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Abstract

A block-wise motion detection strategy based on compressive imaging, also referred

to as feature-specific imaging (FSI), is described in this work. A mixture of Gaus-

sian distributions is used to model the background in a scene. Motion is detected

in individual object blocks using feature measurements. Gabor, Hadamard binary

and random binary features are studied. Performance of motion detection methods

using pixel-wise measurements is analyzed and serves as a baseline for comparison

with motion detection techniques based on compressive imaging. ROC (Receiver

Operation Characteristic) curves and AUC (Area Under Curve) metrics are used

to quantify the algorithm performance. Because a FSI system yields a larger mea-

surement SNR(Signal-to-Noise Ratio) than a traditional system, motion detection

methods based on the FSI system have better performance. We show that motion

detection algorithms using Hadamard and random binary features in a FSI system

yields AUC values of 0.978 and 0.969 respectively. The pixel-based methods are only

able to achieve a lower AUC value of 0.627.
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Tracking, Gaussian Mixture Model

1 Introduction

Motion detection is an integral part of the object tracking problem. Ob-

ject tracking has received widespread interest from several research commu-

nities over the years. It has broad applications spanning civilian, military,

and scientific research domains. Examples include traffic control, security

surveillance, bio-imaging, battle field monitoring, and sub-sea video processing

[1, 2, 3, 4, 5, 6]. In radar signal processing, Ground Moving Target Indicator

(GMTI) radar has proved to be a very successful example of object tracking

[7, 8]. In computer vision, an object tracking problem is viewed as a two-part

problem: motion prediction and object matching problem [3]. Kalman filter [9]

and particle filter [10] are among the most popular algorithms devised for the

motion prediction problem [11, 2, 5]. To solve the object matching problem

many different strategies have been developed such as, extracting features,

calculating optical flows [3, 5, 11, 2], using rigid shapes [3, 5, 11], and match-

ing deformable contours [12, 13]. Besides the motion prediction and object

matching, another critical step in object tracking problem involves motion

detection, which typically entails modeling the background or clutter, then

subtracting it from a frame in a video sequence to find the moving regions

[14, 15, 5, 11, 16]. Note that solving the motion detection problem can be
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thought of as equivalent to solving the background subtraction problem. Pro-

posed by Wren et al. [17], one of the earliest approaches that have been devel-

oped uses a single Gaussian distribution to model a static background at each

pixel position. Subsequently, Grimson et al. developed a more sophisticated

model that uses a mixture of Gaussian distribution to describe the individual

pixel values in outdoor scenes [18]. In this model for motion detection, a pixel

in the current frame is compared with the several Gaussian distributions to

find a match. If the pixel measurement can not be matched to any distribu-

tion, it is classified as a foreground pixel and thus motion is detected. This

method is fast and can be easily adjusted for clutter or illumination changes.

To further extend this Gaussian mixture model, Elgammal et al. [19] used a

non-parametric kernel density estimation to describe a pixel intensity. Other

methods for background subtraction include incorporating region-based scene

information instead of only using single pixel information and representing the

intensity variation of a pixel in a video sequence as discrete states in Hidden

Markov Models (HMM) [11, 16].

Note that nearly all the methods reviewed here are based on pixel level im-

age measurements. It is common for a digital camera today to yield a multi-

megapixel image. Therefore, the pixel-wise model approach can quickly be-

come computationally expensive. In most cases, a moving object extends over

multiple pixels, therefore the motion exits at a group of adjoining pixel po-

sitions. To detect motion in a region we can not assume pixel-wise motion

detection strategy is the best approach. In this work, we discuss a strategy

to detect motion in a region directly. A region is defined as an object block.

After discussing motion detection in object block space and its corresponding

feature space, we introduce a system which makes measurements directly in

3
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the feature space. This measurement scheme is compressive as the number

of measurements, each measurement corresponds to one feature, is typically

much smaller than the dimensionality of the object block. Such a system is

referred to as a feature-specific imaging (FSI) system or compressive imag-

ing system in some research community. The paper is organized as follows:

in section 2, motion detection methods with pixel-wise measurements are dis-

cussed. We first introduce the Gaussian mixture model for individual pixels.

