
Title Object reconstruction from adaptive compressive
measurements in feature-specific imaging

Author(s) Ke, J; Ashok, A; Neifeld, MA

Citation Applied Optics, 2010, v. 49 n. 34, p. H27-H39

Issued Date 2010

URL http://hdl.handle.net/10722/139226

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37961978?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Object reconstruction from adaptive compressive
measurements in feature-specific imaging

Jun Ke,1,* Amit Ashok,1 and Mark A. Neifeld1,2

1Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, USA
2College of Optical Science, University of Arizona, Tucson, Arizona 85721, USA

*Corresponding author: jke@ece.arizona.edu

Received 12 May 2010; accepted 30 July 2010;
posted 17 September 2010 (Doc. ID 128333); published 19 October 2010

Static feature-specific imaging (SFSI), where the measurement basis remains fixed/static during the
data measurement process, has been shown to be superior to conventional imaging for reconstruction
tasks. Here, we describe an adaptive approach that utilizes past measurements to inform the choice
of measurement basis for future measurements in an FSI system, with the goal of maximizing the re-
construction fidelity while employing the fewest measurements. An algorithm to implement this adap-
tive approach is developed for FSI systems, and the resulting systems are referred to as adaptive FSI
(AFSI) systems. A simulation study is used to analyze the performance of the AFSI system for two choices
of measurement basis: principal component (PC) and Hadamard. Here, the root mean squared error
(RMSE) metric is employed to quantify the reconstruction fidelity. We observe that an AFSI system
achieves as much as 30% lower RMSE compared to an SFSI system. The performance improvement
of the AFSI systems is verified using an experimental setup employed using a digital micromirror device
(DMD) array. © 2010 Optical Society of America
OCIS codes: 100.0100, 110.1758, 110.1085, 110.3010.

1. Introduction

Researchers in the area of computational imaging
have made significant advances toward addressing
various important inverse problems, such as super-
resolution [1–3], point spread function engineering
for estimation and recognition tasks [4–6], compres-
sive imaging [7–9], and quantitative imaging based
on controlled incident fields and amplitude-only
scattered field measurements [10–12]. Here, we con-
sider the problem of measurement basis design for
compressive imaging systems using an adaptive
approach.

Traditional imaging systems are designed with a
goal ofmaking an isomorphicmeasurement of a scene
using image-formation optics and opto-electronic
detector arrays, such as CCD/CMOS image sensors.
However, this design approach ignores the fact that

most natural scenes are inherently redundant and,
therefore, sparse in some transform domains, such
as Fourier and/or wavelets. This implies that by em-
ploying a suitable measurement basis, a scene/object
can be directly measured in the sparse domain with
fewer measurements. This provides the motivation
for feature-specific imaging (FSI) [7], which employs
sparse transforms, such as principal component (PC),
Hadamard [13], and wavelets as the measurement
basis. The resulting measurements are referred to
as features,where each feature is an inner product be-
tween the object and a basis/projection vector. As a re-
sult of making fewer photon efficient measurements
compared to conventional imaging, this approach re-
sults in system benefits, such as improved measure-
ment signal to noise ratio (SNR) and reduced power,
bandwidth, and weight requirements. As the number
of measurements in FSI are typically much smaller
than the object dimensionality, it is also sometimes
referred to as “compressive imaging” [14–18]. The
superior performance of FSI relative to conventional
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imaging has been demonstrated for various applica-
tions, such as sensor network, structured illumina-
tion, and face detection [19–22].

Previous research on FSI systems [19,20,23] has
employed measurement basis, such as the principal
component or Karhunen–Loève basis, that incorpo-
rates the second-order correlation properties of nat-
ural scenes. It is important to emphasize that the
measurement basis remains fixed or static during
the measurement process. Therefore, we refer to
such a system as a static FSI (SFSI) system. Note
that while such a static measurement basis can be
optimized to minimize the reconstruction mean
square error (MSE) for an ensemble of objects; how-
ever, for a given object it becomes suboptimal. An
adaptive approach would suggest modifying themea-
surement basis based on the specific object informa-
tion derived from the previous measurements. This
would allow an FSI system to adapt to the statistics
of the specific object, thereby improving the overall
system performance compared to an SFSI system.
Here, we describe such an adaptive FSI (AFSI) sys-
tem that uses PC and Hadamard bases as examples
to illustrate the adaptive advantage. As mentioned
earlier, the PC basis incorporates second-order object
prior knowledge and is optimal in absence of mea-
surement noise. The Hadamard basis does not incor-
porate such object knowledge, but it is commonly
used in image processing. The remainder of the
paper is organized into six sections. In Section 2,
we review an SFSI system with PC and Hadamard
projections. Then, we describe the AFSI system de-
sign in Section 3. This includes the description of al-
gorithms using the two projections for both noise-free
and noisy cases. In Section 4, a simulation study is
used to quantify the performance of AFSI and SFSI
systems. In Section 5, we describe the results from an
experimental implementation of AFSI and SFSI sys-
tems that validates our simulation study. Finally,
Section 6 summarizes the results and draws conclu-
sions based on the reported simulation and experi-
mental results.

