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Abstract 

Purpose 

To compare the image quality and dosimetry on the Varian cone beam computed tomography (CBCT) system between 

software Version 1.4.13 and Version 1.4.11 (referred to as “new” and “old” protocols, respectively, in the following text). 

This study investigated organ absorbed dose, total effective dose, and image quality of the CBCT system for the 

head-and-neck and pelvic regions. 

 

Methods and Materials 

A calibrated Farmer chamber and two standard cylindrical Perspex CT dosimetry phantoms with diameter of 16 cm (head 

phantom) and 32 cm (body phantom) were used to measure the weighted cone-beam computed tomography dose index 

(CBCTDIw) of the Varian CBCT system. The absorbed dose of different organs was measured in a female anthropomorphic 

phantom with thermoluminescent dosimeters (TLD) and the total effective dose was estimated according to International 

Commission on Radiological Protection (ICRP) Publication 103. The dose measurement and image quality were studied for 

head-and-neck and pelvic regions, and comparison was made between the new and old protocols. 

 

Results 

The values of the new CBCTDIw head-and-neck and pelvic protocols were 36.6 and 29.4 mGy, respectively. The total 

effective doses from the new head-and-neck and pelvic protocols were 1.7 and 8.2 mSv, respectively. The absorbed doses 

of lens for the new 200° and old 360° head-and-neck protocols were 3.8 and 59.4 mGy, respectively. The additional 

secondary cancer risk from daily CBCT might be up to 2.8%. 

 

Conclusions 

The new Varian CBCT provided volumetric information for image guidance with acceptable image quality and lower 

radiation dose. This imaging tool gave a better standard for patient daily setup verification. 

 

Author Keywords 
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Introduction 

The advent of three-dimensional (3D) cross-sectional imaging, 3D conformal radiotherapy and intensity-modulated 

radiation therapy (IMRT) has been shown to allow dose escalation and reduce normal tissue toxicity, thus improving local 

control and disease-free survival [1], [2], [3] and [4]. The planning target volume (PTV) of many advanced head-and-neck 

cancers is close to many organs at risk (OARs). A typical example is the radiotherapy of advanced stages of nasopharyngeal 

carcinoma (NPC), in which the close proximity of the brainstem, spinal cord, and optic structures to the PTV, requires 

highly conformal coverage with steep dose gradients. Conventional methods of treatment verification have been 

performed by the acquisition of two-dimensional (2D) megavoltage (MV) images through verification films or electronic 

portal imaging devices (EPID), which demonstrate bony anatomical landmark but do not discriminate the contrast of 

soft-tissue structures such as muscle and fat. The disadvantage of using MV images over kilovoltage (kV) images is the 

inherent decrease in soft-tissue contrast because of the low Z-dependence at high energies [5], [6] and [7]. 

 

Image-guided radiation therapy (IGRT) with on-board kV cone beam computed tomography (CBCT) system installed on 

linear accelerators is becoming more popular in radiation therapy in the past few years [8], [9], [10] and [11]. This system 

consists of a kV x-ray source with an opposed amorphous silicon (aSi) or selenium flat-panel detector mounted onto the 

gantry of the linear accelerator. The CBCT system shares a common axis of rotation with the MV treatment source. 

Rotation of the CBCT system around the patient produces a series of computed tomography (CT) images that can create a 

set of volumetric 3D data. 

 

The CBCT provides accurate information on 3D volumetric soft tissue and bony structure information about the patient's 

anatomy on a daily basis and is essential for adaptive radiation therapy (ART) [8], [12], [13] and [14]. Compared with 2D 

localization based on only bony landmarks using either on-board imager (OBI) or EPID, the CBCT is more accurate because 

it is possible to localize soft tissues such as targets and OARs in 3D images (15). Through use of software for image 

registration operated manually or automatically, geometric errors of the patient setup between the CBCT images and the 

planning CT can be found. This positional error can then be corrected by applying shift of the treatment couch. Although 

setup margin is usually added to the PTV and OAR according to the ICRU 62 (16), it is essential to minimize the geometric 

uncertainty within the setup margin with the help of imaging devices such as CBCT, OBI, or EPID. These ensure that 

accurate dose is delivered to the targets while the doses to the OARs are within their tolerance. 

 

The first generation of the CBCT system of the Varian linear accelerator (Varian Medical Systems, Palo Alto, CA) operates 

the CBCT through 360° scanning. The 2008 Varian upgraded software of acquiring CBCT images has three improved 

features aiming at reducing patient dose. The first improvement is reducing the volume of the patient receiving radiation 

by adjusting the collimator blades that control the size of the kV x-ray beam. Radiation therapists can adjust the x-ray field 

size when acquiring CBCT images to reduce the cranio-caudal extent of the CBCT scan. Reducing the cranio-caudal extent 

of the scan not only reduces the irradiated volume of the patient but also improves the image quality of the CBCT by 

reducing scattered radiation contributing to the reconstructed images. The second improvement is introducing various 

x-ray scanning protocols that best match the clinical task with the minimum radiation dose. For many treatment sites 

especially in the head-and-neck region, low-dose CBCT is sufficient to verify the treatment position for patients (17). 