Then the model is extended to a block-wise mixture model for an object block

and a corresponding mixture model in the feature space of each block. In

section 3, simulation results for the detection methods described in section 2

are presented. In section 4, we define the FSI system using the parallel optical

architecture followed by a description of motion detection algorithms designed

for FSI measurements. In section 5, we present the simulation results for the

motion detection methods using FSI system. Finally, in section 6 we draw

conclusions based on the results of our simulation study.

2 Motion Detection with Pixel-wise Measurement

2.1 Pixel-wise motion detection using Gaussian mixture model

The intensity history for a pixel from time 0 to time t can be represented as

a vector xt = [x(0) x(1) ... x(t)]T as shown in figure 1 a). Here, we model this

vector as a random vector drawn from a mixture of Gaussian distributions

[18, 20]. Using K distributions, the probability density function (pdf) of xt

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

can be expressed as

p(xt) =
K∑

i=1

wi,t ∗ p(xt, μi,t, Σi,t) with
K∑

i=1

wi,t = 1, (1)

where wi,t, μi,t, and Σi,t are the estimates of the weight, the mean value vector,

and the covariance matrix of the ith Gaussian in the mixture, respectively. The

ith Gaussian pdf p(xt, μi,t, Σi,t) is defined as

p(xt, μi,t, Σi,t) =
1

(2π)
n
2 |Σi,t| 12

e−
1

2
(xt−μi,t)T Σ−1

i,t
(xt−μi,t), (2)

where Σi,t is assumed to be Σi,t = σ2
i,tI [18]. The K components in equation (1)

are sorted in descending order based on wi,t

σi,t
such that w1,t

σ1,t
≥ w2,t

σ2,t
≥ · · · ≥

wK,t

σK,t
. The weight to standard deviation ratio

wi,t

σi,t
is a reasonable parameter

to sort the components, because wi,t represents the contribution of the ith

pdf to the mixture and variance estimate σi,t represents the uncertainty of the

contribution. Using equation (1), we can determine if a new pixel measurement

belongs to the current model. For example, we use the criteria that: at time

t + 1, xt+1 = [x(1) x(2) ... x(t + 1)]T belongs to the model if it is within 2.5

standard deviations of the mean value of any of the K Gaussian distributions.

The K distributions are divided into two groups of size B and K − B. The

first B distributions in equation (1) (i.e., those with the largest
wi,t

σi,t
values)

define a mixture model for a pixel without motion which defines a background

pixel. A pixel at a position with motion is called a foreground pixel. For a

new pixel measurement at time t + 1, if xt+1 matches with any of the first B

distributions, the pixel is a background pixel, otherwise a foreground pixel. B

is defined as

B = min
b

(
b∑

i=1

wi,t > W ), (3)

where W is a pre-defined threshold. Because the distributions in equation (1)

5
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are sorted in descending order based on
wi,t

σi,t
, the first B distributions have the

largest
wi,t

σi,t
values. When measurements at one pixel position in several frames

belongs to one Gaussian distribution, the weight parameter wi,t is large. A

small σi,t means the measurements belong to the distribution with high cer-

tainty. Therefore the first B distributions form a model for a background pixel,

or a pixel with stable measurements. Note that the last K − B distributions

are affected by pixel measurements from last few frames. These measurements

represent foreground pixels which might progressively represent background

later.