2. SFSI System Framework

Asmentioned earlier, an SFSI system uses projection
vectors from a fixed/static measurement basis to
make feature measurements. Here, we will begin
with the noise-free case. Figure 1 shows a block dia-
gram representation of an SFSI system. A lens array

formsmultiple images of an object. In the focal plane,
an array of spatial light modulators (SLM) display-
ing the projection vectors modulates these images.
Following the SLM array, each modulated image is
spatially integrated onto a single detector, resulting
in one feature measurement. An array L, such projec-
tions depicted in Fig. 1 yield L feature measurements
in parallel. After I such measurements, M ¼ IL
features are collected. Mathematically, these mea-
surement processes can be represented as y ¼ Fx,
where y is the feature measurement vector of size
M × 1, F is the projection matrix of size M ×N, and
x is the object vector of size N × 1 obtained by lexico-
graphically arranging a 2D object of size

ffiffiffiffiffi

N
p

×
ffiffiffiffiffi

N
p

.
In a PC-based SFSI (PC-SFSI) system, each row of F
represents a projection vector that corresponds to an
eigenvector of the object autocorrelation matrix Rx.
To minimize reconstruction error, theM eigenvectors
corresponding to the largest M eigenvalues used to
construct the PC projection matrix, yielding M fea-
ture measurements [24]. The reconstruction process
using noise-free measurements is represented as
x̂ ¼ FTy, where x̂ is the reconstructed object vector
of size N × 1. It is known that PC projections are
optimal in terms of minimizing reconstruction MSE
for an ensemble of objects assuming an underlying
Gaussian distribution [24]. However, to minimize
the reconstruction MSE with a minimum number
of features for a specific object as opposed to an en-
semble, the PC projection vectors need to be derived
specifically for that particular object. For example, to
reconstruct/estimate a “tank” object, a set of M PC
projection vectors derived from tank training images
generate a smaller error relative to another set of M
PC projection vectors derived from an ensemble of
face images. Note that the first set of projection vec-
tors derived from a training set composed of objects
similar to the test object is able to incorporate more
relevant object prior knowledge compared to a train-
ing set composed of a different class of objects than
the test object. This observation motivates the design
for our PC-based AFSI system discussed in the next
section.

In a Hadamard-based SFSI (H-SFSI) system, the
construction of the projection vectors does not de-
pend on the object ensemble statistics. Figure 2(a)
shows the first five Hadamard vectors using Sylve-
ster’s method for construction [13]. We define these
vectors as Hadamard vectors sorted in Sylvester

Fig. 1. (Color online) Block diagram for SFSI using PC bases.
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order. Note that each feature measurement is an in-
ner product between the corresponding projection
vector and the object vector. Therefore, a different
amount of object energy is collected in a feature using
different Hadamard projection vectors. Sorting pro-
jection vectors by their energy collection efficiency
results in ordering that we will refer to as the energy
collection order. Figure 2(b) shows the first five
Hadamard vectors in energy collection order for
the 32 × 32 object shown in Fig. 2(c)-I. The recon-
structions obtained by using 200 Hadamard vectors
sorted using both the orders are shown in Figs. 2(c)-II
and c-III, respectively. Observe that the reconstruc-
tion in Fig. 2(c)-III is superior to that in Fig. 2(c)-II.
Therefore, from Fig. 2, we conclude that using the
energy collection ordering of Hadamard projection
vectors improves the reconstruction performance.
Here, we employ a set of training objects to sort the
Hadamard projection vectors according to the energy
collection order for use in the H-SFSI system.

We will use a parallel architecture for a feature-
specific (FS) imager to describe the system imple-
mentation in the following discussion. In such an
FS imager, L features are measured in parallel dur-
ing each time period T0. One way to implement a par-
allel architecture FS imager is to use a lenslet array
with L elements as shown in Fig. 1. The object irra-
diance in each feature measurement is reduced by a
factor L due to use of L lenslets of equal diameter
within the system aperture [23]. The detector noise
in the FS imager is assumed to be independent ad-
ditive white Gaussian noise with zero mean. Its var-
iance is σ2 ¼ σ20=T0, where σ20 is the noise energy per
bandwidth and T0 is the detector exposure time [23].

Including detector noise,M ¼ IL feature measure-
ments in a SFSI system are expressed as

y ¼ Fxþ n; ð1Þ
where F is the projection matrix of sizeM ×N, which
includes the 1=L factor resulting from the choice of

the parallel architecture, and n is the noise vector
of size M × 1. The object estimate x̂ can be obtained
using a Wiener or a linear minimum mean square
error (LMMSE) operator W as x̂ ¼ Wy, where

W ¼ RxFT ½FRxFT þ Rn�−1 ð2Þ
and Rn is the noise autocorrelation matrix, Rn ¼ σ2I.

3. AFSI System Framework

In an AFSI system, the measurement basis is up-
dated based on the current and past measurements.
For example, for a

ffiffiffiffiffi

N
p

×
ffiffiffiffiffi

N
p

object, we design the
first L projection vectors, then use them to make
the corresponding L feature measurements. Based
on these L measurements, we design the second L
projections and make the second L feature measure-
ments and so on. Following this procedure, we design
projection vectors sequentially incorporating object
knowledge learned at each step. In this section, we
describe the AFSI system design for two cases: 1)
in presence and 2) in the absence of noise. Before con-
tinuing the discussion, we need to define a list of
parameters as shown below:

x: object vector of size N × 1.
AðiÞ, BðiÞ: two training sets in the ith iteration,

where samples in AðiÞ span a N − iL dimensional
space and samples in BðiÞ span a N dimensional
space.

