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Abstract 
 

In this paper, we solve the problem of human detection in 

crowded scenes using a Bayesian 3D model based method. 

Human candidates are first nominated by a head detector 

and a foot detector, then optimization is performed to find 

the best configuration of the candidates and their 

corresponding shape models. The solution is obtained by 

decomposing the mutually related candidates into 

un-occluded ones and occluded ones in each iteration, and 

then performing model matching for the un-occluded 

candidates. To this end, in addition to some obvious clues, 

we also derive a graph that depicts the inter-object relation 

so that unreasonable decomposition is avoided. The merit 

of the proposed optimization procedure is that its 

computational cost is similar to the greedy optimization 

methods while its performance is comparable to the global 

optimization approaches. For model matching, it is 

performed by employing both prior knowledge and image 

likelihood, where the priors include the distribution of 

individual shape models and the restriction on the 

inter-object distance in real world, and image likelihood is 

provided by foreground extraction and the edge 

information. After the model matching, a validation and 

rejection strategy based on minimum description length is 

applied to confirm the candidates that have reliable 

matching results. The proposed method is tested on both the 

publicly available Caviar dataset and a challenging dataset 

constructed by ourselves. The experimental results 

demonstrate the effectiveness of our approach. 

1. Introduction 

Human detection is an important task in video 

surveillance. It is difficult because the human objects' 

appearance may vary due to many factors. This task 

becomes even more challenging in crowded scenarios 

where human objects overlap with each other and therefore 

partial occlusion exists prevalently.  

Many human detection methods can not deal with 

occlusion very well. e.g. the well known HOG based human 

detector [1]. Therefore, to detect human in more complex 

scenarios, substantial research works have been carried out. 

Most of these works use body part detectors to nominate 

human candidates and then perform an optimization process 

to select the best candidate subset as the final detection 

result. However, as the number of all the possible 

combinations of candidates is quite large, brute force search 

for the optimal configuration is impossible and efficient 

optimization method must be developed.  

[2-4] use greedy methods for optimization. These 

methods assume an occlusion order of the candidates and 

decide to reject or accept a candidate sequentially from the 

candidate that is nearest to the camera to the farthest one. In 

[2], responses of part and full body detectors based on 

edgelet features are combined to form a joint likelihood 

model of human. In [3], a hierarchical part-template 

matching is proposed to handle partial occlusions. However, 

as we know that template matching is not as discriminative 

as learning based detectors, the greedy optimization 

algorithm proposed in [3] may not be sufficient to give a 

satisfactory detection result. To improve the efficiency of 

template matching, [4] proposed to use contour integration, 

which is calculated from integral images constructed by 

oriented string scans. To increase the reliability of candidate 

nomination, a shape context (SC) based human detector is 

also proposed. Combing the two detectors, the final 

configuration is obtained in a greedy manner.  

To alleviate the demanding work required by high quality 

candidate nomination, global optimization methods are 

developed. [5] proposed to use 3D human shape models for 

crowd segmentation and MCMC is applied to search the 

solution space. Later work [6] is similar to [5] in the 

optimization process, except that camera calibration is 

estimated from the data and the shape models are learned 

from the data as well. [7] proposed to use EM to assign 

image features to human candidates, in which certainty is 

propagated from regions of low ambiguity to those of high 

ambiguity. Akin to [7], image patches are assigned to 

candidates using EM in [8]. The difference is that occlusion 

reasoning is explicitly performed in the M-step in [8] 

whereas [7] does not.  

This paper proposes a Bayesian 3D model based 

approach that, given the foreground and camera parameters, 

segments the crowd into individuals. 3D model based 

approach has the advantage that it is view invariant method 

and it does not need, as the 2D template based method [9], 

to collect the large number of exemplar images to cover the 

shape space. We make use of the prior to model the 
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distribution of an individual human object's shape, restrict 

inter-pedestrian overlap and require the configuration of 

pedestrians' locations be consist with the real world. Image 

likelihood is used to measure how well the detections are 

consistent with the foreground mask and the image's edge 

information. A model hierarchy is built to perform efficient 

model matching. Minimum description length (MDL) is 

applied to reject false candidates. When performing 

occlusion reasoning, the method is based on the following 

argument: generally, within a local neighborhood, true 

human objects have higher model matching scores than 

false ones and un-occluded human objects have higher 

model matching score than occluded ones.  