However, when soft tissue contrast is required for positioning, such as in lung and prostate cancers, the scanning protocol 

with higher dose can be selected, and this helps in visualizing the tumor for accurate positioning. The third improvement 

is selecting the direction of the kV beam to avoid sensitive structures such as the lens in the head-and-neck region. The 
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upgraded version of the CBCT software allows a choice of either 200° or 360° scanning for image acquisition. A 200° 

scanning for image acquisition is useful for a head-and-neck cancer patient treated in a supine position. The kV x-ray 

traverses from lateral and posterior directions of the skull. Therefore the lenses receive only the exit radiation dose, which 

is much lower than the entrance dose when the beam is incidence from anterior. 

 

The aim of this study is to evaluate the kV imaging dose of the most common head-and-neck and pelvic protocols for the 

CBCT system with software Version 1.4.13 (referred to as “new” protocol in the following text) provided by the 

vendors that are in current clinical use and compare them with the previous software Version 1.4.11 (referred to as 

“old” protocol in the following text). It is important to quantify the effective dose and the additional risk of inducing 

secondary cancers from kV imaging for patients undergoing radiation therapy. The image quality is also compared 

between the two imaging scanning protocols. This study will give useful information to clinicians on radiation dose and 

image quality of CBCT and help in making decision regarding use of CBCT in IGRT. 

 

Methods and Materials 

Equipment 

The Varian Clinac 23EX linear accelerator with integrated OBI system was used. This OBI system includes a kV x-ray tube 

(Varian Medical Systems, Palo Alto, CA) with nominal x-ray tube voltage of 150 kV and a 30 cm × 40 cm aSi flat-panel 

detector (Varian Medical Systems, Palo Alto, CA) directly opposite. It is mounted perpendicular to the treatment head on 

the gantry of the linear accelerator using a robotic arm (Exact). 

 

Image acquisition 

Two scanning modes are available in this system: full-fan and half-fan. For the full-fan mode, the largest reconstructed 

field of view (FOV) is a circle of 25 cm diameter with a 18-cm length in volume. This mode is used for visualizing small 

anatomical sites such as the head-and-neck region or small soft-tissue organs such as the prostate. For the half-fan mode, 

the aSi detector is shifted of 14.8 cm in a perpendicular direction to the kV beam axis to increase the scanning area and 

the maximum reconstructed FOV is a circle of 45 cm diameter and 18 cm in length [18] and [19]. This mode is commonly 

used in the regions of pelvis, abdomen, or thorax. A bowtie filter should be used to reduce skin dose to the patients as 

well as possibility of detector saturation [20] and [21]. There are two types of bowtie filters, full-fan and half-fan, which 

are used with the full-fan and half-fan scanning modes, respectively. To acquire a set of CBCT, the kV source is rotated 

either 200° (from 90° to 290°) or 360° around the patient who lies in the treatment position on the treatment couch, and 

it takes approximately 35 to 60 s. During scanning, 360 to 720 image projections of the patient can be acquired. In this 

study, the default settings of 360 and 655 image projections were used for the scanning protocols with 200° and 360°, 

respectively. These images were reconstructed to produce 3D images with better volumetric anatomical information. The 

scanning protocols for this study are shown in Table 1. 

 

http://ezproxy2.corp.ha.org.hk:2056/science/article/pii/S0360301610008631#bib18
http://ezproxy2.corp.ha.org.hk:2056/science/article/pii/S0360301610008631#bib19
http://ezproxy2.corp.ha.org.hk:2056/science/article/pii/S0360301610008631#bib20
http://ezproxy2.corp.ha.org.hk:2056/science/article/pii/S0360301610008631#bib21
http://ezproxy2.corp.ha.org.hk:2056/science/article/pii/S0360301610008631#tbl1


 

Table 1. Scanning protocol of the new and old cone beam computed tomography (CBCT) systems 

 
New (Version 1.4.13) 

Old (Version 

1.4.11) 

New (Version 

1.4.13) 

Old (Version 

1.4.11) 

 
Head Head Pelvis Pelvis 

X-ray voltage (kVp) 100 125 125 125 

X-ray current (mA) 80 80 80 80 

X-ray ms (ms) 25 25 13 25 

Gantry rotation range (degree) 200 360 360 360 

Number of projections 360 655 655 655 

Exposures (mAs) 720 1,300 680 1,300 

Fan type Full Full Half Half 

Default pixel matrix 384×384 512×512 384×384 512×512 

Longitudinal extent (cm) 18 15.5 18 13.7 

FOV (cm) 25 25 45 45 

Slice thickness (mm) 2.5 2.5 2.5 2.5 

 

Dosimetry of kV photon 

According to the AAPM TG61 protocol, a 0.6-cc Farmer-type ionization chamber (PTW TW30010, Freiburg, Germany) and 

an electrometer (PTW Unidos, Freiburg, Germany), with air kerma calibration factor, Nk, traceable to national standard 

(Physikalisch-Technische Bundesanstalt, Braunschweig, Germany) were used to determine the absorbed dose to water at 

the phantom surface (zref = 0) (22). The protocol recommended that the beam qualities were characterized by the 

determination of the first half-value layer (HVL) of aluminum (99.9 %) in narrow beam so as to eliminate the effect of 

electron contamination. The Farmer-type ionization chamber and the attenuator were placed at 100 cm and 50 cm from 

the source respectively. The beam with a field of 4 ×4 cm was used to determine the HVL (22). With Bowtie filter, the 

HVLs for the beams of 100 kVp and 125 kVp were found to be 5.0 mm Al and 6.1 mm Al, respectively. 