kðiÞ: cardinality of AðiÞ and BðiÞ.
RðiÞ

A , RðiÞ
B : autocorrelation matrices estimated from

samples in AðiÞ and BðiÞ.
FðiÞ: projection matrix of size L ×N in the ith

iteration.
~FðiÞ: accumulated projection matrix of size ðiLÞ ×N

after the first i iterations.
nðiÞ: noise vector of size L × 1 in the ith iteration.
yðiÞ: feature vector of size L × 1 in the ith iteration.
~yðiÞ: accumulated feature vector of size ðiLÞ × 1

after the first i iterations.
WðiÞ: reconstruction operator in the ith iteration

when there is no noise in measurement.
WðiÞ

n : reconstruction operator in the ith iteration
when there is noise in measurement.

x̂ðiÞ: object reconstruction in the ith iteration.

A. AFSI System in the Absence of Noise

1. PC-Based AFSI (PC-AFSI) System

Figure 3 presents the block diagram of a PC-AFSI
system. In each adaptation iteration, L PC projection
vectors are derived from a training set AðiÞ. The vec-
tors are the L dominant eigenvectors of RðiÞ

A , where i
denotes the ith iteration, i ¼ 1; 2; 3; :::; I, and I is the
total number of adaptation steps. Feature measure-
ments in the ith iteration are represented as yðiÞ ¼
FðiÞx. All of the measurements up to the ith iteration
are represented as ~yðiÞ ¼ ½yð1ÞTyð2ÞT…yðiÞT �T. To in-
clude the object prior knowledge, AðiÞ is updated to

Fig. 2. Hadamard bases (a) sorted in Sylvester’s order, (b) sorted
in energy collection order, (c-I) object example; object reconstruc-
tion example using 200 Hadamard bases (c-II) sorted in Sylvester’s
order, (c-III) sorted in energy collection order.
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Aðiþ1Þ using the “K-nearest neighbor” method in the
accumulated feature space. In such a method, the
kðiþ 1Þ closest training samples to x̂ðiÞ are chosen
from AðiÞ to form Aðiþ1Þ, and the rest of the samples
are discarded. To ensure the orthogonality among
all projections, we remove the subspace spanned
by the iL PC projections from Aðiþ1Þ. The number
of training samples kðiÞ is a function of i, which ex-
ponentially decrease as i increases, kðiÞ ¼ αe−βi.
Parameters α and β are searched using more than
50 training samples. The α and β values optimizing
AFSI system performance are used throughout the
simulation and experiment in this paper.

With iL feature measurements, the object
estimation is x̂ðiÞ ¼ WðiÞ~yðiÞ, where WðiÞ ¼ RðiÞ

B
~FðiÞT×

½~FðiÞRðiÞ
B
~FðiÞT �−1. ~FðiÞ is the accumulated projection

matrix, ~FðiÞ ¼ ½Fð1ÞT Fð2ÞT � � � FðiÞT �T . RðiÞ
B is de-

rived from the sample set BðiÞ with Bð1Þ ¼ Að1Þ initi-
ally. BðiÞ is also updated using the same “K-nearest
neighbor” as AðiÞ. However, the subspace span-
ned by the iL projections is not removed from
Bðiþ1Þ in order to make sure that ~FðiÞRðiÞ

B
~FðiÞT is

invertible.
The following is the algorithm for estimating the

object x using I iterations in a PC-AFSI system.

1. Calculate RðiÞ
A ¼ EfaðiÞj aðiÞTj g and RðiÞ

B ¼ EfbðiÞj bðiÞTj g, where Efg
represents the mathematical expectation, aðiÞj and bðiÞj are
training samples in AðiÞ and BðiÞ, respectively, and
j ¼ 1;2; � � � ; kðiÞ. Initially, Að1Þ ¼ Bð1Þ and kð1Þ ¼ αe−β.

2. Calculate the L dominant eigenvectors of RðiÞ
A and form FðiÞ.

3. Make the feature measurements yðiÞ ¼ FðiÞx and form
~yðiÞ ¼ ½ yð1ÞT yð2ÞT � � � yðiÞT �T .

4. Estimate the object x̂ðiÞ ¼ WðiÞ~yðiÞ.
5. Calculate the feature measurements of aðiÞj , uðiÞj ¼ FðiÞaðiÞj . Form

~uðiÞj ¼ ½ uð1ÞTj uð2ÞTj � � � uðiÞTj �T .
6. Calculate the distance between x̂ðiÞ and aðiÞj in feature space:

dðiÞ
j ¼ ∥~uðiÞj − ~yðiÞ∥2.

7. Update AðiÞ to Aðiþ1Þ by choosing aðiÞj such that aðiÞj is associated
with the kðiþ 1Þ smallest dðiÞ

j values. BðiÞ is also updated to
Bðiþ1Þ accordingly.