The main contribution of the proposed method is a 

candidate optimization procedure which balances between 

the greedy optimization method and global optimization 

method. By depicting the relationship among the multiple 

candidates using a directed graph, candidate validation and 

rejection are executed in an ordered and efficient manner. In 

each iteration, a group of candidates are selected for model 

matching, which, by considering candidates that are 

mutually dependent, can avoid the incorrect decisions that 

might be made by considering only one candidate at a time 

[2-4]. On the other hand, as only a small portion of the 

candidates are considered, the computational cost is much 

lower than those methods which consider all the candidates 

at the same time [5-8]. 

The rest of this paper is organized as follows: Section 2 

provides a theoretical formulation of the proposed method. 

In section 3, we introduce the implementation details of the 

method. In section 4, we demonstrate the performance of 

the system with experimental results on two datasets. 

Finally, we conclude the paper in section 5. 

2. Problem formulation 

Our goal is to find the optimal configuration of human 

objects, given a set of candidates, where occlusion may 

exist. We formulate it as a maximum a posterior (MAP) 

problem such that the optimal solution θ* is given by 

( *) argmax ( | ) argmax ( ) ( | )P I P P I
θ θ

θ θ θ θ= = ,        (1) 

where θ consists of the number of human objects n and their 

corresponding models (mi, i=1,…,n); I is the image 

observation. To define the prior P(θ) and the likelihood 

P(I|θ), we have to first define the 3D human shape model. 

2.1. The 3D Human Shape Model 

The 3D human shape model we propose consists of seven 

parts – the head (modeled by an ellipsoid), the shoulder 

(modeled by the upper half an ellipsoid), the torso (modeled 

by a cylinder), the left/right thigh and the left/right calf 

(each modeled by a cylinder) – as is shown in Figure 1. The 

dimension of the prototype model is of the average size of 

50% man and 50% women presented in [10] and it is scaled 

linearly to generate models of different heights. To restrict 

the search space, ten typical leg configurations of a walking 

cycle are selected for model matching according to the 

normal walking patterns of human beings [11]. The ten 

configurations correspond to the five typical walking 

postures shown in Figure 1 and the number is doubled by 

differentiating left and right legs. To further consider 

different walking speed of human beings, the average hip 

and knee rotation degrees for different postures are also 

increased and decreased 25% respectively, by assuming 

local linearity in the model shape space. Therefore, the 

model has totally 30 postures.  

In addition, the model is allowed to have 12 orientations 

(0°, ±30°, ±60°, ±90°, ±120°, ±150° and 180°, with 0° 

corresponds to human facing the camera) and four scales 

(corresponding to the height of 1.55m, 1.65m, 1.75m and 

1.85m respectively). The head torso deviation is defined in 

the image space and the discretization step is set to be max(2, 

[Whead/6]), where Whead is the width of the head on the 

image.  

          
Figure 1. Illustration of various postures of the 3D human models 

2.2. The Prior Distribution 

We assume that the prior of a solution is the product of the 

prior probabilities of each individual human object and is 

defined as 

 
1

( ) ( ) ( | ) ( ) ( )
n

penal i pos i i dev i height ii
P P m P m m P m P mθ

−=
=∏ ,   (2) 

where mi is the shape model. The first term Ppenal(mi) gives 

each model mi in θ a penalization according to their real 

world position, which in fact control the allowed 

overlapping between models and hence avoiding n to be 

unreasonably large. Ppos(mi|m-i) is the prior probability of 

the i
th
 human object’s position relative to the others 

(denoted as –i). It represents our prior knowledge that two 

persons must keep a certain distance away from each other 

in the real world. Pdev(mi)  and Pheight(mi) are about the shape 

model itself. Pdev(mi) limits the head's deviation from the 

torso. This is used to describe our common sense that 

human head, when walking, tends to lean forward, but not 

always leans left or right and seldom lean backward. We 

allow the deviation but penalize the unlikely situations as 

they may mislead the model matching. The prior about the 

model height Pheight(mi) is used to penalize very short or very 

tall heights. It is defined as a bell distribution such that 

Pheight(mi) for the model height of 1.5 m or 1.9 m is 0.95 and 

for 1.7 m is 1. 
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2.3. Image Likelihood 

Assuming the pixels are independent, the image 

likelihood of a solution θ is defined as 

( | ) ( | ) exp( (1 ( ))
f

f

p I
p I

P I P p SL p
θ

θ θ
∈

∈

= = − −∑∏ ,         (3) 

where If is the foreground mask, SLθ(p) is the shape 

likelihood of matching the un-occluded part of the boundary 

of mi with the foreground edge, if p belongs to the 

un-occluded part of mi; otherwise SLθ (p) = 0, meaning that 

pixel p is not inside any human object models of θ. 