After motion detection at time t, the measurement xt+1 is used to update the

mixture model in equation (1) with following online expectation maximization

(EM) algorithm [20]:

(1) d̂(wi,t|xt+1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1; if the ith Gaussian is the first distribution which xt+1 belongs to

0; otherwise

(2) ŵi,t+1 = ŵi,t + α
(

d̂(wi,t|xt+1)− ŵi,t

)

(3) μ̂i,t+1 = μ̂i,t + α (
d̂(wi,t|xt+1) xt+1

ŵi,t+1
− μ̂i,t )

(4) Σ̂i,t+1 = Σ̂i,t + α (
d̂(wi,t|xt+1) �Σ̂i,t

ŵi,t+1
− Σ̂i,t )

where α is an positive update parameter much smaller than 1, and �Σ̂i,t is

a diagonal matrix which has same diagonal elements as the matrix (xt+1 −
μ̂i,t)(xt+1−μ̂i,t)

T . Note that ŵi,t+1, μ̂i,t+1, and Σ̂i,t+1 can be rewritten as follows:

• ŵi,t+1 = (1− α) ŵi,t + α d̂(wi,t|xt+1)

• μ̂i,t+1 = (1− α) μ̂i,t + α
d̂(wi,t|xt+1) xt+1

ŵi,t+1

• Σ̂i,t+1 = (1− α) Σ̂i,t + α
d̂(wi,t|xt+1) �Σ̂i,t

ŵi,t+1

The parameter α is positive and wi,t is between 0 and 1, therefore observe that

6
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the estimate of ŵi,t+1, μ̂i,t+1, and Σ̂i,t+1 will be positive after each update. If

xt+1 matches none of the K distributions, the last distribution in the model is

replaced by a new Gaussian distribution with xt+1 as its mean and an initially

high variance and low prior weight in equation (1).

We refer to this Gaussian mixture model as the pixel-wise Gaussian mixture

model. Foreground pixel detection is applied to each pixel position in a frame

which also involves updating the mixture model for each pixel. Therefore,

this pixel-wise motion detection method is computationally intensive. The

memory and computational cost for the method are O(KNt2) and O(KNt)

respectively when there are N pixels in the object scene. As discussed in

introduction section, motion detection at each pixel is often used to search for

a moving object. Finite moving object size suggests that detecting motion in

an object block or a region over the whole object scene as opposed to doing it

pixel-wise may be more appropriate. To solve this motion detection problem

for an object block, we extend the pixel-wise Gaussian mixture model to a

block-wise mixture model.

2.2 Block-wise motion detection using Gaussian mixture model

As shown in figure 1 b), pixel values within a block of size
√

N ×
√

N , at time t, are rearranged into a vector xb(t) of size (N × 1).

The block pixels intensity history from time 0 to L is represented as xbL =

[xT
b (0) xT

b (1) ... xT
b (L)]T . To simplify notation, xbL will be written simply as x.

Note that the pixel-wise measurement vector xt consists of data points along

a line in figure 1 a), while the measurement vector x consists of data points

in a cube in figure 1 b). Once again we model x as a mixture of Gaussian

7
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distributions similar to the model used for xt. We refer to this model as a

block-wise Gaussian mixture model. Using the same procedure as the one

described in last subsection, a block vector measurement matching with any

of the most significant B Gaussian components in the model, is classified

as a background block, otherwise it is declared as a foreground block. After

making the motion detection decision, the block-wise Gaussian mixture model

is updated with the new block measurements.

The block-wise motion detection method uses information jointly among neigh-

boring pixels. Therefore, its theoretical performance should be no worse than

the pixel-wise motion detection method. However, both detection strategies

involve processing all pixels directly for updating the mixture models and

making detection decisions. Also note that the decision for motion detection

is binary. Therefore, we believe there is inherent redundancy in the measure-

ment data for the binary decision problem. This motivates our compressive

method in the following subsection, where the measurement vector x is com-

pressed into a lower dimensional feature space before making motion detection

decision.

2.3 Feature-space motion detection using Gaussian mixture model

A feature of an object is defined as the inner product between an object x and

a projection vector from the feature basis. It can be represented as y = Fx,

where y is the feature vector of size (M×1), F is the projection matrix of size

M×NL, and x is the object vector of size NL×1. With detector noise n, of size

N×1 considered, feature representation is modified as y = F(x + n). Here, we

will consider 2D-Gabor [21], Hadamard binary, and random binary features for

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

the motion detection task. Figure 2 shows examples of the types of projections.

Gabor and Hadamard projections are widely used in image processing, object

detection and pattern recognition applications [22, 23, 24, 25, 26, 27, 28].

