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Abstract  

The effects of resin matrix composition including bis-phenol-A-diglycidyl 

dimethacrylate (bis-GMA) -methyl methacrylate (MMA) based or urethane 

dimethacrylate (UEDMA) -triethylene glycol dimethacrylate (TEGDMA) based 

composition and storage conditions on the mechanical properties of E-glass fiber 

reinforced composites (FRCs) were studied. Three experimental groups (‘Exper 1’, 

‘Exper 2’, ‘Exper 3’) with differing UEDMA to TEGDMA ratio in the matrix together 

with a control group (‘Control’) based on bis-GMA-MMA resin matrix were prepared 

by light-curing. The storage conditions for each group were dry storage at room 

temperature for 24 h and 30- and 60-day immersion in deionized (DI) water at 37 ℃, 

which further divided each group into three subgroups. For all the four composition 

groups, mechanical properties including hardness, flexural strength and modulus in 

both three-point and four-point bending were tested (n=6), together with water 

sorption and solubility study (n=6) and fracture site scanning with a scanning electron 

microscope (SEM). The experimental specimens were relatively strong and stiff in 

three-point bending compared to previous research. The same specimens in 

three-point bending had a lower flexural modulus and fractured at higher flexural 

stress than in four-point bending. According to the SEM images after fracture, some 

resin matrix was still bound to the fiber surface, showing cohesive-interfacial fracture 

type and relatively stable matrix-fiber adhesion. According to comprehensive analysis, 

the control group showed superior mechanical performance in most of the tests. 

Keywords 

FRC, dental materials, E-glass fiber, resin matrix composition, mechanical properties, 

water sorption and solubility, storage 
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1. Introduction  

As a less invasive, dental tissue saving treatment method than e.g. porcelain 

fused-to-metal restorations, FRCs have gained more and more interest in dentistry. 

Their applications fall into three categories: direct-placement splints and fixed partial 

dentures, direct-placement single-restoration reinforcement, and indirect restorations 

[1]. More specifically, applications of FRCs include bridges, periodontal splinting, 

trauma splinting, root canal post, orthodontic retention, and orthodontic splinting [2]. 

FRC is a composite material made of a plastic reinforced by fine fibers [3], 

which induce relatively high strength and modulus [4]. It is also called 

fiber-reinforced polymer (FRP) or glass-reinforced plastic (GRP) [3]. 

The E-glass fiber is relatively inexpensive and has good mechanical performance. 

As a promising fiber type in industry, the E-glass fiber was frequently investigated in 

previous research. Considering its significance in industrial application and for easy 

comparison with other researches, the E-glass fiber is also adopted in this study. 

Matrix has the function of holding fibers together and in place, transferring 

stresses between fibers and protecting fibers from the outside environment such as 

chemicals, moisture and mechanical attacks. So matrix would influence the 

compressive strength, interlaminar shear and in-plane shear properties, interaction 

between the matrix and the fiber, and processing and defects in the composite [3]. 

Durable adhesion between fiber and matrix provides good load transmission 

between the two, which ensures that the load is taken by the stronger fiber and the 

fiber actually works as the reinforcement. However, if the adhesion is not so durable 

and some voids appear between the fiber and the matrix, these voids would act as 

fracture initiation sites in the composite and even facilitate the breakdown of the 

material [5]. Silane coupling agents are silicon esters and they find applications as 
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adhesion promoters for coatings and composites [6-14]. 

Thermosetting plastics are normally used as the matrix for FRC production. Most 

often unsaturated polyester, and also vinylester and epoxy, are also used. In FRCs 

with an interpenetrating polymer network (IPN) structure, the matrix consists of a 

crosslinking polymer, a linear polymer and sometimes photoinitiator to facilitate the 

polymerization reaction. 

A crosslinking polymer is also called a thermoset polymer, referring to 

multifunctional or dimethacrylate resins, such as bis-GMA, UEDMA and TEGDMA 

[5]. A linear polymer is also called thermoplastic polymer, referring to 

monofunctional methacrylate polymers, such as MMA. The linear polymer is added 

into the crosslinking polymer to reduce the viscosity [15] of the mixture and form an 

IPN structure [5]. The photoinitiator includes a photosensitizer and a reducing agent. 