3. Implementation 

Given a video sequence, firstly, we obtain the camera 

parameters and perform 2D shape model clustering. Then, 

for each frame of the input video, we extract the foreground 

by the multiple adaptive thresholds method [12] where most 

of the shadows can be effectively removed. After that, an 

upper semi circle detector is used to give an exhaustive 

nomination of head candidates and the lower extrema 

detection on the mask boundary is performed to nominate 

foot candidates. To find the optimal configuration of the 

candidates, by analyzing the mask and the relationship 

among candidates, in each iteration of the optimization, 

only a group of the possible un-occluded candidates are 

selected for model matching, and the results are fed into a 

MDL based validation and rejection procedure. The 

iteration is repeated until all the candidates have been 

examined. Figure 2 gives an overview of the 

implementation and the following subsections explain the 

details. 

3.1. Candidate nomination 

From our observation, the most reliable feature of a 

human is the head. Therefore, we use an upper semi circle 

detector to nominate the head candidates (HCs). The 

applied method [13] is a Hough-like circle detector, in 

which each boundary element spreads its vote, modulated 

by the edge magnitude, into (xc, yc, r) that represents the 

circle’s center and radius. The directional filter we use is 

probability of boundary (pb) [14], which effectively 

removes the edge response of textures and thus reduces the 

number of false positive detection. The scale set of the 

circle detection is determined by the actual size of human 

heads and the camera parameters. 

We also detect lower extrema (LE) on the mask boundary 

as foot candidates (FCs). The complementary characteristic 

of HCs and FCs is depicted in Figure 3. The combination of 

HCs and FCs forms the candidates set Ctotal. 

 
Figure 3. Illustration of the head candidates (red circles) and the 

foot candidates (green dots).  

3.2. Candidates selection for model matching 

Candidates selection is critical for the efficiency of the 

system: if more than enough candidates are selected and 

model fitted, accuracy can be guaranteed while efficiency 

may be sacrificed; on the other hand, if less than enough 

candidates are selected, accuracy may decrease. Because 

the candidates are mutually dependent on each other, in 

order to properly select the candidates for model matching, 

we describe candidates' occlusion relationship using a 

directed graph G, on which candidates selection will rely. 

To this end, for each HC, we draw its bounding polygon (BP) 

according to the head top position, assuming the HC has the 

same height as its BP. A candidate's BP is a polygon that 

approximately defines the maximum extents of a human 

model. Our BP is composed of three parts: head (rectangle, 

0.3 m*0.2 m), torso (rectangle, 0.6 m*0.6 m) and lower 

body (trapezium, upper bottom: 0.6 m, lower bottom: 1.0 m, 

height: 1.2 m). The combination of the head and torso is 

called the upper body. For any two HCs A and B, we check 

their BPs: if they are not intersected or only their lower body 

parts intersect (Figure 4(a)), i.e. the intersection is not 

Figure 2. Implementation overview 
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significant, they are not related; otherwise, if the upper body 

of A's BP intersects with B’s BP and A's head top is either 

inside B or lower than B's torso top (Figure 4(b)), then B is 

occluded by A and we represent this relation in G using an 

arrow starts from A and ends at B, i.e. if A is not matched, 

then B is not eligible for matching; otherwise, if A and B's 

torsos intersect and their vertical distance of the head top is 

smaller than the height of a normal head (Figure 4(c)), both 

could be occluding the other, A and B must be matched 

simultaneously, i.e. if A is matched while B is not, B must be 

matched at the same time (in G there is a bidirectional arrow 

between A and B).  

    
(a)                       (b)                          (c) 

Figure 4. Illustration of candidates' relationship: (a) insignificant 

overlapping; (b) significant overlapping and significant height 

difference, the lower one is the higher one's preceding HC; (c) 

significant overlapping with similar height, the two candidates are 

required to match simultaneously. 

 

For FCs, because an LE may either correspond to a true 

foot or just be caused by fragmented foreground, we have to 

identify which case the LE corresponds to. To achieve this, 

we define the HCs that are intersected with an FC's best fit 

model as the FC's related HCs, and use a dotted directional 

edge starts from an HC to an FC in G to represent this 

relationship. The meaning of the dotted directional edge is: 

once an HC related to an FC are matched, the FC and all its 

related HC should also be matched, ensuring that the 

subsequent candidate validation and rejection have enough 

evidence to make correct decisions. Figure 5 gives an 

illustration of the graph G. 