8. Define the samples in Aðiþ1Þ as aðiþ1Þ
j ¼ aðiÞj − FðiÞTuðiÞj .

9. If i < I, go back to 1.

2. Hadamard-Based AFSI (H-AFSI) System

The feature adaptation procedure for a H-AFSI sys-
tem is a slightly modified version of the PC-AFSI sys-
tem. In the H-AFSI system, the projection vectors are
fixed and independent of the training set. However,
the implementation order of the vectors can be
adapted using training samples. We use the training
sample average of AðiÞ to choose the L dominant
vectors in the sense of the object energy collection.
For example, if �x is the training sample average vec-
tor, and j�xTf1j > j�xTf2j > � � � > j�xTfLj > � � � > j�xTfN j
where f i, ði ¼ 1; 2; � � � ;L � � � ;NÞ are a set of Hadamard
vectors, then f1, f2; � � �, and fL are the chosen vectors.
AðiÞ is updated in the samemanner as in the PC-AFSI
system, specifically using the PC-AFSI algorithm
steps 5–8. Once again, the object estimate in the
ith iteration is x̂ðiÞ ¼ WðiÞ~yðiÞ. The block diagram
and the algorithm in a H-AFSI system is similar
to that of a PC-AFSI system, except that the diagram
blocks marked with star in Fig. 3 and the algorithm
steps 1 and 2 for the PC-AFSI system need to be mod-
ified. Instead of the L dominant eigenvectors of
Rðiþ1Þ

A , the L dominant Hadamard vectors in the
sense of object energy collection are chosen to form
projection matrix Fðiþ1Þ.

B. AFSI System in the Presence of Noise

So far, we have considered a noise-free feature mea-
surement model. Now, we extend our model to in-
clude additive detector noise. The AFSI system
feature measurements in the ith iteration can be
expressed as yðiÞ ¼ FðiÞxþ nðiÞ. The object estimate

Fig. 3. (Color online) Block diagram for AFSI using a PC basis, where * indicates the blocks distinguishing FASI using a PC basis from
those using a Hadamard basis.
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is x̂ðiÞ ¼ WðiÞ
n ~yðiÞ, whereWðiÞ

n is theWiener/LMMSE op-
erator WðiÞ

n ¼ RðiÞ
B
~FðiÞT ½~FðiÞRðiÞ

B
~FðiÞT þ Rn�−1 and where

Rn ¼ σ2I is the noise autocorrelation matrix. The
training sets are updated using denoised accumu-
lated feature measurements. The denoised features
are defined as

ŷðiÞ ¼ WðiÞ
y yðiÞ; ð3Þ

where

WðiÞ
y ¼ RðiÞ

y ½RðiÞ
y þ Rn�−1 ð4Þ

and

RðiÞ
y ¼ Ef½FðiÞx�½FðiÞx�Tg ð5Þ

¼ FðiÞRðiÞ
B FðiÞT : ð6Þ

The following is the algorithm for an AFSI system
collecting M ¼ IL features in the presence of noise:

1. CalculateRðiÞ
B ¼ EfbðiÞj bðiÞTj g and formWðiÞ

n , whereEfg represents
the mathematical expectation, bðiÞj are training samples in
BðiÞ, and j ¼ 1; 2; � � � ; kðiÞ. Initialize Að1Þ ¼ Bð1Þ and
kð1Þ ¼ αe�β.

2. Use AðiÞ to decide the L most dominant projection vectors
and form FðiÞ.

3. Make the feature measurements yðiÞ ¼ FðiÞx and form
~yðiÞ ¼ ½ yð1ÞT yð2ÞT … yðiÞT �T .

4. Estimate the object x̂ðiÞ ¼ WðiÞ
n ~yðiÞ.

5. Calculate the denoised feature vector ŷðiÞ ¼ WðiÞ
y yðiÞ.

6. Calculate the feature measurements of aðiÞj , uðiÞj ¼ FðiÞaðiÞj .
Form ~uðiÞj ¼ ½ uð1ÞTj uð2ÞTj � � � uðiÞTj �T .

7. Calculate the distance between x̂ðiÞ and aðiÞj in feature space:
dðiÞ
j ¼ ∥~uðiÞj � ~̂yðiÞ∥2, where ~̂yðiÞ ¼ ½ ŷð1ÞT ŷð2ÞT ::: ŷðiÞT �T .

8. Update AðiÞ to Aðiþ1Þ by choosing aðiÞj such that aðiÞj is associated
with the kðiþ 1Þ smallest dðiÞ

j values. BðiÞ is also updated
to Bðiþ1Þ accordingly.

9. Define the samples in Aðiþ1Þ as aðiþ1Þ
j ¼ aðiÞj � FðiÞTuðiÞj .

10. If i < I, go back to 1.

4. Simulation Results

We use 97,392 samples of size 32 × 32, including face,
building, and tank images obtained under high, mod-
erate, and low illumination conditions for training.
Two types of training sets are used in our simula-
tions: (1) high-diversity and (2) low-diversity. The
high-diversity training set AH includes all three
types objects, and the low-diversity training set AL
includes only one type of object. Tank object samples
form the low-diversity training set in this case.
Figures 4(a) and 4(b) show six training samples from
high-diversity and low-diversity training sets, re-
spectively. Twenty tank object images are used for
testing. The reconstruction error is quantified using
the relative RMSE metric, which is defined as
Ef∥x̂ðiÞ − x∥2=∥x∥2g. Efg denotes the mathematical
expectation over the testing set. To simplify notation,
RMSE refers to relative RMSE throughout the rest of
the paper.