We consider binary non-negative Hadamard projection in this paper. Random

projection has become popular in compressive sensing and machine learning

field [29, 30]. We use binary non-negative random projections to ensure a fair

comparison with binary non-negative Hadamard projections. Once again a

Gaussian mixture model is used to detect motion in feature space.

Note that the choice of a particular feature is key in determining the motion

detection algorithm performance. Therefore, features need to be sorted to

optimize the algorithm performance and achieve the best performance with

the least number of features. A divergence based feature selection method

is used for sorting features [31]. In this method, a feature vector belongs to

one of the two classes, class ω1 and class ω2 for blocks with and without

motion, respectively. In each class, a feature vector is modeled as a random

vector with a parametric model [31] constructed using training data. With

this model, Kullback J-divergence between classes ω1 and ω2 can be measured

and used to sort features. The J-divergence, is defined as

J(ω1, ω2) = Ey|ω1
{log p(y|ω1)

p(y|ω2)
}+ Ey|ω2

{log p(y|ω2)

p(y|ω1)
}, (4)

where Ey|ωi
denotes the mathematical expectation with respect to the class-

conditional PDF p(y|ωi) with i = 1, or 2. Observe that if the two classes are

well separated, then p(y|ω2)
p(y|ω1)

or p(y|ω1)
p(y|ω2)

is large, resulting in a higher J(ω1, ω2)

value. J-divergence [31], J(ω1, ω2) can be decomposed into independent com-

ponents attributed to different features. Using an EM algorithm described in

[31], the independent J-divergence components are computed, then the most

9
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significant M features are selected for motion detection.

3 Motion Detection Performance Using Pixel-wise Measurements

A video clip with a hundred frames taken from the CAVIAR [32] database is

used in the simulation study here. The video is filmed in the entrance lobby

of the INRIA Labs at Grenoble, France. Each frame has size 288× 384 with

dynamic range [0, 255]. Figure 3 shows two example frames. To generate the

ground truth, video frames are labeled by isolating the foreground and back-

ground regions manually. The object block size is chosen as 32 × 32 in this

section. Four different noise levels σ0 = 0, 20, 100, 200 are considered. The

acronyms for the motion detection algorithms studied in this section are de-

fined as follows:

(1) CP (Conventional measurement with Pixel-wise mixture model) algo-

rithm: In this algorithm, Gaussian mixture model is employed for each

pixel and foreground pixels are detected at individual pixel position. A

block is decided as a moving block if there are κ foreground pixels de-

tected within the block, where κ is a predefined integer between 1 and

NL.

(2) CB (Conventional measurement with Block-wise mixture model) algo-

rithm: In this algorithm, moving object block is detected using block-wise

Gaussian mixture model.

(3) CDB (Conventional measurement with mixture model using Block Differ-

ence) algorithm: In this algorithm, Gaussian mixture model is formulated

for the difference between object blocks in two consecutive frames. The

difference is used for motion detection in each block.

10
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(4) CFG, CFHB, or CFRB (Conventional measurement with mixture model

using Gabor, Hadamard-Binary, or Random Binary feature) algorithm: In

this algorithm, a Gaussian mixture model is formulated in feature space

using Gabor, Hadamard binary, and random binary features. Features

are used for block motion detection.

To evaluate algorithm performance, we employ the ROC (Receiver Operat-

ing Characteristic) and the AUC (Area Under Curve) metrics. The x and y

axes in a ROC curve are the false positive rate(FPR) and the true positive

rate(TPR) respectively. FPR is defined as the probability of motion detection

when there is actually no motion, while TPR is defined as the probability of

motion detection when motion is present. Based on the ground truth gener-

ated manually, a block with one or more than one foreground pixels is defined

as a moving block. In each ROC curve, the largest TPR value is generated

for a fixed FPR by searching the parameter space spanned by L, Σi,0, and W

variables in the motion detection algorithm. In CP algorithm, the threshold

number of foreground pixels in each block, κ, is also optimized. The optimal

values are used in all data presented here. The AUC value is calculated by

integrating the area under the ROC curve.

