imaginary axis to the open left half plane for pole stabilization

α(t+1)
n := −α(t+1)

n . (10)

This is equivalent to cascading an allpass filterA(s) to alter the phase response

A(s) =
s+α
s−α

. (11)

The computation is repeated until convergence is achieved,say, σ (s) ≈ 1 and∥∥∥N(t)(s)
D(t)(s)

−H (s)
∥∥∥≈ 0, at theNT th iterations. Eq. (6) is then reduced to

N

∑
n=1

c(NT )
n

s+α(NT )
n

+d(NT ) ≈ H (s) , (12)

and the residues
{

c(NT)
n

}
andd{NT} can be calculated similarly as in (8). In summary, VF

replaces the monomial power series basis by a partial fraction basis, which significantly
improves the numerical condition in calculation of (8). Thedetailed VF formulation is
shown in [1, 18, 19]. Pseudocodes are given to summarize the framework of VF:

Algorithm 1 Pseudocodes of Vector Fitting (VF)

1: FindH (z), and assign
{

α(0)
n

}
;

2: repeat
3: Calculate

{
γ(t)
n

}
by solving (8) with

{
α(t)

n

}
;

4: Calculate
{

α(t+1)
n

}
by solving (9) and stabilize the unstable poles through (10);

5: until
{

α(t)
n

}
converges afterNT iterations

6: Calculate
{

c(NT)
n

}
andd(NT) through (12) with

{
α(NT)

n

}
;

DATA

Data describe the system response, and are obtained from measurements or EM simu-
lators. Since data content can affect the properties and quality of the macromodel, dif-
ferent considerations and techniques have been proposed toensure the input data are
maximally informative for identification purpose.
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Data: Input Data Choices

Continuous-time frequency-sampled dataH (s) are used for macromodeling in VF [1],
as the frequency-sampled responses capture the high-frequency behaviors of a system.
Examples of frequency-sampled data are scattering parameters (S-parameters) for RF
objects and admittance parameters (Y-parameters) for interconnects. Alternative data
choices, such as frequency response derivativeH ′ (s) [20], phase response∠H (s) [21]
and magnitude response|H (s)| [22], are used for different identification purposes.
In practices, frequency-domain macromodeling involves complicated measurements.
Truncated time-sampled data (input and output responseX [n] andY [n]) are often used,
therefore (discrete) time-domain VF have been proposed [23, 24]. Approximation using
combination of several classes of data (hybrid-domain approximation) provides extra
information for a more accurate approximation of the system. It has been applied to
digital IIR filter approximation [4] and works well in macromodeling process.

Data: Pre-Processing of Data

The system response should correctly describe the system. However, some problems,
such as data burst, defects, missing and noise-disturbance, may occur during the course
of data collection. Some information may get lost and difficulties and failures in ap-
proximation may arise. Therefore, data pre-processing is required to ensure the data are
meaningful (e.g., passive and causal) to generate a correctmacromodel. For example,
causality and passivity verifications of input data and delay extraction are developed
using (generalized) Hilbert transform [25]. Furthermore,causality-constrained data in-
terpolation is developed to generate consistent DC and low-frequency data, which is
necessary for simulation but usually not provided in the frequency-sampled data [25].

In addition, a large data set or broadband responses usuallyhave a large variance and
may result in ill-conditioned calculation. Pre-filtering techniques, in this scenario, can be
used to change the distribution of noise and bias, so as to give a better fitting of important
frequency range and a numerically favorable calculation with small computational cost.
An appropriate adaptive or deterministic data selection process and response weighting
can also help improve the approximation.

Data: Pre-Processing of Model

A priori configuration of macromodels should be chosen based on the knowledge of
the algorithms (SK iteration) and data for a convenient approximation. For example,
an a priori model order selection helps generate a minimum size macromodel for
efficient simulations with accuracy control. The model order can be selected by applying
experimental observation of the frequency response in frequency-sampled data [26], or
the Hankel Singular Value (HSV) in (discrete) time-sampleddata [24].
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ALGORITHMS

Given a set of input data, an algorithm is used to determine the model parameters. A
good algorithm should have an appropriate identification criterion and should be easy
and robust for numerical implementation. We first discuss the algebraical minimization
criteria, then the numerical implementation for a numerically favorable model parame-
ters calculation.

Algorithms: Identification Criterion and Framework

The selection of approximation criteria is important for model approximation. The
approximated model should be reliable, obtained within a reasonable computation time,
and should admit an exact description of the true system. SK iteration with anL2-norm
prediction error is usually used since it is applicable to different response models. Other
criterion extensions are also developed recently for specific applications [27].