CT dose index of CBCT 

 

Although CBCT has a broad beam characteristic, computed tomography dose index (CTDI) is an appropriate approach for 

dose reporting if a small and ubiquitous ionization chamber such as 0.6 cc Farmer-type ionization chamber was used to 

measure the central and peripheral doses in the phantom [18] and [23]. The dose reduction at the periphery and the 

maximum dose at the central in the longitudinal dose profile were found [24] and [25]. This was attributable to the 

reduced scatter radiation near the edge of the FOV and the divergent beam in the CBCT (25). Therefore, the measured 

dose in this study represented the highest dose at the isocenter. It might be inappropriate to use a 100 mm pencil 

chamber to measure the CBCT dose since it is designed for narrow beam and single slice fan-beam dose measurement. 

Therefore, the pencil chamber is not suitable for measurement of a point dose. For the measurement of standard CT 

dosimetry, a 16-cm-diameter head and a 32-cm-diameter body standard Perspex CT dosimetry phantoms (length, 15 cm) 

were used to measure the dose for the regions of head and pelvis respectively. At least three readings were collected to 

obtain an average value. 
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Many authors have recently adopted a concept used in conventional CT called the weighted CT dose index (CTDIw) to 

estimate the dose of CBCT, which is called as weighted cone beam CTDI (CBCTDIw) and defined as follows (18):  

pw DDCBCTDI )3/2()3/1( 0 +=    (1) 

 

where  

D0 is the central axis dose and is weighted by 1/3 and 

pD  is the mean peripheral dose in the phantom at 0°, 90°, 180° and 270° around the gantry at 1 cm from the 

surface and is weighted by 2/3.  

In this study, the concept of the CTDIw was adopted and CBCTDIw was estimated for different protocols. 

 

Thermoluminescence dosimeters dosimetry 

Thermoluminescence dosimeters (TLDs)-100H chips (Thermo Scientific, Erlangen, Germany), made of LiF:Mg,Cu,P, were 

used to measure the absorbed dose of a female anthropomorphic phantom (RANDO phantom, The Phantom Laboratory, 

Salem, NY) for this study. The advantages of the relatively new TLD-100H over the traditional TLD-100 material include 

higher sensitivity, lower fading rate, and more flat energy response (26). To reduce dose response with energy, the 

TLD-100H was calibrated and used at one beam quality. A total of 154 TLD chips were used in this study and were divided 

into two sets. The first and the second sets of TLD were irradiated respectively by 100 kVp and 125 kVp x-ray generated 

from the OBI system with the bowtie filter. The TLDs with reproducibility within ±3% were selected for calibration and 

subsequent measurements under three exposures. Each TLD-100H chip was then individually calibrated on the surface of 

a solid water phantom (Gammex RMI, Middleton, WI) against the absorbed dose determined by the 0.6-cc Farmer-type 

ionization chamber in air. All TLDs were irradiated three times to assign an individual sensitivity coefficient for the entire 

study. 

 

The positions of TLDs in the RANDO phantom were based on the 2007 recommendations of the International Commission 

on Radiological Protection (ICRP) Publication 103 (27). The TLDs were also placed over the eye to estimate the dose to the 

lens of the eye and other major organs or tissues such as gonad, breast, and bone marrow in the body. Besides, it is noted 

that the radiation dose to some OARs such as lens, retina, optic nerve, brainstem, and spinal cord in the head-and-neck 

region may be affected by the position of isocenter for the new 200° head-and-neck scanning protocol. The absorbed 

doses of these OARs were measured using TLD and three sets of measurement with different isocenters were performed. 

The isocenters were placed at the center of the head, 4 cm anterior and posterior to the center of the head respectively. 

The effective dose of the body was calculated according to the ICRP 103 recommendations as follows:  

∑∑=
R

RTR
T

T DwwE ,    (2) 

 

where  
wR is the radiation weighting factor; 
wT is the tissue weighting factor for tissue T and ∑wT = 1; 
DT,R is the mean absorbed dose from radiation R in a tissue or organ T. 
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Assessment of image quality 

The images of CBCT were exported to the Eclipse treatment planning system (TPS) (Varian Medical Systems, Palo Alto, CA) 

for viewing and assessment of image quality. The image quality was checked against the scanning protocols listed in Table 

1. High-contrast spatial resolution, low-contrast sensitivity, image noise, and contrast-to-noise ratio (CNR) were studied 

using a 20-cm-diameter Catphan 504 phantom (The Phantom Laboratory, Salem, NY) with different inserts. The phantom 

was aligned with the isocenter of the CBCT. The CTP528 module with 1 to 21 line pairs per cm (lp/cm) was used to study 

the high-contrast spatial resolution. For the low-contrast sensitivity test, the CTP515 module with three groups of variable 

size objects with nominal 0.3%, 0.5% and 1.0% contrast levels was used. For each contrast level there are nine cylindrical 

objects with diameters of 2 to 15 mm. Image noise was measured by the CTP486 module which contains uniform material 

with CT number (20 Hounsfield Unit (HU)) within 2% of water's density. The CTP404 module with seven high-contrast 

sensitometric targets was used to study the CNR performance of different scanning protocols of CBCT. For each CBCT, a 

squared region of interest (ROI) of 0.16 cm2 was outlined for each of the different electron density inserts to measure the 

mean and standard deviation (noise) in HU values. These inserts are air (−1,000 HU), PMP (−200 HU), low-density 

polyethylene (LDPE; −100 HU), water (0 HU), polystyrene (−35 HU), acrylic (120 HU), Delrin (340 HU), and Teflon (990 HU). 