After defining the graph G, we describe how to select 

candidates for matching in each iteration. If the bottom line 

of an HC's BP does not intersect with any foreground pixels, 

it is possible that the human object correspond to this 

candidate is un-occluded and we call this kind of candidates 

un-occluded candidates. All FCs are also taken as 

un-occluded candidates. In the first iteration, the candidate 

that is the nearest to the camera and meanwhile un-occluded 

is selected and model fitted. Then all the other un-occluded 

candidates whose BPs are intersected with the matched 

candidates' models are also selected and model fitted. The 

selection repeats until there are no more candidates 

satisfying the requirement. 

In the following iterations, the candidates intersected 

with the validated models and with all their occluding 

candidates in G having been matched are selected for 

matching. For any un-matched un-occluded candidate, if 

there is one matched model whose distance to the camera is 

larger than its distance to the camera, this un-occluded 

candidate is selected for matching. (For an HC, its distance 

to the camera is unknown. Fortunately, for an un-occluded 

HC, it is reasonable to take the lowest pixel of its BP's 

intersection with the If as the position of the HC.) The 

candidates which are required to match simultaneously in G 

are also selected if one of them has been matched. After 

model matching, new candidates that satisfy the above 

criteria are selected. The selection ends when there are no 

more candidates satisfying the requirement. In case that no 

candidates are selected in an iteration and there are still 

unmatched candidates, the candidate with the smallest 

distance to the camera is selected. 

3.3. Hierarchical model matching 

Given a selected candidate ci, if it is an HC, the head 

position is fixed and if it is an FC, however, as the leg 

postures vary a lot, the FC's position may not correspond to 

the exact position of the human object and we search in the 

vicinity of the FC to find the most proper position. The 

matching of the model with the image is measured by both 

the model’s region coverage with the remained mask Irem 

(obtained by subtracting the regions occupied by the 

validated models Iocc from If) and the model boundary’s 

matching with the pb map of the foreground. Thus, the 

likelihood L(Mj) is the product of the region likelihood 

RL(Mj) and the shape likelihood SL (Mj) 

( ) ( ) ( )
j j j

L M RL M SL M= .                        (4) 

The region likelihood RL(Mj) is defined as 

( ) [ ( ) ( (1 ))]j j rem j fLR M c area M I w area M I= − ⋅ −I I ,  (5) 

------- HC 

 

------- FC 

 
a 

b c 

A 

B 

C 

D  E 

F 
G H 

I 

Figure 5. An illustration of the graph G depicting candidates' 

relationship. 
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where c is a constant to ensure RL is smaller than 1; inside 

the brackets of (5), the minuend encourages larger area to be 

explained by the model while the subtrahend penalizes the 

model regions falling out of I; w, ranging from 0 to 1, is the 

penalty parameter that depends on the quality of the 

foreground mask: the larger the false negative rate of the 

foreground extraction is, the smaller w is, meaning that the 

region information is less reliable. 

The shape likelihood SL (Mj) is defined as 

     
,

,

1
( ) ( ) ( ) ( )

jj rem
j pb Mbk Mb

j rem

SL M pb k k k
Mb ∈

= < ⋅ >∑ O O ,  

      
, (1 )j rem j occMb Mb I= −I ,                                                    (6) 

where Mbj is the boundary image of model Mj, | ⋅ | denotes 
the number of non-zero pixels of the image, and O 

represents the orientation vector of the boundary point. 

SL(Mj) is the average pb value of the un-occluded part of the 

model boundary weighted by the consistency between the 

orientation of the pb and the model boundary.  

Then, according to (1)-(4), given the already validated 

candidates Cval, the matching posterior of a model Mj can be 

calculated as 

( | ) ( ) ( | ) ( ) ( )j val penal j pos j val dev j height jP M C P M P M C P M P M=  

                                    exp( ( ) ( ))j jRL M SL M− .                 (7) 

and the best fit model of the candidate is defined as 

argmax ( | )
j

j val
M

m P M C=                             (8) 

To efficiently search a best fit model m for a candidate,  

we refer to [9, 15] to establish a model hierarchy for models 

of the same scale and with no head torso deviation. We 
divide the projected model shapes into seven groups 

according to their orientations: {0°,180°}, {30°, 150°}, 

{60°, 120°},{90°}, ,{-60°, -120°}, {-30°, -150°} and 

{-90°}. Then for each group, we construct a model shape 

hierarchy based on the shape dissimilarities, measured by 

chamfer distance between 2D model boundaries, using a 

agglomerative clustering method. The highest level of each 

hierarchy consists of two nodes. The seven hierarchies 

constitute the final model shape hierarchical tree with the 

root being empty. 