Massive-port macromodeling: VF handles multi-port macromodeling by stack-
ing the system equation matrices of responses of all ports into a single column of
over-determined equation for solutions. However, numerical difficulties exist in mod-
eling the systems with a large number of ports (e.g., packageparasitic networks and
electromagnetic-aware circuits). To model a system with anarbitrary number of ports,
a reformation of the VF framework is proposed to approximatethe eigenpairs rather
than the matrix elements [28]. It gives a more accurate approximation for systems with
a large ratio between the largest and smallest eigenvalues.

Parametric macromodeling: Variabilities in geometry and material properties are
generated during the manufacturing process, and become a critical factor in nano-scale
high-frequency circuit simulation and design. In order to accurately predict the behavior
and reduce the computation time of repeated simulations, a parametric macromodel is
used to describe the variational structures

H (s,g) ≈
∑Ns

n=0

(
∑P

p=1bnpϕp(g)
)

φn(s)

∑Ns
n=0

(
∑P

p=1 b̃npϕp(g)
)

φn(s)
, (13)

whereφn(s) is the frequency-dependent basis andϕp(g) is the variability-dependent
basis with a single variational parameterg andP samples in the variability domain. The
variational structures can be described by a macromodel with a polynomial basis or
rational function basis [29, 30, 11].

Algorithms: Numerical Implementation

Due to the nature of iterative calculation, its implementation is usually numerically
sensitive. Although VF solves the ill-conditioned calculation by a partial-fraction ba-
sis, some other problems, such as inappropriate initial guess and noise-contaminated
responses, tend to damage the algorithm convergence. Some improvements have been
proposed to address these problems.
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Initial poles and applied basis: The algorithm gives a set of model parameters (bn
andb̃n in (1)) according to the given set of basis (φ (s)), the sampled data and the initial
poles. The selected basis affects the conditioning of the system equation matrix in (8)
and the solution accuracy.

One approach to address this problem is to select an appropriate set of initial poles.
The initial poles can be obtained by a simple calculation (e.g., Prony method [15]), or
intuitively assigned as a set of weakly-damped initial poles (α1,2 = a± j0.01a) [1]. An-
other approach is to select a robust basis for calculation, which minimizes the numerical
disturbance due to the inappropriate set of poles. Orthonormal basisφor_n(s) [31] and
discrete-time domain (z-domain) basisφz_n(z) [3] have been proposed based on this
idea, namely,

φor_n(s) = κn

√
2ℜ(αn)

(
n−1

∏
j=1

s−α∗
j

s+α j

)
1

s+αn
, (14)

φz_n(z) =
1

z−1 +αn
, (15)

whereκn is the normalization coefficient and∗ denotes complex conjugate. Orthonormal
basis, from a mathematical perspective reduces the condition number of the system
equation matrix, while the discrete-time basis calculation maps the left Laplace plane to
a unit circle plane, and thus improves the numerical condition from a signal-processing
perspective. Furthermore, discrete-time domain orthonormal basis is proposed recently
for further robustness improvement [32]. Other basis generalizations are also available
for different requirements, e.g., modeling the responses with repeated poles [31].

Macromodeling with noisy signals: Experiences show that the convergence is
slowed down in noise-contaminated signals and biased in thelow-frequency region.
This is because the unity basis ofσ (s) in (6) impairs the LS normalization of equation
solving. To address this problem, a variable unity basis (γ0) normalization (16) with
an additional relaxed nontriviality condition (17) is adopted for a relaxed least-squares
normalization (Relaxed VF) [33, 19],

(
N

∑
n=1

c(t)
n

s+α(t)
n

)
+d(t)

n

︸ ︷︷ ︸
(σH)(t)(s)

≈

((
N

∑
n=1

γ(t)
n

s+α(t)
n

)
+ γ0

)

︸ ︷︷ ︸
σ (t)(s)

H (s)
, (16)

ℜ

(
Ns

∑
k=1

(
N

∑
n=1

(γnφn(sk))+ γ0

))
= Ns+1. (17)

Eq. (17) imposes that the sum of the samples approaches to a nonzero value. This
improves the normalization of the transfer function coefficients and the linearization
of the iterative SK iteration without affecting the convergence.