The CNR was calculated as:  

σσ 2

,

2

,

,,

backgroundROIinsertROI

backgroundROIinsertROI PPCNR
+

−
=    (3) 

 

where P ROI,insert and P ROI,background refer to the mean pixel values and σROI,insert and σROI,background refer to the standard 

deviations in a squared ROI inside the insert and the background of the module, respectively [28], [29] and [30]. To 

normalize image quality to the radiation dose to the patient, the figure of merit (FOM), which is independent of dose and 

can be used as an indicator of improvement in image quality per radiation risk to the patient, for each protocol is 

calculated as follows [31], [32] and [33]:  

 

wCTDI
CNRFOM

2

=    (4) 

 

Results 

CBCTDIw measurement 

Table 2 shows the CBCTDIw, measured using the 0.6 cc Farmer-type ionization chamber in either the 16-cm or 32-cm 

diameter CTDI phantom according to the scanning protocols. The CBCTDIw is an imperative and objective indicator of the 

average radiation dose within the CTDI phantom. For the head-and-neck region, the values of CBCTDIw of the new and old 

protocols were 36.6 and 116.8 mGy, respectively. For the normalized CBCTDIw, the new and old protocols were 5.1 mGy/ 

100 mAs at 100 kV with 200° scanning and 9.0 mGy/ 100 mAs at 125 kV with 360° scanning respectively. The values of 

CTDI at 0° position for the new 200° and the old 360° head-and-neck protocols were 12.9 and 116.1 mGy, respectively. 

For the half-fan scan of the pelvic region, the new low-dose pelvic protocol with smaller exposure generated the CBCTDIw 

of 29.4 mGy and the old pelvic protocol delivered 58.2 mGy. The normalized CBCTDIw of the new and old protocols were 

4.3 mGy/100 mAs at 125 kV and 4.5 mGy/100 mAs at 125 kV, respectively. 
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Table 2. CBCTDIw of the new and old scanning protocols 

 

New (Version 

1.4.13) 

Old (Version 

1.4.11) 

New (Version 

1.4.13) 

Old (Version 

1.4.11) 

 
Head Head Pelvis Pelvis 

CBCTDIw (mGy) 36.6 ± 0.8 116.8 ± 3.3 29.4 ± 0.4 58.2 ± 1.4 

CTDI at center (mGy) 38.1 ± 0.1 125.6 ± 0.4 20.2 ± 0.0 40.5 ± 0.1 

CTDI at 90° (mGy) 32.4 ± 0.1 111.6 ± 0.3 33.5 ± 0.1 65.3 ± 0.4 

CTDI at 180° (mGy) 55.9 ± 0.2 111.1 ± 0.3 34.2 ± 0.0 68.5 ± 0.1 

CTDI at 270° (mGy) 41.9 ± 0.2 110.7 ±0.4 34.2 ± 0.0 67.0 ± 0.2 

CTDI at 0° (mGy) 12.9 ± 0.0 116.1 ± 0.7 34.1 ± 0.0 67.7 ± 0.1 

Normalized CBCTDIw (mGy/100 

mAs) 
5.1 ± 0.1 9.0 ± 0.3 4.3 ± 0.1 4.5 ± 0.1 

 

TLD dose in the RANDO Phantom 

The average organ doses and the effective doses of the RANDO Phantom measured by TLD for the head-and-neck and 

pelvic regions are shown in Table 3. The organ dose and the total effective dose from the new 200° scanning protocol 

were lower than those from the old 360° scanning protocol. The anterior located structures such as lens, retina, and optic 

nerve for the new scanning protocol received lower dose than the old scanning protocol. The absorbed doses to lens, 

retina, and optic nerve for the new scanning protocol were 3.8, 9.0, and 10.5 mGy, respectively, whereas for the old 

scanning protocol the absorbed doses to lens, retina, and optic nerve were 59.4, 69.5, and 60.2 mGy, respectively. The 

absorbed doses of salivary gland, which was newly recommended by ICRP 103, were 6.0 and 13.0 mGy for the new and 

old scanning protocols, respectively. The total effective dose from the new 200° scanning protocol was 1.7 mSv, whereas 

that from the old 360° scanning protocol was 9.4 mSv. The tissues or organs which were not inside the irradiated field 

received much lower dose, which was primarily contributed from scattered radiation. The skin dose for the new protocol 

was 4.5 mGy, which was much lower than that of the old protocol (16.8 mGy). 
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Table 3. Summary of absorbed dose (mGy) and effective dose (mSv) from cone beam computed tomography (CBCT) 

measured by thermoluminescent dosimeters (TLD) in the RANDO phantom 

 

New (Version 

1.4.13) 