The photosensitizer absorbs visible blue light in the wavelength range of 440-480 nm, 

thus becomes activated and produces free radicals. These radicals react with reducing 

agent and produce more radicals. A commonly utilised photosensitizer is 

camphorquinone (CQ) and reducing agents are 2-(dimethylamino)ethylmethacrylate 

(DMAEMA), N,N-cyanoethyl methylaniline (CEMA) and dimethyl-p-toluidine 

(DMPTI). The mixing ratio between photosensitizer and reducing agent varies among 

different dental FRC products [16]. 

The bis-GMA-MMA (bis-GMA is needed to form the crosslinking polymer and 

MMA to form the linear polymer) combination as the resin matrix is widely used. 

Since bis-GMA is considered to be relatively more cytotoxic and allergenic [17], 

nowadays the UEDMA-based matrix is gaining more and more interest. In this 

research bis-GMA-MMA and UEDMA-TEGDMA (TEGDMA added to reduce the 

viscosity of the mixture) were set as the control and experimental resin matrix 
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compositions respectively for comparison in mechanical performance. 

Water sorption and solubility of dental materials are influenced by various factors. 

One important factor is the polymer matrix, in which the microscopic voids might 

cause high water sorption values. High water sorption, in turn, would influence the 

fiber-matrix interface [18]. 

Besides, the resin matrix composition has significant effects on FRC mechanical 

properties [19], which is also the focus of this current study. 

 

The aim of this study was to find a UEDMA-TEGDMA-based resin matrix 

composition with a desirable combination of mechanical properties for the FRC. 

The hypothesis for this study was: the UEDMA-TEGDMA-based experimental 

FRCs with certain UEDMA to TEGDMA ratios have a superior combination of 

mechanical properties compared to the bis-GMA-MMA based control group. 

 

 

2. Materials and Methods 

2.1. Materials 

The materials used in this study are listed in Table 1. 

 

 

2.2. Fibre Preparation 

The E-glass fibres (R338-2400/V/P, Stick Tech Ltd., Turku, Finland) were already 

silanized by the manufacturer and kept in a desiccator for 24 h prior to specimen 

preparation. Then the fibres were sized by immersion in a sizing solution (25 wt% 

bis-GMA + 75 wt% MMA for the control group; 25 wt% UEDMA + 75 wt% 
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TEGDMA for experimental groups) for 1 min. The sized fibres were cut into 25 mm 

long reinforcement with a surgical steel knife for the preparation of test specimens 

[20]. 

 

2.3. Specimen Preparation 

Two bundles of the prepared 25 mm long reinforcement were placed along the long 

axis of the specimen into the mould and embedded into the resin matrix with 

compositions shown in Table 2. For each composition twelve identical rectangular 

specimens with dimensions of 2 mm * 2 mm * 25 mm were prepared. Air bubbles 

were removed carefully by pressing the fibre bundles with a hand instrument. Then 

the resin matrix was light-cured with a halogen light curing unit (Elipar TM 2500, 3M 

ESPE, St. Paul, MN, USA) on both sides of the specimens for 3 × 40 s. The average 

light intensity was 700 mW cm 2−  measured with Cure Rite TM Model 8000 hand-held 

radiometer (EFOS Inc., Williamsville, NY, USA), and the wavelength range of the 

curing unit was 400-500 nm. After light-curing, the specimens were polished with a 

polishing paper (360 grit) [20, 21]. 

 

2.4. Fibre Content Measurement 

Six randomly selected specimens were burned in an oven at 700 ºC for 1 h. Their 

weights before and after burning were taken with an electrical balance (EB500HZY-S, 

A-Tech Global Science Ltd., Hong Kong), which was also used for all other weight 

measurements in this study. The average (± SD, standard deviation) fiber content was 

42.00 ± 0.75 vol%.  
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2.5. Storage Conditions 

Each of the four groups was divided into three subgroups (n = 12) and stored in the 

following conditions before mechanical testing: dry storage at 37 ℃ for 24 h and 

immersion in DI water at 37 ℃ for 30 days and 60 days, respectively. 