A. PC-SFSI and PC-AFSI Systems in the
Absence of Noise

In Figs. 5(a) and 5(b) we plot reconstruction RMSE in
an AFSI system as a function of the number of fea-
ture measurements, denoted by M, for training sets
AH and AL, respectively. We consider L ¼ 1 and L ¼
10 cases for both training sets. We also present the
reconstruction performance of the SFSI system with
unknown and known objects. These two SFSI sys-
tems are labeled as “SFSI” and “SFSI—obj prior,”
respectively. With an unknown object, the PC projec-
tions are derived using all training samples. With the
known object, the N training samples closest to the
object in the sense of Eucledian distance are chosen
to estimate the object autocorrelation matrix and its
eigenvectors for the projection design. Because these
samples are the most similar samples to the object,
the designed projection vectors make the reconstruc-
tion error smaller than the error using all other pro-
jection vectors designed from the same training set.
From Figs. 5(a) and 5(b), we can make following
observations. First, as evident from both figures,
adaptation significantly improves the reconstruction
performance. We use the high-diversity training set
AH and L ¼ 1 as an example. For M ¼ 250 features,
the RMSE is 0.150 in the SFSI system and 0.103 in
the AFSI system, which is an improvement of RMSE
31.32%. Similarly, for the low-diversity training set
AL, we observe a slightly smaller RMSE improve-
ment 23.72%. Note that the reconstruction error of
SFSI system using AL is smaller than using AH, be-
cause AL includes only tank samples and therefore
has more object prior knowledge. However, recon-
struction error in the AFSI system remains about
the same, regardless of the training set diversity be-
cause the projection vectors adapt to specific objects
in the testing sample. This is evident from the RMSE
values for AFSI systems using AH and AL with L ¼ 1
are 0.103 and 0.102, respectively. The second obser-
vation is that the AFSI system using different
choices of L has nearly the same reconstruction per-
formance. Using AH with M ¼ 250, the RMSE is
0.101 for L ¼ 10 and 0.103 for L ¼ 1. The reason is
that with a properly chosen training set update se-
quence kðiÞ ¼ 0:5 e−0:0063i, the AFSI performance is
independent, with L using noise-free measurements.
Finally, we observe that the AFSI system per-
formance is close to the performance upper bound

Fig. 4. Image samples from a (a) high- and (b) low-diversity
training set.
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defined by the “SFSI—obj prior” system. With
M ¼ 250, the relative reconstruction error of the
“SFSI—obj prior” system is 0.084 for AH compared
with the RMSE value 0.101 in AFSI system. In
Fig. 6, testing sample and reconstructions usingM ¼
100 and M ¼ 260 adaptive PC features are
presented. The training set has high diversity. As ex-
pected, visually and quantitatively, the reconstruc-
tions using the AFSI system in Figs. 6(c) and 6(e)
are better than the reconstructions in Figs. 6(b)
and 6(d) using the SFSI system. Table 1 summarizes
the RMSE values for PC-based SFSI and AFSI sys-
tems using AH and AL training sets for L ¼ 1, 10,
and M ¼ 250.

B. H-SFSI and H-AFSI Systems in the Absence of Noise

We repeat our simulation study for H-SFSI and H-
AFSI systems. Figure 7(a) presents a plot of RMSE
versus M for the H-AFSI system using training set
AH , L ¼ 1, and 10. The results for the SFSI and
“SFSI—obj prior” systems are also plotted. Similar
to the PC-AFSI system, the H-AFSI system yields
a superior reconstruction performance relative to
the SFSI system. The RMSE improvements are
31% and 27.27% for L ¼ 10 and L ¼ 1, respectively,
when M is 250. Once again, we observe that the re-
construction performance of the AFSI system is close
to the performance of the “SFSI—obj prior” system.

We also study the SFSI and AFSI systems using low-
diversity training set AL. We have similar observa-
tions as for the PC-AFSI and PC-SFSI systems using
training set AL. The results are plotted in Fig. 7(b).
The RMSE resulted are tabulated in Table 2.

C. AFSI Systems in the Presence of Noise

Throughout the rest of this section, the detector noise
energy per bandwidth in an FSI system is assumed
to be σ20 ¼ 1, while the object samples have dynamic
range of ½0; 255�. For detector exposure time T0, the
noise variance in feature measurement σ2 ¼ σ20=T0 ¼
1=T0. Figure 8 shows some object examples and their
noisy measurements with conventional imaging
when σ2 ¼ 1=T0 and T0 ¼ 0:02 s. In Fig. 9(a), we pre-
sent the reconstruction error RMSE versus M for a
FSI system employing the parallel architecture with
L ¼ 4 and T0 ¼ 0:02 s. From this figure, we canmake
the following observations. First, as M increases, the
reconstruction error reduces for all FSI systems
while the PC-FSI systems achieve the minimum er-
ror. For both projections, there is a nonzero minimum
RMSE value due to finite measurement SNR. Two
components contribute to the reconstruction error:
the truncation error and the feature measure-
ment SNR. The truncation error occurs when using
M < N feature measurements; therefore, it de-
creases as M increases toward N. As the number

Fig. 5. (Color online) RMSE versus M in PCA-based SFSI systems and AFSI systems for L ¼ 1, 10, and 20 using (a) high- and (b) low-
diversity training sets.