Old (Version 

1.4.11)  

New (Version 

1.4.13) 

Old (Version 

1.4.11)  

 
Head Head Head Pelvis Pelvis Pelvis 

Organ/tissue 
Absorbed 

dose (mGy) 

Absorbed 

dose (mGy) 

Dose ratio (New 

version/ old 

version) 

Absorbed 

dose (mGy) 

Absorbed 

dose (mGy) 

Dose ratio (New 

version/ old 

version) 

Gonad 0.04 ± 0.00 0.20 ± 0.02 0.19 11.66 ± 0.30 22.11 ± 0.47 0.53 

Bone marrow 0.02 ± 0.00 0.08 ± 0.01 0.26 14.59 ± 0.17 28.68 ± 0.70 0.51 

Colon 0.05 ± 0.00 0.22 ± 0.02 0.24 6.45 ± 0.11 12.50 ± 0.22 0.52 

Lung 0.51 ± 0.00 2.56 ± 0.07 0.20 0.25 ± 0.01 0.50 ± 0.01 0.51 

Stomach 0.07 ± 0.00 0.43 ± 0.02 0.16 1.35 ± 0.03 2.60 ± 0.06 0.52 

Bladder 0.02 ± 0.00 0.13 ± 0.02 0.14 30.37 ± 0.54 59.35 ± 1.27 0.51 

Breast 0.18 ± 0.01 1.35 ± 0.08 0.14 0.34 ± 0.01 0.70 ± 0.03 0.49 

Liver 0.08 ± 0.00 0.43 ± 0.01 0.19 1.41 ± 0.02 2.70 ± 0.10 0.52 

Esophagus 0.90 ± 0.02 3.82 ± 0.29 0.24 0.17 ± 0.01 0.36 ± 0.01 0.48 

Thyroid 13.85 ± 0.16 93.39 ± 3.90 0.15 0.11 ± 0.00 0.22 ± 0.00 0.51 

Skin 4.46 ± 0.04 16.84 ± 0.64 0.26 10.54 ± 0.29 20.56 ± 1.05 0.51 

Bone surface 0.02 ± 0.00 0.09 ± 0.01 0.23 20.83 ± 0.25 40.76 ± 1.01 0.51 

Brain 4.97 ± 0.09 20.32 ± 0.47 0.24 0.04 ± 0.00 0.08 ± 0.00 0.58 

Salivary gland 6.00 ± 0.12 13.00 ± 0.26 0.46 0.20 ± 0.01 0.25 ± 0.02 0.80 

Remainder organ 
      

Adrenals 0.07 ± 0.00 0.34 ± 0.02 0.22 2.03 ± 0.05 3.92 ± 0.06 0.52 

Small intestine 0.05 ± 0.00 0.28 ± 0.01 0.17 3.63 ± 0.07 6.93 ± 0.20 0.52 

Kidney 0.07 ± 0.00 0.29 ± 0.02 0.23 2.85 ± 0.06 5.46 ± 0.10 0.52 

Muscle 14.11 ± 0.13 27.01 ± 4.82 0.52 12.77 ± 0.29 25.31 ± 0.58 0.50 

Pancreas 0.07 ± 0.00 0.42 ± 0.02 0.17 1.45 ± 0.02 2.81 ± 0.05 0.52 

Spleen 0.09 ± 0.00 0.43 ± 0.03 0.22 1.39 ± 0.06 2.65 ± 0.15 0.52 

Thymus 2.68 ± 0.03 12.41 ± 0.66 0.22 0.11 ± 0.00 0.22 ± 0.00 0.49 

Lens 3.79 ± 0.07 59.38 ± 0.84 0.06 0.08 ± 0.00 0.15 ± 0.00 0.54 

Retina 9.01 ± 0.17 69.52 ± 0.99 0.13 0.06 ± 0.00 0.11 ± 0.00 0.55 

Optic nerve 10.48 ± 0.19 60.24 ± 0.85 0.17 0.05 ± 0.00 0.09 ± 0.00 0.56 

Optic chiasma 15.92 ± 0.21 59.46 ± 0.59 0.27 0.05 ± 0.00 0.09 ± 0.00 0.58 

Pituitary gland 13.41 ± 0.17 50.64 ± 0.51 0.26 0.05 ± 0.00 0.09 ± 0.00 0.56 

Brainstem 17.87 ± 0.29 57.17 ± 1.13 0.31 0.06 ± 0.00 0.10 ± 0.00 0.59 

Spinal cord 14.40 ± 0.12 39.94 ± 0.90 0.36 7.08 ± 0.21 13.82 ± 0.00 0.51 

Rectum 0.03 ± 0.00 0.11 ± 0.01 0.30 22.75 ± 0.55 46.48 ± 1.07 0.49 



 

New (Version 

1.4.13) 

Old (Version 

1.4.11)  

New (Version 

1.4.13) 

Old (Version 

1.4.11)  

 
Head Head Head Pelvis Pelvis Pelvis 

Organ/tissue 
Absorbed 

dose (mGy) 

Absorbed 

dose (mGy) 

Dose ratio (New 

version/ old 

version) 

Absorbed 

dose (mGy) 

Absorbed 

dose (mGy) 

Dose ratio (New 

version/ old 

version) 