 

2.6. Water Sorption and Solubility Study 

All the four groups with differing matrix composition were subjected to water 

sorption test according to ISO 3696:1987 (E). The specimens (n = 6) were stored in 

contact with 15 ml DI water of 37 ℃ for the following time periods: 0, 4, 5, 6, 7, 11, 

15, 22, 36, 40 days. The weights measured at end of these time periods were recorded 

and plotted in Fig. 1. 

 

2.7. Mechanical Testing 

The following mechanical tests were taken (n=6) for each storage subgroup in each 

matrix-composition group: 

 

2.7.1. Vickers Hardness Test  

Vickers hardness test was conducted according to ISO 6507-2. Leitz Micro-hardness 

tester (Leitz Inc., New York, N.Y., USA) and Leica QGo software program (Leica 

Microsystems Imaging Solutions Ltd., Wetzlar, Germany) were utilized to carry out 

the test and calculate the hardness value. A load of 0.245 N and a loading duration of 

20 s were used. Because of the viscoelasticity of the specimen, time delay from 

applying the indenter to the determination of the hardness value was standardized to 

10 s [22]. 
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2.7.2. Three-point Bending Test 

A universal testing machine (ElectroPuls TM E3000, Instron Industrial Products, Grove 

City, PA, USA) was used. The span between the two supports was 20 mm and the 

crosshead speed was 1.0 mm/min during testing. Load and deflection were recorded 

with Console software (Instron Industrial Products) and load-deflection curve was 

plotted [20]. The maximum load and slope of the linear portion of the load-deflection 

curve were used to calculate the flexural strength and modulus according to the 

following formulae (1) and (2), respectively [23]: 

Ó 3  = 22
3
bh
FL                          (1)                                                     

E 3  = 3

3

4bh
SL                          (2) 

Ó 3 : Flexural strength in three-point bending; 

E 3 : Flexural modulus in three-point bending; 

F: maximum load in the load-deflection curve; 

L: span between the two supports; 

b: width of the specimen; 

h: height of the specimen; 

S: slope of the linear portion of the load-deflection curve. 

 

 

2.7.3. Four-point Bending Test 

The same universal testing machine and data recording software program as in 

three-point bending test were used. The loading span was 10 mm, while the support 
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span was 20 mm. The crosshead speed was 0.75 mm/min [18]. Load and deflection 

were recorded to plot the load-deflection curve. Flexural strength and modulus were 

calculated with the maximum load and the slope of the linear portion in the 

load-deflection curve according to formulae (3) and (4) respectively [23]: 

  Ó4= 24
3
bh
FL                              (3) 

  E4= 3

3

44.17
3

bh
SL                            (4) 

Ó4: Flexural strength in four-point bending; 

E4: Flexural modulus in four-point bending; 

F: maximum load in the load-deflection curve; 

L: support span; 

b: width of the specimen; 

h: height of the specimen; 

S: slope of the linear portion of the load-deflection curve. 

 

2.8. Statistical Analysis 

The mechanical test results were analyzed with PASW Statistics 18.0 (Statistical 

Package for Statistical Science Inc., Chicago, IL, USA) software. The level of 

statistical significance p was set as 0.05 and p values less than 0.05 were considered 

as statistically significant in all the tests. Individual one-way factorial analysis of 

variance (ANOVA) followed by Turkey post hoc tests was carried out. The dependent 

variables (hardness, flexural modulus and strength in 3- and 4-point bending tests) 

were compared with two independent factors (resin matrix composition and storage 

conditions). Besides, the flexural strength and modulus values obtained in three- and 

four-point bending were compared with Independent-Sample T test. 
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2.9. Scanning Electron Microscopy 

For all the subgroups with different storage conditions in each composition group, 

representative fractured specimens after 3- and 4-point bending tests were selected for 

the scanning electron microscopy analysis. Firstly, the samples were fixed on 

aluminium sample-holder stubs and sputtered with gold in an ion sputterer (JFC-1100, 

JEOL, Tokyo, Japan). Then the samples were examined by taking images with a 

scanning electron microscope (SEM) (XL30CP Philips, Eindhoven, The Netherlands). 