Fig. 6. Examples of (a) object reconstruction using a PCA-based system; (b) using an SFSI system for M ¼ 100, (c) using an SFSI system
for M ¼ 260, (d) using an AFSI system for M ¼ 100, and (e) using an AFSI system for M ¼ 260 with a high-diversity training set AH .
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of measurement M increases, the feature measure-
ment SNR associated with the higher-order feature
decreases. This trend can be understood by noting
that the signal energy in each feature measurement
decreases, both for PC features and energy-sorted
Hadamard features, with increasing M while the
detector noise remains fixed. Thus, ultimately, the
feature measurement SNR limits the minimum re-
construction error achievable, and it determines
the number of featuresM at which it is first achieved.
The second observation from Fig. 9(a) is that both the
PC-AFSI and H-AFSI systems have a smaller recon-
struction RMSE than the corresponding SFSI sys-
tems. The third observation is that the PC-based
systems have a smaller reconstruction RMSE than
the Hadamard-based systems for small M. However,
for large M, the PC-based systems have a larger
RMSE than that of the Hadamard-based system.
This is consistent with the observation described
in Ref. [19], that Hadamard projection vectors have
better photon throughput compared to the PC projec-
tion vector. This benefit becomes significant as M in-
creases and the feature energy corresponding to
higher-order features is larger for Hadamard fea-
tures compared to PC features, thus resulting in
higher feature measurement SNR, given the detector
noise remains fixed. Figure 9(b) presents the RMSE
versusM for a PC-based AFSI system with L ¼ 4, 16,
and 32. Note that, while in the noise-free measure-
ment case described in Section 3.A.1, the reconstruc-
tion RMSE remains relatively unchanged with

increasing L, in the noisy measurements case the re-
construction RMSE increases with increasing L. This
can be understood by noting that in a parallel archi-
tecture for an FSI system with L measurements,
while the detector noise variance is fixed as 1=T0,
the signal energy associated with each feature mea-
surement reduces as L increases. Therefore, the sys-
tem reconstruction performance reduces as a result
of decreasing feature measurement SNR with in-
creasing L. Also note that the minimum reconstruc-
tion RMSE achieved is reached first at a lowerM as L
increases. This is due to the fact that the Wiener re-
construction operator effectively limits the use of fea-
ture measurement with low SNR (<1) to minimize
reconstruction error. Thus, as L increases and fea-
ture measurement SNR drops with increasing L,
the Wiener achieves the minimum error with fewer
feature measurements. Figure 9(c) shows the RMSE
versus M plot for a Hadamard-based AFSI system
with L ¼ 4, 16, and 32. Once again, reconstruction
error increases as L increases for the same reason
as in the case of PC-FSI systems.

Figure 10 shows a plot of RMSE versus M for
different detector exposure time T0 when L ¼ 32 in
a PC-based AFSI system. Because the noise energy
is inversely proportional to T0, the AFSI system
has a smaller reconstruction error for larger T0 due
to lower detector noise, hence, larger measurement
SNR. Given an RMSE value, we can find the mini-
mum number of features Mmin and the total feature
collection time Ttotal ¼ T0 �Mmin required to reach

Table 1. RMSE in PC-SFSI and PC-AFSI Systems for L ¼ 1, 10, with M ¼ 250 Using High- and Low-Diversity Training Sets

High AH Low AH

Relative RMSE RMSE Improvement Relative RMSE RMSE Improvement

SFSI 0.150 × 0.134 ×
AFSI—L ¼ 1 0.103 31.32% 0.102 23.72%
AFSI—L ¼ 10 0.101 32.44% 0.098 26.93%
SFSI—obj prior 0.084 44.07% 0.084 37.28%

Fig. 7. (Color online) RMSE versus M in an H-AFSI system for L ¼ 1, 10 using (a) a high- and (b) low-diversity training sets.
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a desired reconstruction error. Figs. 11(a)–11(c) show
Ttotal versus T0 in PC-based SFSI and AFSI systems,
respectively, with L ¼ 1, 4, and 16, and RMSE values
equal to 0.10 and 0.15. The corresponding plots for the
Hadamard-based SFSI and AFSI systems are pre-
sented in Figs. 11(d)–11(f), respectively. Two contri-
butions determine Ttotal. When T0 is large, the
measurement noise is small. However, more time is
required to acquire the data and the system loses
its adaptation advantage.When T0 is small, themea-
surement noise is large, but the system is more agile
and can more quickly exploit knowledge acquired
from measurements. Therefore, for each value of L,
there exists a minimum Ttotal where the mea-
surement noise and adaptation balance out each
other. We observe such minimum Ttotal values in
Figs. 11(b), 11(c), 11(e), and 11(f). Note that the sys-
tem can not reach the RMSE requirement if T0 is
too small (i.e., if noise is too large). Therefore, some
curves in Figs. 11 have their minimum Ttotal values
at the smallestT0 values. Another observation is that
the Ttotal in an AFSI system is always smaller than
the Ttotal values in an SFSI system. For example,
using PC projection with L ¼ 16, the minimum
Ttotal to achieve RMSE of 0.15 in the AFSI system
is 0:34 s, which is 2.57 times less than the minimum
Ttotal value 0:875 s in the SFIS system.We list all the
minimum Ttotal for both PC-based and Hadamard-
based FSI systems for L ¼ 1, 4, and 16 in Tables 3
and 4, respectively. Note that the minimum Ttotal va-
lues for PC-based and Hadamard-based FSI systems
increases as L increases due to the reduced measure-
ment SNR for increasing L. Therefore, we can con-
clude that when measurement noise exists, the FSI
system with L ¼ 1 parallel architecture presents
the best performance. Hence, a DMD-based single de-
tector FSI system implementation is used to support
our simulation study of SFSI and AFSI systems [18].

