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Abstract—Foreground segmentation has been widely used
in many computer vision applications. However, most of the
existing methods rely on a pre-learned motion or background
model, which will increase the burden of users. In this paper,
we present an automatic algorithm without pre-learning for
segmenting foreground from background based on the fusion
of motion, color and contrast information. Motion information
is enhanced by a novel method called support edges diffusion
(SED) , which is built upon a key observation that edges of
the difference image of two adjacent frames only appear in
moving regions in most of the cases. Contrasts in background
are attenuated while those in foreground are enhanced using
gradient of the previous frame and that of the temporal
difference. Experiments on many video sequences demonstrate
the effectiveness and accuracy of the proposed algorithm. The
segmentation results are comparable to those obtained by
other state-of-the-art methods that depend on a pre-learned
background or a stereo setup.

Keywords-foreground segmentation; contrast attenuation;
graph cut;

I. INTRODUCTION

Foreground segmentation plays a key role in a wide vari-

ety of computer vision applications, including video surveil-

lance [1], teleconferencing and live background substitution

[2]. Although existing methods show that foreground can be

extracted successfully from stereo or based on a pre-learned

background (i.e., a known background model, or a back-

ground model learned from a video without foreground at

the beginning) or motion model, they are not so applicable to

general situations due to their complex settings or unfriendly

initializations. This paper aims at segmenting foreground

from monocular videos accurately and efficiently without

learning background and/or motion models in advance.

Accurate foreground segmentation without pre-learning is

a very challenging problem. It often encounters the following

difficulties: (1) textureless or slowly-moving foreground

regions may incorrectly be labeled as background (false

negatives); (2) occluded background may be misclassified

as foreground when it becomes unoccluded (false alarms);

(3) changing illuminations, which are common in general

application scenarios, often pollute the motion information.

Most of the existing methods employ background sub-

traction or optical flow to detect motion, and introduce

Figure 1. An example of automatic foreground segmentation.

global optimization techniques to obtain a final segmentation

[3], [4]. However, they often have difficulties in removing

segmentation artifacts.

In this paper, we propose a paradigm to segment fore-

ground accurately and efficiently from monocular videos

without pre-learning. Figure 1 shows an example of our

approach, where the top row illustrates three frames of

one input sequence and the bottom row their corresponding

foreground and substituted background. Motion and color

information are fused to compute a foreground likelihood,

which is used with contrast information together to segment

the foreground. For each frame of a video, temporal dif-

ference between the current frame and the previous frame

is evaluated as a motion cue. To enhance the motion cue

in textureless or slowly moving regions of foreground, a

novel method, named support edges diffusion (SED), is

proposed based on a key observation that edges of the

temporal difference mostly only appear in moving regions.

Histogram of color chromaticity (HCC), which is robust

to illumination changes, is used to represent background

and foreground models. Motion and color information are

combined to obtain an initial foreground likelihood which is

refined by a robust foreground rejection scheme based on an

incomplete background model learned online. Contrast map

is estimated by Canny edge detector and then attenuated

based on gradient of the previous frame and that of the

temporal difference. Although the proposed foreground seg-

mentation approach simplifies the required setup and does

not require learning a background or motion model at the

beginning, the segmentation results are comparable to those
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obtained by other state-of-the-art methods that depend on a

pre-learned background or a stereo setup.

II. RELATED WORK

Foreground segmentation from videos has long been an

active area of research [5]. Conventional approaches for this

problem can be roughly classified into two categories based

on the criterion whether they need pre-learned models or

not.

Approaches with pre-learning. In the compelling work
of Criminisi et al. [6], an efficient motion vs non-motion
classifier is trained whose output is then fused with color

information. Their algorithm is capable of real-time seg-

mentation of foreground from background in monocular

videos. Nevertheless, the classifier needs manually labeled

ground truth for training which is not so suitable to general

applications. The work of Yin et al. [7] requires depth-
defined layer labels to train a tree-based classifier. Sun et
al. [8] proposed “background cut”, which achieved a high
quality foreground extraction using a single web camera.