The working distance was around 20 mm and the acceleration voltage was 10.0 kV 

[14]. The fracture morphology and adhesion between the fiber and matrix after 

fracture were observed. 

 

 

3. Results and Discussion 

3.1. Fibre Content of Test Specimens 

The average (± SD, standard deviation) fiber content was 42.00 ± 0.75 vol%.  

 

3.2. Water Sorption and Solubility 

According to Figure 1, all the four materials showed a relatively sharp weight increase 

from 0 day to 4 days in water storage, which showed that water sorption of the 

specimen was faster than dissolution of the soluble substances from the specimen into 

water. Then from 4 days to 22 days, the specimen weights were more or less stable, 

which meant that water sorption of the specimen and dissolution of the soluble 

substances were in equilibrium.  

In Lassila et al.’s study [25], the 30 d water sorption for FRCs incorporated with 

45 vol% glass fiber were in the range of 0.4 to 2.9 wt%. According to Figure 1, the 30 
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d water sorption for ‘Control’, ‘Exper 1’, ‘Exper 2’ and ‘Exper 3’ groups were: 0.7 

wt%, 2.6 wt%, 1.1wt % and 1.3 wt% respectively, which were acceptable, even 

though these were slightly higher values. 

Compared with the other three groups, ‘Exper 1’ had the greatest increase in 

weight during the first 4 days of storage, while the other three materials had relatively 

similar behavior in water sorption and solubility. 

 

3.3. Hardness  

Referring to Le Bell-Rönnlöf’s work [22], in which the FRC specimen with semi-IPN 

(semi-interpenetrating polymer network) in dry condition had a Vickers hardness 

value of 18, the Vickers hardness values obtained in this current study are acceptable. 

Table 3 shows that under the same storage conditions, the control group had the 

highest Vickers hardness while the Exper 3 group had the lowest. Moreover, this was 

with all the three different storage conditions. 

In the ‘Control’ and ‘Exper 1’ groups, the hardness decreased from dry to 30 d 

storage, the decrease of ‘Exper 1’ being more obvious. From 30 d to 60 d storage, the 

hardness went up for these two groups, with the increase for ‘Exper 1’ again more 

obvious. In the ‘Exper 2’ and ‘Exper 3’ groups, the trend was a little different: from 

dry to 30 d, hardness decreased; from 30 d to 60 d, there was no obvious change in 

hardness. All these trends showed that water storage caused some decrease in Vicker’s 

hardness of both experimental and control groups. 

According to the results of ANOVA test, different storage conditions did not 

produce any statistically significant difference in the hardness values; while for 

differing resin matrix composition, the hardness comparison for the four groups 

suggested the following sequence: ‘Control’ > ‘Exper 1’ = ‘Exper 2’ > ‘Exper 3’. 
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3.4.. Three-point Bending 

3.4.1. Flexural Strength 

With dry storage (Figure 2 and Table 4), the ‘Control’ group had the highest flexural 

strength value (605 ± 126 MPa) while the ‘Exper 3’ group had the lowest value (471 ± 

36 MPa). After 30-day storage in DI water at 37℃, ‘Exper 2’ had the highest flexural 

strength (605 ± 44 MPa) while ‘Exper 3’ still had the lowest (408 ± 56 MPa). With 

60-day storage in water, ‘Control’ had the highest value (654 ± 83 MPa) while ‘Exper 

1’ had the lowest value (463 ± 82 MPa).  

In previous researches [20, 21], flexural strengths of E-glass FRCs with 

bis-GMA-MMA-based matrix in three-point bending were obtained in a range of 180 

MPa to 600 MPa. Even though the current work had different components in the FRC 

specimens from those in previous studies, the consistency showed that the current 

study results are acceptable. Besides, results on the current experimental specimens 

suggest that these experimental specimens were relatively strong in flexure. 

As storage time increased from 0 day (dry storage) to 60 days, there was no 

uniform trend in change in strength changing with storage length for the four groups. 

  According to the ANOVA test, there was no statistically significant difference in 

flexural strengths with different storage conditions; while for different resin matrix 

composition groups, the strength order was: ‘Control’ > ‘Exper 1’ = ‘Exper 2’ > 

‘Exper 3’. 