Table 2. RMSE in H-SFSI and H-AFSI Systems for L ¼ 1, 10 with M ¼ 250 Using High- and Low-Diversity Training Sets

High AH Low AL

Relative RMSE RMSE Improvement Relative RMSE RMSE Improvement

SFSI 0.182 × 0.167 ×
AFSI—L ¼ 1 0.132 27.27% 0.133 20.54%
AFSI—L ¼ 10 0.126 30.95% 0.128 23.40%
SFSI—obj prior 0.110 39.44% 0.110 33.82%

Fig. 8. Object examples (top row) and their noisy measurements
(bottom row) when σ2 ¼ 1=T0 with T0 ¼ 0:02 s.

Fig. 9. (Color online) RMSE versus M using (a) a PC and
Hadamard AFSI system for L ¼ 4 when T0 ¼ 0:02 s, (b) PC, and
(c) Hadamard AFSI system for different L using high-diversity
training set.
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5. Experiment

Figure 12 shows a block diagram representation of
the FSI imager experiment design. Here, a liquid
crystal display (LCD)monitor is used to display an ob-
ject of size 31:5 mm × 31:5 mm. An imaging lens
images the object on to a 0:17 in HVGA DMD array
(TIPico projector [25]),which is controlled by aBeagle
Board [26]. The DMD array modulates the image by
switching its micromirrors between “on” and “off”
states for a duration that is linearly proportional to
each element of the projection vector. The modulated
image reflected from the DMD is spatially integrated
by the condensing lens onto a single detector that
yields a noisy feature measurement corresponding
to the projection vector displayed on the DMD. Subse-
quently, the signal from the detector is digitized by a
National Instruments data acquisition (DAQ) system
(NIUSB-6251) for further processing. The LCDmoni-
tor and the NI DAQ system are controlled by a PC.

To quantify the reconstruction quality of the object
estimate, we employ an SBIG Astronomical Instru-
ment CCD camera (ST-2000XM) to measure a refer-
ence quality image of the object. Note that the PCA
and Hadamard projection vectors contain positive
and negative elements. However, the DMD array
can display only positive values. Therefore, to imple-
ment the projection vector f with this positivity con-
straint, we divide it into positive and negative parts,
fþ and f�, respectively, where fþ ¼ ðf þ jfjÞ=2 and
f� ¼ ðjfj � fÞ=2. To improve the light throughput,
we normalize fþ and f� with their maximum values
cþ and c�, respectively. After acquiring the two mea-
surements yþ ¼ fTþx=cþ þ nþ and y� ¼ fT�x=c� þ n�,
where nþ and n� are the measurement noise, we
use following equation to estimate feature value
fTx:

y ¼ cþ � yþ − c� � y� ¼ fTxþ cþ � nþ − c� � n�: ð7Þ
During the system calibration, we note that the

DMD has a nonlinear response, as do other display

devices, such as the LCD monitor. We linearize the
DMD and monitor response by precompensating
the input image data. A dark frame measurement
is used to reduce the various biases in the experi-
ment. Using these calibration methods, we are able
to achieve measurements yþ, y� for PCA and Hada-
mard projections, which are within 2% to 3% of their
ideal values. We model this experiment error as
Gaussian noise in our measurement error model
for both SFSI and AFSI algorithms.

Recall that our simulation study demonstrated
that with the parallel architecture, an AFSI system
with L ¼ 1 achieves the best reconstruction perfor-
mance with noisy measurements. Therefore, in the
experiment, we choose the L ¼ 1 case to quantify
the AFSI and SFSI system performance. Thus, ac-
cordingly in the experiment, we adapt the next pro-
jection vector after each feature measurement using
the adaptation algorithms described earlier. In the
following results, we use four face images, as shown
in Fig. 13, for evaluating the system performance.
For the adaptation algorithm, we employ the same
high-diversity training set AH as the one used in
the simulation study. Figure 14(a) shows the object
estimates obtained using 128 PCA features from
the SFSI and AFSI systems in the upper and the low-
er rows, respectively. Similarly, the object estimates
based on 128 Hadamard features from the SFSI and
AFSI systems are shown in Fig. 14(b). Note that the
corresponding reconstruction RMSE value is labeled
under each object estimate. First, we observe that
the AFSI system achieves better reconstruction per-
formance compared with the SFSI system in the case
of both PCA and Hadamard projections as predicted
by the simulation study. Note that the average
RMSE values in the PC-based and Hadamard-based
AFSI systems are 0.128 and 0.143, respectively, com-
pared to 0.163 and 0.179 for the SFSI system.
This represents an RMSE improvement of 21.2%
for PCA and 20.1% for Hadamard projections. The
RMSE improvement is also visually noticeable in
the AFSI system object estimates showing improved
contrast and finer details compared to estimates ob-
tained with the SFSI system. These RMSE results
are summarized in Table 5. It is also worth noting
that the reconstructions based on PC features have
a smaller RMSE relative to the reconstructions de-
rived from Hadamard features, which affirms the
superior performance of the PCAmeasurement basis
as predicted by simulation study. In fact, even with
160 Hadamard features, the resulting object esti-
mate, shown in Fig. 15, is still slightly worse than
that obtained using 128 PCA features.