Table 1 lists the AUC values using the algorithms discussed with noiseless

measurement. In CFG, CFHB, and CFRB algorithms, M = 1 feature is used

for motion detection. It can be observed from table 1 that all algorithms

have detection performance close to 1, where 1 indicates perfect performance.

Therefore, we conclude that M = 1 noiseless feature is sufficient for detecting

motion when the object block has dimension 1024 (32× 32). Note that, the

computation cost for CFG, CFHB, and CFRB algorithms is also reduced due

to using the Gaussian mixture model in feature space. The amount of memory

11
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and computation steps required are O(KML2) and O(KML) respectively,

where M � N .

Figure 4 a), b), and c) shows the ROC curves for all algorithms at noise level

σ0 = 20, 100, and 200 respectively. It is observed that CP algorithm has

better performance than CB and CDB algorithms at all noise levels. In CDB

algorithm, the consecutive frame feature measurements are subtracted from

each other, therefore the noise is twice as much as it is in other algorithms.

Therefore, CDB algorithm has the worst performance when noise is high as

σ0 = 100, or 200. As discussed earlier, ideally CB algorithm should have

no worse performance as CP algorithm. However, the data dimensionality of

the observation vector in CB algorithm is much higher than CP algorithm,

therefore estimation of the parameters such as Σ and μ require more samples.

Figure 5 shows the ROC curves for CP and CB algorithm when noise level

σ0 = 100 and object block size is 4× 4 and 32× 32. It can be observed when

the object block size is small, the CB algorithm has superior performance

compared to the CP algorithm.

Among the algorithms using features for motion detection, the CFG algorithm

has the worst performance. From figure 2 we can observe that most Gabor pro-

jection vector elements have values close to 0. Therefore, using Gabor projec-

tion, limited signal power is collected in each feature. In feature space, signal

to noise ratio using Gabor projection is smaller compared to using Hadamard

and random binary projections. Also note that CFHB and CFRB algorithms

have similar performance. Figure 6 a) and b) show two projection vectors used

in CFHB and CFRB algorithms. The Hadamard projection vector does not

have significant spatial variation over a block. On the other hand, the ran-

dom projection vector has a lot of variation over the 32 × 32 object block

12
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area. Therefore, we expect that the random vector would be superior to the

Hadamard vector as a result of increased sensitivity to fine motion details.

However, the motion in the experiment video used in our study occurs mainly

on a large scale as shown in figure 6 c) and d). Therefore, in our case both

algorithms yield similar performances.

It is also observed that when noise is high such as σ0 = 100 and 200, de-

tection algorithms employing Hadamard and random binary features achieve

a superior motion detection performance relative to CP, and CB algorithms.

We compare the measurement SNR in CFHB and CP algorithms as a rep-

resentative example to explain this observation. In the CP algorithm, the

signal power is SCP = E{||x||2} = E{
NL∑
i=1

x2
i }, where xi is the object pixel

value in L consecutive object blocks with 1 ≤ i ≤ NL. The noise power is

εCP = NLσ2
0 as the detector noise is assumed to be independent from each

other. In CFHB algorithm, the feature value is defined as
NL∑
i=1

[fi(xi + ni)].

Signal power is written as E{(
NL∑
i=1

fixi)
2}. Because any Hadmard binary pro-

jection has half elements zeros and the other half ones, the signal power

can be reformulated as SCFHB = 0.5 × E{
NL∑
i=1

x2
i } + E{

NL∑
i,j=1; i�=j

fifjxixj} =

0.5× SCP + E{
NL∑

i,j=1; i�=j

fifjxixj}. Notice the second term in SCFHB is strictly

non-negative. Using the same derivation it can be found out that the noise

power in CFHB algorithm is εCFHB = 0.5 × NLσ2
0 = 0.5 × εCP . Putting

the signal and noise power values together, it is clear that the SNR value in

CFHB is larger than it in CP algorithm. Hence CFHB algorithm has better

performance. Note that this performance improvement for CFHB due to SNR

advantage is more significant when detector noise σ0 is larger. To further im-

prove motion detection method performance, the measurement SNR needs to

13



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

be increased. Note that using pixel-wise measurements to calculate a feature

value includes noise from NL detectors in each feature value. By employing a

FSI system, features can be measured directly. This implies that each feature

measurement includes noise only at one detector. This motivates us to study

FSI system [33, 34, 35] performance for the motion detection task.