When matching the highest level of hierarchical tree, all 

the possible scales and head torso deviations are traversed 

and the best matched scale and head torso deviation are 

adhered to that model and only the adjacent scales and 

deviations are searched in the matching of next level models. 

As in [15], at each level, the maximum matching posterior 

Pmax and the minimum posterior Pmin are computed and a 

threshold is selected as 

( )min max minP P c P Pτ τ= + − ,                       (9) 

to discard the nodes that are not good enough. In our 

experiment, after balancing the model matching accuracy 

and computational cost, we set cτ to be 0.3. 

Because the prior terms Pheight(m) and Pdev(m) also 

evaluates the quality of a shape model, from here on, model 

matching score Sm refers to  

( )  ( ) log( ( ) ( ))
m height dev

S m SL m P m P m= + .            (10) 

3.4. Candidate validation and rejection 

The candidate that has good model matching quality 

(high matching score), indicating that the candidate is 

unlikely to be a spurious candidate, and the candidate that is 

nearer to the camera, indicating that the candidate is 

unlikely to be occluded, are preferred to be validated. We 

first reject the candidates that have unsatisfactory model 

matching quality or the candidates whose corresponding 

area can be better explained by other candidates, and then 

confirm the candidate that is less likely to be occluded by 

any other candidates.  

a) Consider single candidate’s model matching quality 

For each candidate ci that is matched in Section 3.3, if the 

model matching score Sm(mi) is smaller than a threshold ST, 

or adding mi into θ cannot increase the posterior P(θ | I), ci is 

rejected. 

b) Consider other candidates’ model matching quality 

For each remaining candidate ci and the corresponding 

model mi, the MDL principle is applied to evaluate if it 

should be rejected or not. The evaluation is in terms of the 

savings that can be obtained by rejecting ci as followed: 

,

,

,

,0

( )(1 ( ))

max (1 max( ( , ), ( , )))

1 ( )

( )

i rem

i i i i

i i rem m i

i m j m kp mj k i

i occ
i i

i

Sav SE SE SM

SE area m S m

SE S m p S m p

area m I
SM SM

area m

−

− ∈≠

= − +

= −

= −

−
= ⋅

∑

I

,  (11) 

where mi,rem is mi’s intersection with Irem, SEi is the error 

introduced by using mi to explain mi,rem, SE-i is the error 

introduced by combining other candidate models matched 

in the current iteration to explain mi,rem. We limit the number 

of candidates for combination to be at most two because a 

false positive candidate can come from at most two real 

human objects. Sm(mj, p) = Sm(mj) if p∈  mj and Sm(mj, p) = 0 

otherwise. SMi is the cost of the model after considering the 

portion that is occluded and SMi,0 is the original cost of the 

model. If Savi is positive, ci is rejected. 
After rejecting the candidates that are not good enough, 

we examine which candidates should be validated. We 

perform the validation by exclusion, i.e. excluding the 

candidates that should not be validated and then validating 

the remaining ones. For any pair of intersected models, 

because they cannot be un-occluded at the same time, we 

select the one that should not be validated according to the 

following rules: 

1). If their distance to each other is smaller than dmin (the 

minimum permissible distance for two human objects), or 

their overlapping area is larger than 90% of the area of the 

561



 

 

smaller model, or they are of left-right relation, any one 

could be un-occluded. Therefore, we compare their 

posterior first, if one's posterior is significantly larger than 

the other (the parameter that indicates "significantly larger" 

is learned through experiments and is fixed at 1.35 for all 

the tested images), the one with lower posterior is not 

validated; otherwise, we compare their shape matching 

score calculated by (10) and the one with lower score is not 

validated. 

2). Otherwise, the one that is nearer to the camera should 

be un-occluded and the one that is farther away from the 

camera is not validated. 

After the validation, the validated candidates are then 

added to θ, and their covered regions are deleted from Irem 

and added to the occupancy map Iocc. The whole 

optimization procedure is summarized as followed. 

 

Algorithm: optimization algorithm 

Given the candidate nomination Ctotal and the foreground 

mask If, 

initialize θ = Ø, Iocc as empty (black image), Irem = If, the 

validated candidates set Cval = Ø, the rejected candidates 

set Crej = Ø, and the posterior as P(θ | I) = exp(-area(If)). 