Massive-port macromodeling: VF suffers from computational inefficiency when
macromodeling massive-port systems due to the unnecessarycalculation ofcn in (8)
during iterative pole calculation (Step 3). Based on the observation of shared common
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poles in the macromodel, a QR decomposition is applied to extract the calculation ofγn
of each port response and formulate a compacted calculation[34]. The computational
complexity is then reduced fromO

(
(PinPout +1)2n2NsPinPout

)
to O

(
n2NsPinPout

)
for a

system withPin input ports andPout output ports, without any lost of accuracy.

MODELS

The macromodel (model) describes the Input-Output (I/O) characteristics of the approx-
imated system, for analysis and simulation with other circuit models. The model should
be accurate, physically consistent and of low complexity for simulation. Necessary post-
processing techniques are adopted to ensure a correct simulation.

Models: Post-Processing for a Physically Consistent Model

The macromodel should be physically consistent, i.e., real-valued, stable, passive and
causal [35].

Real-valued: Real-valued macromodels do not generate complex-valued responses
for real-valued input data. However, the original VF may generate complex-valued
macromodels if the complex poles are not restricted to conjugate pairs. Some modifica-
tions in (7)-(9) are required to construct a real-valued macromodel, as explained in [1].
Complex-valued computations of (8) are separated into its real and imaginary parts to
avoid numerical errors, at the expense of an increased problem size.

Stable: Stable macromodels do not generate response beyond limitsfor any bounded
input signal. An unstable pole can be stabilized through a non-linear pole flipping
in (11). The flipping, however, does not affect the norm criterion in (3) and the algorithm
convergence.

Passive: Passive macromodels do not generate energy, yet VF may generate slightly
non-passive macromodels due to numerical errors. Therefore, passivity enforcement
through perturbation of model parameters is required to passify the model, and a detailed
study is shown in [36].

Causal: Causal macromodels do not generate output signal accordingto the future in-
put. However, modeling electrically-long structures (i.e., responses with a signal delay)
using a purely rational macromodel may suffers from inapplicable fitting and often gen-
erates a non-causal model. A reformulated VF is developed [37]. With theD obtained
time delays{τd}, the response can be fitted via

H (s) ≈
∑N

n=0 ∑D
d=1bndφn(s)e−sτd

∑N
n=0 b̃ndφn(s)

. (18)

Models: Post-Processing for Simulation

The approximant macromodel is used to generate the frequency response, time-
domain reflectometry (TDR) waveforms, time-domain transmissometry (TDT) wave-
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FIGURE 2. Magnitude responses of the power distribution network: (a)approximation usingL2 norm,
and (b) approximation usingLin f (L∞) norm.
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FIGURE 3. (a) Condition number of the system equation matrix in (8), and (b)L2 error of the approxi-
mation using original VF (6), relaxed VF (16) and weighted VF.

forms and eye diagrams for channel analysis, or coupled withother models for overall
simulation. Therefore, the models should be fully integrated with simulation tools for
efficient analysis. The macromodel can be described by a pole-residue form in Matlab
Simulink or Verilog-A description for high-level simulations. The macromodel can also
be described as an equivalent circuit in a SPICE netlist for co-simulation with other
(non-linear) macromodels [38]. A standard equivalent circuit can be generated using
differential-equation realization.
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P-NORM APPROXIMATION IN VF

To satisfy different macromodeling requirements and give amore realistic description
of the system, the approximation framework (3) is extended to aP-norm (Lp) approxi-
mation. The minimization framework (3) is generalized to

min

∥∥∥∥∥
N(t) (s)

D(t−1) (s)
−

D(t) (s)

D(t−1) (s)
H (s)

∥∥∥∥∥
p

, (19)

for which the over-determined equations can be efficiently solved by convex program-
ming. The approximation framework can be generalized to a user-defined norm (e.g.,
region-dependent norm) approximation or (norm-)constrained approximation to meet
different macromodeling requirements. For example,L∞ (Chebyshev norm) approxima-
tion gives a smaller macromodel for a linear-phase (time-delayed) response,L2 approx-
imation gives a more accurate macromodel for a noisy response, andL1 approximation
is favorable for system identification with an impulsive-noise-contaminated signal.