They combined color and contrast cues with a background

model to extract the foreground layer. The task is simplified

by learning a background model without foreground at the

beginning, which limits the potential application scenarios.

For instance, users are often sitting in front of the web

camera when they start the video conference application,

and it is not possible to learn the background from the video

which already contains foreground objects at the beginning.

Approaches without pre-learning. This line of research
exploits change detection in video sequences. Chien et al.
[9] used an accumulated frame difference information to

construct a reliable background image and then separated

foreground from background region. They elaborated an

artifacts removing mechanism which might also degrades

segmentation of foreground. Barron et al. [10] proposed
a motion-based segmentation by estimating optical flow.

However, accurate estimation of optical flow is computa-

tionally expensive. The most common approach involves

“background subtraction”. Numerous background subtrac-

tion methods, which differ in terms of the background

models and rules employed to update the background, were

proposed to detect moving foreground [11], [12], [13].

However, background subtraction always generates holes

and false alarms, and therefore they are only used as

inputs to further high level processes. Postprocessing ( such

as morphological operations) may attenuate holes or false

alarms to a certain extent but tends to lose fidelity near

borders of the foreground.

The interesting work of Kolmogorov et al. [2] fused color,
contrast, and stereo matching information to accurately

infer foreground from stereo video sequences. However, as

pointed out in [8], this approach has trouble in handling

the common situation where only a single web camera is

available.

In summary, most of the existing methods with pre-

learning can segment foreground accurately and efficiently,

while those without learning in advance might not be as

accurate or efficient as the former or need complex setups.

In this paper, we propose an automatic algorithm without

pre-learning to segment foreground accurately and efficiently

from monocular videos.

III. NOTATIONS AND ALGORITHM OVERVIEW

Consider an input sequence of images with sizem×n. An
image at time t is represented by It = {It(s)|1 ≤ s ≤ mn}.
The temporal difference image computed by |It(s)−It−1(s)|
is denoted by ΔIt = {ΔIt(s)|1 ≤ s ≤ mn}. For each
frame, let V and N be the set of all pixels and all adjacent

pixel pairs (4 neighbors), respectively. For the tth frame

of a video, Mt denotes the background model, which is

learned online. Pm
t and P c

t are foreground likelihood based

on motion information and color information at time t,
respectively. P̂t is foreground likelihood which is used to

segment frame t. Ĉt denotes contrast map of frame at time

t. F̂t denotes the segmented foreground of frame at time t.

Our algorithm can be summarized as follows: temporal

difference ΔIt of two adjacent frames is computed and then
is mapped to an initial motion likelihood which is enhanced

by SED, resulting in foreground likelihood based on motion

Pm
t ; foreground likelihood based on color P c

t is computed

according to foreground and background color distribution

which are represented by HCC; combining P c
t and Pm

t

together with a foreground rejection scheme based on per-

pixel background model Mt, we get foreground likelihood

P̂t; contrast Ĉt is extracted by Canny edge detector and then

attenuated based on the previous frame and the temporal

difference image; segmentation is then achieved by binary

min-cut.

IV. FOREGROUND SEGMENTATION

Foreground segmentation can be cast as a binary labeling

problem, in which each pixel It(s) is assigned a label

X(s) ∈ {foreground(= 1), background(= 0)}. The label
variables X = {X(s)|1 ≤ s ≤ mn} can be obtained by

minimizing a cost function E(X) [14]:

E(X) =
∑
s∈V

D(X(s)) + λ
∑

(s,r)∈N

B(s, r)δ(X(s), X(r))

(1)

where δ(X(s), X(r)) = 1 if X(s) �= X(r) otherwise 0.
In (1), D(X(s)) is the data term which is the cost when

pixel s is labeled asX(s), and B(s, r) is regularization term,
which is the cost when the labels of adjacent pixels are

different. The coefficient λ (it is set to be 30 in our experi-
ments) specifies the relative importance of the data term and

the regularization term. Given foreground likelihood P̂t and
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contrast Ĉt, D(X(s)) is defined as follows:{
D(X(s) = 1) = 1− P̂t(s)

D(X(s) = 0) = P̂t(s)
(2)

and B(s, r) is given by:

B(s, r) = − Ĉt(s) + Ĉt(r)

2
(3)

B(s, r) encourages segmentation along black edges in the

negative image of Ĉt.