4 Motion Detection with Feature-specific Imaging System

To directly measure features in a FSI system, an electro-optic modulation de-

vice is employed. Examples of such electro-optic modulation device include a

spatial light modulator (SLM) such as liquid crystal panel and digital micro-

mirror device (DMD). A FSI system has several advantages over a conven-

tional imaging system including fewer number of detectors, simpler hardware,

lower cost, and higher measurement SNR [33, 36]. A FSI system can be im-

plemented via three distinct optical systems: sequential, parallel, and pipeline

architectures [34]. In a sequential architecture, the measurements are acquired

sequentially one after the other. The measurements in parallel and pipeline

architectures are taken simultaneously or in one snapshot. Among the three

architectures, pipeline architecture presents the best photon efficiency, but in-

curs the highest system complexity. Relatively, the parallel architecture has

superior photon collecting efficiency compared to sequential architecture and

retains a simple structure. Therefore, in this paper, the parallel architecture

is considered in the simulation study. Figure 7 shows an example FSI system

employing the parallel architecture via a lenslet array. In such a system, the

aperture contains a lenslet array with M elements of equal size. Following

each sub-aperture, a simple mask together with a detector is used to measure

14
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one feature. Note that as the measured object illumination is proportional to

the sub-aperture area, signal intensity at each detector is 1
M

of the original

object total intensity. Detector noise is once again modeled as independent

white Gaussian noise with standard deviation σ0. Feature measurements us-

ing the parallel architecture FSI system are therefore mathematically defined

as y = 1
M

Fx + n.

To detect motion in blocks, we employ the same Gaussian mixture model as the

one used in CB. Note that in the FSI system, there is only one detector noise

component per feature measurement. Therefore, the noise power in all motion

detection methods using FSI measurements is σ2
0 , which much smaller than

NLσ2
0 and 0.5 × NLσ2

0 in CP and CFHB algorithms respectively. Therefore,

we expect that by using FSI it is possible to achieve significant improvements

in motion detection algorithm performance.

5 Motion Detection Performance Using Direct Feature Measure-

ments

The FSI-based motion detection algorithms using Gabor, Hadamard, and ran-

dom binary features are denoted by FG, FHB, and FRB respectively. Figure 8

shows the ROC curves for the three algorithms using M = 1 feature for three

detector noise levels σ0 = 20, 100, and 200. Features are chosen according to

the J-divergence based feature selection method discussed in section 2. The

results for CP, CFG, CFHB, and CFRB algorithms are also presented for com-

parison. There are several observations that can be made from this figure. The

first observation is that FSI-based motion detection algorithms FG, FHB, and

FRB have significantly higher performance compared with the CFG, CFHB,
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and CFRB algorithms, respectively. For example, when FPR has value 0.1

and noise level is σ0 = 20, CFG, CFHB, and CFRB algorithms have TPR of

0.27, 0.93, and 0.91 respectively, while FG, FHB, and FRB algorithms have

TPR of 0.83, 0.95, and 0.99, respectively. As the measurement SNR in FSI

system is much higher than a conventional system, the motion detection algo-

rithms using FSI system achieve better performance. The second observation

is that FHB and FRB algorithms perform much better than FG algorithm.

When FPR value is 0.1 with the noise level σ0 = 200, the TPR values for FG,

FHB, and FRB algorithms are 0.12, 0.96, and 0.94 respectively. As the Ga-

bor projection vector has more than half elements with a value close to zero,

the object energy collected in feature measurement is smaller than the energy

collected in the Hadamard and random feature values. Comparing Hadamard

binary and random binary projections, the performances for FHB and FRB

algorithms are very similar. The third observation is that CP algorithm has

better performance than FG algorithm, but much worse than FHB and FRB

methods, especially at high noise levels. From this observation, we conclude

that not all features in FSI system are superior to the conventional pixel-wise

measurements for motion detection especially for low measurement SNR.