Heart 0.26 ± 0.00 1.54 ± 0.05 0.17 0.33 ± 0.00 0.66 ± 0.02 0.51 

Total effective 

dose (mSv) 
1.65 ± 0.01 9.39 ± 0.16 0.18 8.21 ± 0.04 16.00 ± 0.11 0.51 

 

Table 4 illustrates the TLD absorbed dose of major OARs in the head-and-neck region delivered by the new 200° 

head-and-neck protocol with different locations of the isocenter. The absorbed dose of lens and retina for the isocenter at 

4 cm anterior to the center of the head were 13.0 and 13.3 mGy, respectively, whereas those for the isocenter at the 

center of the head were 3.8 and 9.0 mGy, respectively. The absorbed dose to the lens and retina were further reduced to 

2.6 and 5.0 mGy respectively if the isocenter was shifted 4 cm posteriorly to the center of the head. However, the 

brainstem received 13.3 and 21.2 mGy for the isocenter located at 4 cm anterior and 4 cm posterior to the center of the 

head respectively. 

 

Table 4. Thermoluminescent dosimeters (TLD) absorbed dose (mGy) of major organs at risk (OARs) in the head of the 

RANDO phantom delivered by the new 200° head-and-neck protocol with different isocenters 

 

Position of isocenter  

 

Organ 4 cm Anterior to center of head Center of head 4 cm Posterior to center of head 

Lens 12.99 ± 1.41 3.79 ± 0.10 2.58 ± 0.17 

Retina 13.30 ± 1.67 9.01 ± 0.34 4.96 ± 0.49 

Optic nerve 10.52 ± 0.34 10.48 ± 0.15 6.12 ± 0.53 

Brainstem 13.34 ± 1.48 17.87 ± 0.29 21.19 ± 1.91 

Spinal cord 18.59 ± 1.04 28.77 ± 0.23 29.72 ± 1.82 

 

The organs irradiated by the pelvic scanning protocol were the bladder, gonad, colon, small intestine, bone marrow, 

rectum, and spinal cord. The absorbed dose of individual organ and the total effective dose of RANDO phantom irradiated 

by the new half-fan scanning protocol were about half of the old half-fan scanning protocol. The total effective doses from 

the new and old half-fan pelvic scanning protocols were 8.2 and 16.0 mSv, respectively. The total effective dose from the 

new half-fan pelvic scanning protocol was 51% of that from the old half-fan pelvic scanning protocol. This was because the 

exposure was only half for the new scanning protocol. With the new half-fan pelvic scanning protocol, the absorbed doses 

to bladder, bone surface, and rectum were 30.4, 20.8, and 22.8 mGy, respectively, whereas for the old pelvic scanning 

protocol the absorbed doses to bladder, bone surface, and rectum were 59.4, 40.8, and 46.5 mGy, respectively. 

Image quality 

 

Table 5 shows the summary of the results of image quality. For the head-and-neck scanning protocol, the low-contrast 
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resolutions for the new protocol (Fig. 1a) and old protocol (Fig. 1b) were 7 mm and 6 mm in diameter at 1% target 

contrast level, respectively. The 15 mm in diameter at 0.5% target contrast level could be detectable only for the old 

head-and-neck protocol, and was undetectable at 0.3% contrast level for both protocols. For the high-contrast spatial 

resolution, the new head-and-neck protocol (Fig. 2a) and old head-and-neck protocol (Fig. 2b) demonstrated the same 

resolution of 7 lp/cm. 

 

Table 5. Summary of the image quality of different scanning protocols 

 

New (Version 

1.4.13) 

Old (Version 

1.4.11) 

New (Version 

1.4.13) 

Old (Version 

1.4.11) 

 
Head Head Pelvis Pelvis 

Low-contrast 
    

Visible supra-slice target diameter (mm) at 1% 

target contrast level 
7 6 7 6 

Visible supra-slice target diameter (mm) at 0.5% 

target contrast level 
Invisible 15 Invisible 15 

Visible supraslice target diameter (mm) at 0.3% 

target contrast level 
Invisible Invisible Invisible Invisible 

High-contrast spatial resolution (lp/cm) 7 7 4 5 

Mean SD of CT numbers 13.1 8.6 6.1 6.0 

Abbreviations: CT = computed tomography; SD = standard deviation. 
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Fig. 1. Images of low-contrast resolution for (a) new head-and-neck protocol, (b) old head-and-neck protocol, (c) new 

pelvic protocol, and (d) old pelvic protocol. Display window, (200, 0) Hounsfield Unit (HU). Nominal target contrast levels 

are 0.3%, 0.5%, and 1.0%. 
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Fig. 2. Images of high-contrast spatial resolution for (a) new head-and-neck protocol, (b) old head-and-neck protocol, (c) 

new pelvic protocol, and (d) old pelvic protocol. Display window, (630, −300) Hounsfield Unit (HU). 

 

The overall image quality for the old pelvic scanning protocol was found to be slightly better than that of the new pelvic 

protocol. The 1% of the low-contrast resolution for the new pelvic protocol (Fig. 1c) and old pelvic protocol (Fig. 1d) were 

7 mm and 6 mm in diameter, respectively. The 15 mm in diameter at 0.5% target contrast level could be detectable only by 

the old pelvic protocol. The visibility of 0.3% target contrast level was not possible for both pelvic protocols. For the 

high-contrast spatial resolution, the new pelvic protocol (Fig. 2c) and old pelvic protocol (Fig. 2d) were able to resolve 4 

and 5 lp/cm, respectively. 