 

3.4.2. Flexural Modulus 

With dry storage (Figure 3, Table 4), the ‘Control’ group had the highest value (23.9 ± 

5.3 GPa) while ‘Exper 1’ had the lowest value (16.7 ± 4.5 GPa). After 30 days storage 

in DI water, ‘Exper 3’ had the highest modulus value (19.8 ± 5.1 GPa) while ‘Exper 1’ 
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had the lowest value (16.2 ± 0.5 GPa). With 60 days storage, values for the four 

materials were close to each other, with ‘Control’ the highest (18.8 ± 1.1 GPa) and 

‘Exper 2’ the lowest (17.1 ± 0.9 GPa). 

For flexural modulus, there was again no uniform trend in change in modulus 

value with storage conditions for all the four materials. 

In Matinlinna et al.’s works [20, 21], flexural modulus of E-glass FRC with 

bis-GMA-MMA-based matrix in three-point bending was between 18.4 to 9.2 GPa. 

According to figure 3, values of the experimental specimens obtained in the current 

study were all near the upper bound of the previous range.  

According to the ANOVA test, for different storage conditions, the flexural 

modulus order was: dry > 30 d = 60 d; while for different resin matrix composition 

groups, the modulus comparison was: ‘Control’ > ‘Exper 1’ = ‘Exper 2’ = ‘Exper 3’. 

 

3.5. Four-point Bending 

3.5.1. Flexural Strength  

After storage in water, both 30 d and 60 d storage (Figure 4), the flexural strengths 

were lower than those in dry storage.  

With dry storage, the ‘Control’ group had the highest value (461 ± 50 MPa) while 

the ‘Exper 1’ group had the lowest value (363 ± 39 MPa). After 30-day storage in DI 

water at 37℃, ‘Control’ still had the highest flexural strength (400 ± 63 MPa) while 

‘Exper 1’ had the lowest (314 ± 22 MPa). With 60-day storage in water, ‘Control’ had 

the highest value (358 ± 47 MPa) while ‘Exper 2’ had the lowest value (329 ± 28 

MPa). Thus, the ‘Control’ group had the highest values after dry, 30-day-water and 

60-day-water storage among the four groups. 

According to the ANOVA test, comparison for different storage conditions was: 
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dry > 30 d = 60 d; while for different resin matrix composition groups, the strength 

order was: ‘Control’ > ‘Exper 1’ = ‘Exper 2’ = ‘Exper 3’ 

 

3.5.2. Flexural Modulus  

With dry storage (Figure 5), the ‘Exper 2’ group had the highest value (29.9 ± 3.6 GPa) 

while ‘Exper 1’ had the lowest value (24.4 ± 7.1 GPa). After 30 days storage in DI 

water, ‘Control’ had the highest modulus value (25.0 ± 2.3 GPa) while ‘Exper 3’ had 

the lowest value (22.6 ± 1.7 GPa). With 60 days storage, values for the four materials 

were close to each other, with ‘Exper 1’ the highest (26.8 ± 4.4 GPa) and ‘Exper 2’ the 

lowest (24.8 ± 2.5 GPa). 

For flexural modulus, there was again no uniform trend in change in modulus 

value changing with storage conditions for any of the four materials. 

According to the ANOVA test, with different storage conditions, the modulus 

order was: dry > 30 d = 60 d. There was no statistically significant difference in 

flexural modulus for different resin matrix composition groups in four-point bending. 

 

3.6. Comparison between the Three- and Four-point Bending Test Results 

Comparing Figure 2 to 4 and 3 to 5 respectively, flexural strengths obtained in 

three-point bending were higher than those in four-point bending, with the difference 

in the range of 56 to 295 MPa, which was statistically significant. One reason might 

be the sensitivity of four-point bending to surface flaws of the specimen [9], which 

was reflected in reduced strength values in four-point bending.  There might be other 

reasons. Firstly, the deflections before fracture of the specimens might exceed the 

range in which the strength calculation formulas are valid. So the strengths obtained 

with these formulas might not be accurate. Secondly, the specimens were not thin 
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enough. In other words, the support span to height ratio was not low enough. This 

might result in localized stresses in the region near the loading points and induce 

certain shear deformation in addition to the pure flexure in the specimens [26, 27]. 