As shown in figure 9, FG algorithm has clearly worse motion de-

tection performance through all three noise levels using M = 4

compared with M = 1 features. The same trend can be observed for

the FHB and FRB algorithms with noise levels σ0 = 100, and 200.

This is due to the fact that the measured signal power is reduced by

factor of four when M = 4 features are collected in the parallel ar-

chitecture FSI system. As a result, the algorithm performance suf-

fers from smaller measurement SNR. It is also important to em-
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phasize that the projection vectors used in these algorithms are not

ordered/sorted according to their corresponding feature energy. In-

stead, as discussed in previous section, the projection vectors are

sorted based on the J-divergence distance between blocks with and

without motion in a feature subspace spanned by these vectors. Fig-

ure 10 shows the first 4 vectors of Gabor, Hadamard binary, and

random binary projections used in the simulation study ordered

(from left to right, left with the highest metric value) according

to our task-optimal metric. Accordingly, here we note that first

Hadamard binary projection vector is not the all-one vector which

would correspond to highest feature energy. For the purpose of

projection vector sorting we have utilized a set of training frames,

however, a different set of frames are used for testing and quanti-

fying motion detection performance to ensure that our results are

robust.

Figure 11 a) & b) show the ROC curves for FHB, and FRB algorithms using

1 feature measurement with different block size and two noise levels. Object

block with size 8 × 8, 16 × 16, 32 × 32, and 48 × 64 are considered. The

noise levels are σ0 = 20 and 200. From both figures, it can be observed that

increasing the block size improves the performance, as a result of increasing

measurement SNR. The other observation is that system performance in FHB

and FRB algorithms do not degrade significantly when noise level increases

from σ0 = 20 to σ0 = 200. Thus, both the algorithms have robust performance

with increasing detector noise. This observation can also be supported by AUC

values for different detection algorithms as shown in figure 12 and table 2.

So far all results presented was on a training data set. To validate the per-
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formance of the various algorithms, we now consider a test data set which is

distinct from the training data set. Figure 13 presents a set of frames using

CFHB and FHB algorithms. The area which has positive response for mo-

tion detection is indicated with higher intensity. The scene in this sequence

of video frames is a car moving towards a building. Note that the tree leaves

shaking due to wind are not a target of interest. As such, we consider them

as clutter and would like then to be classified as background. The covariance

matrix Σi,t in the mixture model is assigned with large initial values to include

the potentially moving clutter in background. From figure 13 it is clear that

using the FHB algorithm the false alarm area is much smaller than using the

CFHB algorithm. This demonstrates that motion detection using FSI system

also works for scenes with clutter.

6 Conclusion

In this paper, we use the Gaussian mixture model developed by Grimson et al.

[18] for block-wise motion detection. With pixel-wise measurements, several

motion detection algorithms, CP, CB, CDB, CFG, CFHB, and CFRB, are

studied. The CP algorithm is used as a baseline throughout the study. The

Gaussian mixture model was extended to a block-wise mixture model, and

the CB and CDB methods were considered. Then feature calculated from

pixel values were considered for motion detection. It was observed that as

a result of improved SNR in case of in CFHB and CFRB algorithms, they

achieved larger AUC values than CP and CB algorithms, especially when

detector noise is high. For example, compared with the AUC value 0.6269 for

CP algorithm with noise σ0 = 200, CFHB and CFRB algorithms have larger
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AUC values 0.8108 and 0.7992 respectively. To improve the SNR further we

considered FSI based feature measurements. Gabor, Hadamard binary and

random binary features are collected directly as measurements. FHB and FRB

algorithms show significant performance improvements comparing to the pixel-

based feature motion detection algorithms CFHB and CFRB. However, the FG

algorithm does not yield impressive performance because limited object energy

is collected into feature measurement as the majority of Gabor vector elements

have values close to zero. Therefore, although motion detection methods using

FSI system have much better performance than using traditional system a

proper choice of projection is critical to maintain a high measurement SNR.