NUMERICAL EXAMPLES AND DISCUSSIONS

The VF is coded in Matlab m-script files and run in the Matlab 7.5 on a 1GB-RAM
3.4GHz PC. The first example arises from a power distribution network of an IC power
plane [2], whose admittance responses range from DC to 9GHz.The port response is
fitted using relaxed VF [33] with a 35th-order macromodel with 10 iterations (18.28
seconds) and a set of linear-spaced initial poles, which gives 0.0064L2 and 0.0022L∞
error in fitting. Fig. 2 plots the magnitude-domain responses of the converged approx-
imant. Fig. 3 shows the condition number of the system equation matrix (8) and the
L2 error during iterations. In general, VF converges quickly (≤ 10 iterations), especially
for minimum-phase (passive) response. For further analysis of generalizations of VF, we
repeat the example using VF without relaxed constraint and relaxed VF with a inverse-
magnitude weighting. The quantitative comparison is shownin Fig. 3. It shows that the
weighting does not contribute much to the numerical condition, but it affects the conver-
gence. The relaxation may affect the numerical condition ofthe calculation, but it also
significantly improves the accuracy of the approximation. At last, we repeat the example
under an SNR of -35dB. In this case, relaxed VF converges with 0.0193L2 and 0.0014
L∞ error. This shows the relaxed VF is robust to the noisy response approximation.

The responses are also fitted usingL∞ norm approximation with the same configura-
tion and clean signal, which gives an approximation with 0.0165L2 error and 0.0016L∞
error. The magnitude-domain response of the converged approximation in Fig. 2 shows
thatL∞-norm approximation renders a more accurate low-frequency(near DC) approxi-
mation which is important for simulation, andP-norm approximation can be used as an
alternative approximation criterion.

The performance of VF is also verified by a large macromodeling example of a
fourteen-port power distribution network of a communication board. The tested intel-
ligent network communicator (INC) board contains digital, ratio frequency (RF) and
optoelectronic sections on a single 83 cm× 65 cm test bed. The board has two FPGA
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Port (7,13), and (c) Port (10,13).

chips, one multiplexer (MUX), one RF amplifier, one signal layer, one irregularly shaped
ground layer and one irregularly shaped power plane layer. 14 × 14 admittance param-
eter matrix is generated at 1286 frequencies ranging from 10KHz to 9GHz [39]. Fig. 4
plots the signal energy distribution of the approximated system, from which we can see
that some pairs of ports are not coupled with each other. By extracting the coupled re-
sponses from all the responses, the approximation is significantly reduced from fitting
196 responses to fitting 54 responses. The frequency-sampled responses are fitted us-
ing VF with a 100-pole approximant. It takes VF 99 seconds and5 iterations for VF to
converge, with the average relative error being 0.0096. Fig. 5 plots some typical approx-
imations. Fig. 6 plots the distribution of the relative error of energy. This example has a
large amount of response data to be fitted, but VF is computationally well-conditioned
and gives an accurate approximation within a few iterations.

Some discussions about the macromodeling process are in order:

1. The computation time is exponentially proportional to the amount of fitting data,
which depends on the number of ports and the number of samples.

2. The computational difficulties are related to the characteristics of the underlying
structure and sampling distributions. In some situations,the approximation accu-
racy does not get improved much with higher order models or more iterations,
which implies some generalized models (e.g., grey-box models) are required to bet-
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ter describe the system. Some prior application-specific configurations can be ap-
plied based on physical insights of the measured data. For example, pre-processing
techniques (e.g., frequency warping or delay extraction) or delay-based macromod-
eling techniques are used to model delayed responses. Furthermore, it is not feasi-
ble to model multi-pole structures (e.g., RF circuits) by single-pole partial fraction
basis, in which case multi-pole basis are required for approximation [31]. Auto-
matica priori response characterization procedures and specialized models should
be developed to facilitate the macromodeling process.

3. Measured responses are generally more difficult to model compared to simulated
responses. It is because measured responses have irregulardisturbances, which
affect the convergence and accuracy of iterative numericalcalculation frameworks.
On the other hand, the amount of fitting data is not necessarily related to the
approximation accuracy.

4. In addition to the effort to improve its accuracy and speed, we should also make
sure that the macromodeling algorithm requires least manual configurations. For
example, the order of the model, the locations of initial poles, the number of
iterations and the criterion of approximation should be automatically determined
instead of manually selected.

5. An alternative choice of macromodeling process is the Loewner matrix-based tan-
gential interpolation algorithm [40, 41], which is a non-iterative and manual con-
figurations free macromodeling method using frequency-sampled responses. The
order of the underlying system is also automatically recognized.

CONCLUSIONS

By applying a partial fraction basis, Vector Fitting (VF) hasdemonstrated its numerical
robustness in broadband system identification. The good performance and versatile
extensibility of VF render it an attractive tool for signal/power integrity analyses. In
this chapter, different issues related to VF have been discussed on how to obtain a good
macromodel for simulation. Furthermore, aP-norm approximation criterion is proposed
to provide an alternative measure to meet different requirements.
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