Besides, the difference in flexural strength values might also result from differing 

specimen geometries and dimensions, material inhomogeneity, and surface conditions 

in the specimen [9, 20]. 

  As for flexural modulus, the values obtained in three-point bending were on 

average 7 GPa (0.27%) lower than those in four-point bending, which was also 

statistically significant. This result also agreed with previous research on comparison 

of flexural modulus values between three- and four-point bending [26, 27]. 

  From the comparison between Figure 2 to 4 and 3 to 5, respectively, it was also 

found that the groups with extreme (the highest or the lowest) strength or modulus 

value were not necessarily the same groups in three- and four-point bending in the 

same storage conditions. For example, the highest strength group of 30 d storage in 

three-point bending was ‘Exper 2’; while the highest strength group of 30 d storage 

in four-point bending was ‘Control’, which were not the same composition groups. 

  As Figure 6 shows, the same specimens in three-point bending had a lower 

flexural modulus and fractured at higher flexural stress than in four-point bending. In 

both tests, the curves had similar shape. 

 

3.7. SEM Analysis 

Representative SEM images were selected and are shown in Figures 7 and 8. The 

fracture-site morphology of all four matrix composition groups after different storages 

was similar. As Figure 8 shows, after fracture, for most specimens with varying matrix 

composition and storage, some resin matrix was still adhered to the fiber surface, 
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showing cohesive-interfacial mixed fracture type and relatively durable matrix-fiber 

adhesion. 

 

3.8. Comprehensive Analysis 

As is clear from Table 4, the control group showed superior mechanical performance 

in most of the tests carried out. 

 

 

4. Conclusions 

 Under the same storage conditions, the control group had the highest Vickers 

hardness while the ‘Exper 3’ group had the lowest hardness. The hardness range 

for experimental groups was 13.7-24.0 units. 

 Different storage conditions did not exhibit any statistically significant difference 

in the hardness values. However, for different resin matrix compositions, the 

hardness for the four groups was significantly different: ‘Control’ > ‘Exper 1’ = 

‘Exper 2’ > ‘Exper 3’. 

 The experimental specimens were relatively strong and stiff in three-point 

bending compared to previous research. In three-point bending, for experimental 

groups, the flexural strength range was from 605 ± 44 MPa to 408 ± 56 MPa, and 

modulus range was from 16.2 ± 0.5 GPa to 21.5 ± 2.7 GPa. 

 In three-point bending, there was no statistically significant difference in flexural 

strengths with different storage conditions. However, for different resin matrix 

composition groups, the strengths were significantly different: ‘Control’ > ‘Exper 

1’ = ‘Exper 2’ > ‘Exper 3’. 

 In three-point bending, for different storage conditions, the flexural moduli were 
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significantly different and the order was: dry > 30 d = 60 d; while for different 

resin matrix composition groups, the modulus comparison was: ‘Control’ > 

‘Exper 1’ = ‘Exper 2’ = ‘Exper 3’. 

 In four-point bending, for experimental groups, the flexural strength range was 

from 314 ± 22 MPa to 415 ± 44 MPa, and the modulus range was from 22.6 ± 1.7 

GPa to 29.9 ± 3.6 GPa. 

 In four-point bending, the strength order for different storage conditions was: dry 

> 30 d = 60 d; while for different resin matrix composition groups, the strength 

order was: ‘Control’ > ‘Exper 1’ = ‘Exper 2’ = ‘Exper 3’. 

 In four-point bending, under different storage conditions, the modulus order was: 

dry > 30 d = 60 d. There was no statistically significant difference in flexural 

modulus for different resin matrix composition groups. 

 The same specimens in three-point bending had a lower flexural modulus and 

fractured at higher flexural stress than in four-point bending. The differences 

were statistically significant.  

 According to the SEM micrographs, after fracture, some resin matrix was still 

adhered to the fiber surface, showing cohesive-interfacial mixed fracture type and 

relatively durable matrix-fiber adhesion. 