 

It should be noted that much image noise was found on the new head-and-neck protocol. However, the image noise was 

found similar on both pelvic protocols. To analyze the reconstructed images quantitatively, the CNRs of different inserts 

were found in the selected ROIs shown in Fig. 3. The CNR and FOM of different protocols are summarized in Table 6. To 

compare the CNR and FOM of different protocols, the average CNR and FOM were calculated from different inserts of 

each protocol. The better detectability of the low-contrast resolution for the old head-and-neck protocol was observed, 

revealing itself in an average CNR increased by a factor of 1.56 compared with the average CNR performed by the new 

head-and-neck protocol. The FOMs of the new and old head-and-neck protocols were 34.79 and 27.11, respectively. The 
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average values of the CNR for the new and old pelvic protocols were 68.66 and 49.34, respectively, and the FOMs were 

335.98 and 80.78, respectively. 

 

Fig. 3. Image reconstruction of the CTP404 module. The contrast inserts selected as regions of interest for the quantitative 

analysis of contrast-to-noise ratio (CNR) and figure of merit (FOM). Display window, (630, −300) Hounsfield Unit (HU). 

 

Table 6. Contrast-to-noise ratio (CNR) and figure of merit (FOM) of new and old scanning protocols 

 

New (Version 1.4.13)  

 

Old (Version 1.4.11)  

 

New (Version 1.4.13)  

 

Old (Version 1.4.11)  

 

 

Head  

 

Head  

 

Pelvis  

 

Pelvis  

 

 
CNR FOM CNR FOM CNR FOM CNR FOM 

Polystyrene 6.38 1.11 10.50 0.94 12.69 5.48 10.69 1.96 

LDPE 8.92 2.17 12.99 1.44 18.64 11.82 16.51 4.68 

Air 1 63.95 111.72 102.30 89.60 186.33 1180.87 124.95 268.27 

Air 2 65.01 115.47 101.54 88.28 184.84 1162.06 123.98 264.10 

PMP 13.54 5.01 20.79 3.70 29.58 29.75 22.61 8.79 

Acrylic 1.44 0.06 1.83 0.03 1.61 0.09 1.88 0.06 

Delrin 10.33 2.92 13.55 1.57 25.56 22.23 21.53 7.96 

Telfon 38.21 39.89 60.47 31.31 90.01 275.60 72.54 90.42 

Average 25.97 34.79 40.50 27.11 68.66 335.98 49.34 80.78 

 

Discussion 

This study provided comprehensive information about absolute dosimetry of the new Varian CBCT protocols. Several 

researchers have reported the CBCTDIw using kV reference dosimetry. Song et al. found that the CBCTDIw for the 
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head-and-neck protocol of Elekta Synergy X-ray Volumetric Imager (XVI) system was 1 mGy at 100 kVp with 210° 

acquisition angle and that the CTDI at 0° was 1.3 mGy (18). For the Varian OBI system in this study, it was reported that 

the CBCTDIw of the old full-fan head-and-neck protocol was 116.8 mGy at 125 kVp with 360° acquisition angle and the 

CTDI at 0° was 116.1 mGy. The CBCTDIw for the new head-and-neck scanning protocol of the current study was 36.6 mGy, 

which was much higher than the Varian OBI system as reported by Palm et al.(34). This may be explained that Palm et al. 

used a narrow field to measure the CBCTDIw by reducing the blades (34). However, the energy of the current new 

head-and-neck protocol was lower than that of the old protocol. The CTDI at 0° position for the current new 

head-and-neck protocol was 12.9 mGy which was greatly reduced compared with the Varian old protocol. This was mainly 

due to the 200° scanning angle from 90° to 290°, and therefore the dose to the optic structures of a patient could be 

reduced. Kan et al. demonstrated that the absorbed dose of lens measured by TLD for the head-and-neck CBCT using 

standard mode was 62.2 mGy at 125 kVp with 360° acquisition angle (35). This dose was similar to the old head-and-neck 

protocol of the current study, which was 59.4 mGy. It should be noted that the lens dose of the new 200° scanning 

protocol was only 3.8 mGy. Therefore, the absorbed dose to the lens of a patient with head-and-neck cancer can be 

reduced by 1835 mGy if the patient was treated with 33 fractions with daily CBCT using new 200° head-and-neck protocol. 

The minimum cataractogenic dose for a protracted exposure of 3 weeks to 3 months is 4 Gy (36). It should be pointed out 

that the lens dose for many patients with advanced head-and-neck cancer, especially for superiorly extended NPC, may 

receive 5 to 6 Gy for the entire course of radiation treatment. Any additional dose from CBCT would further increase the 

chance of cataractogenesis. Using the blades to shield the lens during image guidance can effectively reduce additional 

radiation dose delivered to both lenses from CBCT if the region of eyeball is not essential for field matching. It was 

observed that the more posterior of the isocenter located, the less absorbed dose of the optic structures received. 