In conclusion, motion detection methods using M=1 FSI system Hadamard

and random binary feature measurement present higher than 0.95 AUC values

over all noise levels σ0 = 0, 20, 100, and 200.

For future work, we would like to consider different applications

such as object motion detection and/or tracking in-vivo bio-imaging

[37, 38, 39, 40]. We would also like to pursue an approach where

the block size used for motion detection problem is determined

adaptively based on the instantaneous needs of the imager. Here

the expectation would be that the optimal block size would depend

upon the spatial scale of the moving objects in a scene. In fact

a spatially varying block size could further adapt to the different

regions of the scene which may contain objects of different scales.
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t frames

x(0)x(1)x(t)

xt = [x(0) x(1) ... x(t)]T

(a)

L frames

xb(0)xb(1)xb(2)xb(L)

√
N

√
N

xbL = [xT
b (0) xT

b (1) ... xT
b (L)]T

(b)

Fig. 1. Object vector definition using a) one pixel; b) a block of pixels

measurement.
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Fig. 2. Examples for a) Gabor; b) Hadamard binary; c) Random binary projections.
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(a) (b)

Fig. 3. Examples for video frames a) without; b) with moving blocks.

27



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1

Area under ROC curves for motion detection algorithms using noiseless measure-

ments

Algorithm CP CB CDB CFG CFHB CFRB

AUC 0.9985 0.9994 0.9991 0.9990 0.9994 0.9994
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Fig. 4. ROC for algorithms using pixel-wise measurements for σ0 is a) 20; b) 100;

and c) 200.
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Fig. 5. ROC for CP and CB algorithms using pixel-wise measurements for σ0 = 100

with block size 32× 32 and 4× 4
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(a) (b)

(c) (d)

Fig. 6. The first vector in sorted a) Hadamard; b) Random binary projections; c)d)

Two examples of the difference between two consecutive frames. The grid shows the

blocks area in a frame.
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Fig. 7. FSI system with parallel architecture.
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(c)

Fig. 8. ROC for algorithms using direct feature and pixel-wise measurements for σ0

is a) 20; b) 100; and c) 200.
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(c)

Fig. 9. ROC for algorithms using direct feature with M = 1 and 4 for σ0 is a)

20; b) 100; and c) 200. The top part of each figure is magnified and presented for

clarification.
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HB

RB

Gabor

Fig. 10. The first 4 projection vectors in Gabor, Hadamard Binary, and Random

Binary projections ordered from left to right with left project being the most sig-

nificant.
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(b)

Fig. 11. ROC for CP algorithm, FHB and FRB algorithms using block size 8 × 8,

16 × 16, 32 × 32, and 48 × 64 with M = 1 for σ0 is a) 20; b) 200. The top part of

each figure is magnified and presented for clarification.37
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Fig. 12. Area under ROC curves for motion detection algorithms with block size

32× 32.
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Table 2

AUC for different detection noise σ0 when object block size is 32× 32

Algorithm

noise σ0

0 20 100 200

CP 0.9985 0.9897 0.7911 0.6269

CB 0.9994 0.9468 0.7209 0.5317

CDB 0.9991 0.9755 0.4925 0.4623

CFG 0.9990 0.6458 0.5121 0.5038

CFHB 0.9994 0.9668 0.8767 0.8108

CFRB 0.9994 0.9555 0.8689 0.7992

FG 0.9961 0.9284 0.6650 0.5484

FHB 0.9993 0.9993 0.9976 0.9780

FRB 0.9985 0.9947 0.9765 0.9687
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(a) (b) (c)

(d) (e) (f)

Fig. 13. Three consecutive frames with motion detected area hight lighted, using

CFHB a)∼c) and FHB d)∼f) algorithms; noise STD - σ0 = 200, block size - 32×32,

1 feature used for each block
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