 

 

5. Summary 

As the comprehensive analysis shows, the control group showed superior mechanical 

performance in most of the tests. Thus, the hypothesis at the beginning was not 

validated and further research will be carried out to find the mechanically optimized 

UEDMA-TEGDMA-based resin matrix. 
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Figure 1.  Average weight of the specimens in each composition group with storage 
time in DI water at 37℃. 
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Figure 2. Flexural strength for the four groups with three storage conditions in 
three-point bending test. 
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Figure 3. Flexural modulus for the four groups with three storage conditions in 
three-point bending test. 
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Figure 4. Flexural strength for the four groups with three storage conditions in 
four-point bending test. 
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Figure 5. Flexural modulus for the four groups with three storage conditions in 
four-point bending test. 
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Figure 6. Representative stress-strain curves for three- and four-point bending tests 
with Exper 3 specimens after 60 d DI water storage at 37 ºC. 
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Figure 7. SEM image of the fractured surface of a test specimen in the group ‘Exper 
3’, tested after water storage in 30 days (the tension side; magnification 100×). 
 

 

 
Figure 8. SEM image of the fractured surface of a test specimen in the group ‘Exper 
1’, tested after water storage in 30 days (the tension side; magnification 500×). 
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Table 1. 
Materials used in this study. 
 

Material Purity Manufacturer Location Lot. No. 
bis-GMA AR Accu-Chem 

Industries Inc. 
Melrose Park, 
IL, USA 

23823 

MMA AR Accu-Chem 
Industries Inc. 

Melrose Park, 
IL, USA 

1122 

UEDMA > 90% Esstech Inc. Essington, PA, 
USA 

Product code: 
X-850-0000 

TEGDMA 95% Sigma-Aldrich St. Louis, MO, 
USA 

36296 HK 

CQ ≧ 99.0% Accu-Chem 
Industries Inc. 

Melrose Park, 
IL, USA 

A0077555 

CEMA ≧ 98.5% Accu-Chem 
Industries Inc. 

Melrose Park, 
IL, USA 

T20100224 
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Table 2.   
Matrix composition (in wt%) for the control and experimental groups. 
 

     Component 
Bis-GMA MMA UEDMA TEGDMA CQ CEMA 

Control 78.4 19.6 0 0 1.0 1.0 

Exper 1 0 0 78.4 19.6 1.0 1.0 

Exper 2 0 0 49.0 49.0 1.0 1.0 

Exper 3 0 0 19.6 78.4 1.0 1.0 

Key: ‘Exper 1’ = Experimental group 1; 
 ‘Exper 2’ = Experimental group 2; 
 ‘Exper 3’ = Experimental group 3. 

 
 

 

 

 

 

 

Table 3. 
Vicker’s hardness for the four groups with three different storage  
conditions. 

 

 Contro
l 

Exper 1 Exper 2 Exper 3 

Dry 
31.99 ± 

6.85 
22.44 ± 

3.12 
24.025± 

8.35 
16.42 ± 

1.69 

30 d 
31.04 ± 

7.63 
17.37 ± 

2.54 
18.74 ± 

4.20 
13.89 ± 

0.79 

60 d 
33.802 
± 6.48 

21.28 ± 
3.10 

17.89 ± 
1.52 

13.73 ± 
1.22 

 

 

 

 

 

 

 

Group 

Group 
Storage 
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Table 4. The composition groups with the best mechanical performance for each 
storage subgroup 7 and 8 now: 
 
 
Mechanical 
property 

Vickers 
hardness 

Flexural 
strength in 
3-point 
bending test 

Flexural 
modulus in 
3-point 
bending test 

Flexural 
strength in 
4-point 
bending test 

Flexural 
modulus in 
4-point 
bending test 

Group with 
the highest 
value for 
each 
storage 
subgroup 

Control for 
every 
storage 
subgroup 

E2 for 30 d; 
Control for  
60 d 

E3 for 30 d; 
Control for  
60 d 

Control for 
both 30 d 
and 60 d 
 

Control for 
30d; 
E1 for 60 d 

 

 

 
 
 
 
 
 