Note that the performance improvement with the
AFSI system was obtained for face objects in the ex-
periment while the simulation study had used tank
objects. Therefore, in order to assess the quality of
the experimental results, it is important to compare
it to the simulated performance of AFSI and SFSI
systems for these objects. Table 6 presents the RMSE
results for both PC and Hadamard-based AFSI and

Fig. 10. (Color online) RMSE versus M for different T0ðsÞ in a
PC-based AFSI system using a high-diversity training set when
L ¼ 32.
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Fig. 11. (Color online)Ttotal versusT0 for (a) L ¼ 1, (b) L ¼ 4, and (c) L ¼ 16, PC-based; and (d) L ¼ 1, (e) L ¼ 4, and (f) L ¼ 16, Hadamard-
based SFSI and AFSI systems using a high-diversity training set.

Table 3. Minimum Ttotal in PC-based SFSI and AFSI Systems for
L ¼ 1, 4, and 16 Using AH

L RMSE

SFSI AFSI

T0ðmsÞ TtotalðsÞ T0ðmsÞ TtotalðsÞ
1 0.10 0.4 0.2884 0.4 0.2192

0.15 0.1 0.0668 0.1 0.03
4 0.10 5 0.96 6 0.798

0.15 3 0.291 3 0.138
16 0.10 70 3.78 80 2.88

0.15 25 0.875 20 0.34

Table 4. Minimum Ttotal in Hadamard-Based SFSI and AFSI Systems
for L ¼ 1, 4, and 16 Using AH

L RMSE

SFSI AFSI

T0ðmsÞ TtotalðsÞ T0ðmsÞ TtotalðsÞ
1 0.10 0.04 0.0341 0.02 0.0188

0.15 0.006 0.0052 0.006 0.0027
4 0.10 0.4 0.0912 0.4 0.0728

0.15 0.1 0.0254 0.16 0.0205
16 0.10 6 0.372 6 0.348

0.15 1.6 0.1024 2.6 0.0728
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SFSI systems obtained from the experiment and the
simulation study for face and tank objects. Note that
the noise variance used in the simulation study was
based on the measurement error estimated from the
experiment. From the RMSE results reported in the
table, we can make the following observations. First,
the RMSE values from the simulation study match
well, to within a few percent, with the actual RMSE
values obtained in the experiment. One reason for
the small deviations between the experimental and
the simulation RMSE values is that the simulation
does not accurately model all the nonidealities typi-
cally encountered in the experiment. These include
spatial nonuniformity of the DMD array, residual
nonlinearity and bias in the DMD and the detector
response after calibration, and temporal fluctuations
in the object irradiance during the sequential data
measurement process. Second, the simulation re-
sults for face objects, like the tank objects, show that
the PC-based AFSI and SFSI systems yield better
RMSE performance compared to Hadamard-based
FSI imagers. It is also interesting to observe that
the performance improvement between AFSI and
SFSI systems for face objects is smaller than that
for tank objects, as shown by the simulation results
summarized in Table 7. To understand this, let us
consider the PC-based FSI systems. Figure 16 shows
the first five PC projection vectors obtained from the
initial high-diversity training set AH , which includes
face, tank, and building objects. Note that among all
five projection vectors, the underlying structure re-
sembles an average low-pass version of the face ob-
jects. This indicates that although the number of face
training samples is only 1=3 of the total number of
samples in the training set, the spatial statistics of
the face objects are the dominant factor in determin-
ing the low-order PC projection vectors. Thus, it is
reasonable to interpret that these low-order PC vec-
tors in SFSI systems already incorporate strong prior
knowledge about face objects, as compared to, say,
the tank objects. As a result, the adaptation advan-
tage and the equivalent RMSE improvement ob-
tained from the AFSI system is smaller for face
objects than for tank objects, as the static PC projec-
tion vectors are already biased toward face objects.

Fig. 12. (Color online) Experiment setup diagram.

Fig. 13. Testing samples in experiment.

Fig. 14. Reconstructions from (a) 128 PCA, and (b) 128
Hadamard experimental feature measurements in SFSI and AFSI
systems for a 32 × 32 object when L ¼ 1.

Fig. 15. Reconstructions from 160 Hadamard experimental
feature measurements in SFSI and AFSI systems when L ¼ 1.

Table 5. RMSE in Experimental SFSI and AFSI Systems for L ¼ 1 with
M ¼ 128 Using High-Diversity Training Sets

PCA Hadamard

Relative
RMSE

RMSE
Improvement

Relative
RMSE

RMSE
Improvement

SFSI 0.163 × 0.179 ×
AFSI 0.128 21.24% 0.143 20.11%
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6. Conclusion

In this paper, we analyzed an adaptive FSI system
for a reconstruction task using PC and Hadamard
projections. We employed a training set to design
PC and Hadamard projections. The adaptation is
achieved by updating the training set based on the
collected feature measurements. We developed the
algorithms for PC and Hadamard-based AFSI sys-
tems for noise-free and noisy measurements. Using
a parallel architecture FSI system, we demonstrate
that the AFSI system has superior performance com-
pared to a SFSI system. The improvement of recon-
struction error RMSE from SFSI system to AFSI
system is about 30% for PC and Hadamard projec-
tions using tank-testing samples. We use a DMD-
based experiment setup to validate the simulation
results and achieved an average AFSI improvement
larger than 20% using face objects. The experiment
results support our simulation study and demon-
strate the superior performance of AFSI relative
to SFSI.
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