Build the candidates' relation graph G. 

while Cval U  Crej ≠Ctotal  

1. Select the possible currently un-occluded candidates. 

(3.2) 

2. For each selected candidate, perform hierarchical model 

matching. (3.3) 

3. Reject and validate these matched candidates and 

update Crej, Cval, θ, Irem, and Iocc. (3.4) 

end 

return θ. 

4. Experimental result 

We evaluate the proposed method using two datasets: the 

first one is the Caviar benchmark dataset [16] and the 

second one is an outdoor scene video taken in our campus. 

Foreground of the Caviar dataset is more fragmented than 

the video taken by us and hence less reliable. Therefore, the 

parameter w in (5) is set to be 0 for the Caviar data and 0.8 

for our campus video; all the other parameters are set the 

same. 

The evaluation is based on the following criteria: a) a 

correct detection is a detection DT that has a one-to-one 

correspondence GT in the ground truth human objects and 

satisfying 

area( )
Overlap( , )= 0.5

area( )

GT DT
GT DT

GT DT
>

I

U

,            (12) 

and b) human objects having less than 50% of the bodies 

inside the images are not evaluated; c) sitting and scene 

occluded (more than 20% occluded) human objects are not 

evaluated; d) human objects staying in the scene for a 

relatively long time without significant movements are not 

evaluated and considered as scene objects.  

4.1. Detection results on the Caviar dataset 

We evaluated the proposed method on the sequence 

OneStopMoveEnter1Cor (1590 frames with image 

resolution being 384 × 288) of the Caviar dataset. To 
compare the proposed method with previous works [3], in 

which evaluation is done for 200 selected frames of this 

sequence, and [4], in which evaluation is done for frames 

800-1000, we also evaluated our method for frames 

800-1000. The ROC curves for different methods are 

plotted in Figure 6. As can be seen from the ROC curves, the 

proposed method has a detection rate around 99% with 

tolerable number of false alarms. Figure 7 illustrates some 

detection results. 
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Beleznai et al. (200 fames with 1800 humans)

proposed (201 frames with 1809 humans)

 
Figure 6. ROC curves of evaluation on a subset of the Caviar 

dataset. 

 

  
Figure 7. Illustration of  detection results on Caviar dataset. 

4.2. Detection results on campus dataset 

The campus dataset consists of 50 minutes of video taken 

at 25 f/s and a resolution of 1280×720. The view is deep 
and wide, resulting in substantial scale changes (with the 

width of a normal human object ranging from 10 pixels to 

70 pixels). In addition, on the right hand side of the scene, 

the illumination is weak and the background is dark.  

Due to the large number of frames, we sub-sampled the 

frames to 2.5 f/s, obtaining 7500 frames, on which the 

proposed method was tested. However, 7500 frames still 

represent a sizeable evaluation task. As such, we manually 

selected 500 frames (containing 7116 humans) where 

occlusion occurs frequently and the number of humans is 

relatively large. Figure 8 illustrates some detection results. 

The detection rate achieved is 90.9% when the false 
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positive rate is 1.53%. Among the errors, missed detections 

mainly come from low foreground/background contrast and 

low resolution, whereas false alarms usually appear in 

texture rich regions.  

 

 

 
Figure 8. Illustration of  detection results on the campus dataset. 

4.3. Computational cost analysis 

By randomly selecting 2263 candidates and counting the 

number of times they are selected for matching during the 

optimization process, we obtained the result as shown in 

TABLE I. It can be seen that 62.1% of the candidates are 

just visited for once and more than 87% of the candidates 

are visited no more than twice. The average visited times is 

1.57 for these candidates. This result demonstrates that our 

method does not cost much more than those greedy methods 

in which each candidate is visited for only once. 

 
TABLE I. NUMBER OF TIMES VISITED FOR 2263 CANDIDATES 

5.  Conclusion 

A Bayesian approach for human detection in crowd 

scenarios has been proposed in this paper. Foreground and 

edges are used to provide image evidence for the inference. 

Knowledge priors about human shape distribution and 

inter-human minimum distance limitation are enforced 

during the model matching process. The solution is obtained 

in a way that balances the computational cost and the 

performance. Results on various data show the effectiveness 

of the proposed method. 

To improve the performance, the most important future 

work is to combine the detection results across consecutive 

frames, which can resolve the ambiguities of a single frame, 

to obtain a more reliable detection performance. 
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