However, for the posteriorly located structures such as the brainstem and spinal cord, the absorbed dose was increased 

when the isocenter was located posteriorly. 

 

The total effective doses from the new 200° and old 360° head-and-neck protocols were 1.7 mSv and 9.4 mSv, 

respectively. According to the ICRP 103, assuming a linear response at low doses, the combined detriment due to excess 

cancer and heritable effects remains at approximately 5% per Sv (27). When a patient with head-and-neck cancer received 

a daily CBCT for 33 fractions, the total effective doses from the new 200° and old 360° head-and-neck protocols would be 

56.1 mSv and 310.2 mSv, respectively, which could induce additional secondary cancer risk of 2.8 × 10−3 and 15.5 × 10−

3, respectively. The risk of inducing secondary cancer from the new 200° head-and-neck protocol was five times less than 

that of the old 360° head-and-neck protocol. A radical treatment of prostate cancer with 35 fractions daily CBCT for the 

new and old pelvic scans would result in additional effective doses of 287.4 mSv and 560.0 mSv, respectively, which could 

induce additional secondary cancer risks of 1.4% and 2.8%, respectively. 

 

Uncertainties were introduced by using the anthropomorphic RANDO phantom in this study to measure the organ and 

total effective doses. It should be noted that the measurement of the organ and total effective doses in the phantom does 

not directly correspond to the real patient, as the effective atomic number and mass density of tissue and organ vary 

between the phantom and the human. Besides, there are uncertainties associated with the location of organs and the 

choice of TLD position within organs. These uncertainties are not easy to estimate quantitatively. Therefore, the 

measurement of the organ and total effective doses using this technique as a reliable basis for absolute risk estimation is 

inappropriate. However, it can be used to calculate the relative radiation risks of the patients who are receiving radiation 

from CBCT (37). 
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To compare the image quality of the head-and-neck protocols, the low-contrast resolution and CNR for the new protocol 

was poorer than those of the old protocol. However, both protocols demonstrated the same high-contrast spatial 

resolution. Both protocols were better than the vendor's recommended specifications of 15 mm at 1% supra-slice target 

diameter for the low-contrast resolution and 6 lp/cm for the high-contrast spatial resolution. Decreasing the tube voltage 

of the new head-and-neck protocol increased the image noise, which is shown in Table 5. It is complex to describe the 

relationship of tube voltage and image noise as it affects the production of photons via radiative stopping power in the 

tube and the photon attenuation via linear attenuation coefficient in the phantom (38). Nevertheless, the FOM results 

demonstrated that dose reduction can be achieved by reducing the tube voltage without much negative impact on CNR. In 

light of these findings, the image quality of the new head-and-neck protocol with lower radiation dose was acceptable 

because it was sufficient for image guidance using the “bone matching” method (17). The old pelvic protocol showed 

slightly better resolution on both tests of low-contrast and high-contrast spatial resolution. Both pelvic protocols 

demonstrated better image quality than the recommended specifications of 15 mm at 1% supra-slice target diameter for 

the low-contrast resolution. The high-contrast spatial resolution of the new pelvic protocol was not as high and just 

achieved the vendor's recommended specification of 4 lp/cm which is also acceptable for verification of isocenter by the 

method of bone matching. The CNR and FOM for the new pelvic protocols were higher than the old pelvic protocol. This 

can be explained by improving the reconstruction algorithms of the new protocol. Although the image quality of the new 

pelvic protocol was slightly worse than the old one, the radiation dose delivered by the new protocol was only one-half of 

the old protocol. 

 

It should be noted that the low-contrast resolution perhaps was not adequate to identify the contour of soft tissue or 

tumor for all protocols. For example, it is not easy to localize the targets in the pelvic region such as prostate, bladder, 

cervix, and rectum on the images of CBCT because of the low detectability of low-contrast object. Therefore, the 

image-guided ART cannot be easily implemented because the position and the motion of these tumors are not totally 

correlated to the bony anatomy [39] and [40]. Improvement and further development on the low-contrast resolution of 

CBCT should be done to improve the visibility of soft tissues. 

 

The new version of Varian CBCT offered good 3D images for image guidance with comparable image quality and lower 

radiation dose. Using the new protocols, the total effective dose delivered to patients was reduced and therefore the 

additional risk of inducing secondary risk due to the stochastic effect was also decreased. 

 

Conclusion 

This study has demonstrated that the new version of Varian CBCT offers a relatively low-dose 3D volumetric image 

registration on image guidance with comparable image quality. The dose measurement of CBCT using CT dosimetry and 

AAPM TG61 dosimetry protocol with the Farmer-type ionization chamber can be a standard for CBCT dosimetry. The lens 

dose for the new 200° head-and-neck protocol can be reduced from 59.4 to 3.8 mGy. It is obvious that the chance of 

inducing cataract can be decreased. The radiation dose increases with energy and mAs settings. For those patients who 

need daily CBCT for accurate treatment setup, the operator should consider to avoid employing higher energy and mAs if 

there is an alternative. All protocols provide sufficient 3D volumetric information of bony structure for the correction of 

geometric errors of the patient setup. 

 

Further studies on the improvement of image quality of the CBCT with lower radiation dose will be useful. These results 
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lead us conclude that it is possible to perform routine CBCT for our clinical practice with minimum radiation dose. 
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