A. Motion Cue

Motion is an important cue in foreground segmentation.

Optical flow, which encodes motion information using a

dense planar vector field, is commonly employed in motion

segmentation [15], [16]. However, it tends to introduce

undesirable inaccuracies along boundary of objects and is

computationally expensive. In this paper, we use temporal

difference [17] to extract motion information.

Consider a pixel s at time t, the probability that s is
foreground is given by:

Pm
t
(s) = T (log(max{ΔIt(s), ν})/α) (4)

where ν is a small constant (we set it to 0.0001) that prevents
taking the log of zero and T (·) is a function with its value
falling in the range [0, 1]:

T (x) =

⎧⎨⎩
1 x > 1
0 x < 0
x otherwise

(5)

The parameter α in (4) is set to be a value in the range [2, 4].
Although temporal difference is very adaptive to varying

environments, such as illumination changes, it generally

does a poor job of extracting the entire relevant feature pixels

if the foreground object is textureless or moving slowly [18].

To avoid holes inside moving entities, we propose a new

method, called support edges diffusion (SED). It is based

on a key observation that support edges (defined as the

edges of the temporal difference extracted by Canny edge

detector) mostly only appear in moving regions (see figure 2

(d)). Therefore, the neighbor of support edges should be

foreground with a high probability.

We begin by detecting edges of the temporal difference

ΔIt, getting support edges Γ = {s|Ω(s) = 1, 1 ≤ s ≤ mn},
where Ω(s) is an indicator such that Ω(s) = 1 if pixel s lies
on an edge of the temporal difference or 0 if otherwise.

Each pixel s in the set of support edges is associated with a
support region Φ(s), which is usually defined as a circle with
center s and radius l (we set l = 31 in our experiments). Our
goal is to enhance the probability of pixels in the neighbor

of support edges being foreground. An additive probability

ΔPm
t
(s) is given by:

ΔPm
t
(s) = β |{r|r ∈ Γ ∧ s ∈ Φ(r)}| (6)

(a) (b) (c)

(d) (e) (f)

Figure 2. Temporal difference and support edges diffusion. (a) Current
frame. (b) Temporal difference computed for the frame in (a). (c) Pm

t
computed by (4). (d) Support edges of (b) extracted by Canny edge detector.
(e) Additive probability ΔPm

t
(s). (f) Motion likelihood computed by (7).

We can see that SED can fill holes in moving regions.

where | · | denotes the cardinality of a given set. β ∈ [0, 1]
is a ratio parameter. Obviously, the more pixels from Γ
with their support regions covering pixel s, the higher the
value of ΔPm

t
(s) is. Additive probability can be computed

efficiently using convolution with an average blur mask. The

probability Pm
t
(s) is modified to:

Pm
t
(s) = T (log(max{ΔIt(s), ν})/α+ΔPm

t
(s)) (7)

Figure 2 shows that support edges have a good ability

to distinguish between moving regions and static regions,

and SED can augment the foreground probability of pixels

in their support regions while keeping others unchanged. In

this way, it can decrease the difficulty caused by textureless

or slowly moving foreground to a great extent. Figure 3

compares results using temporal difference alone and tem-

poral difference with SED. Obviously, temporal difference

with SED outperforms temporal difference alone.

Motion cue of background pixels near the boundary of

foreground might also be strong in two ways: (1) large

temporal variance will be produced when the occluded

background pixels appear; (2) the motion of background

pixels near foreground boundary can also be enhanced by

SED. Nonetheless, a contrast term based on Canny edges

and a foreground rejection scheme based on historic reliable

color of background pixels, which we will discuss later, can

overcome these problems in most of the cases. Experiments

show that foreground can be accurately extracted even with

a cluttered background.

B. Color Cue

Color was modeled by Gaussian Mixture Models (GMM)

in [14], [2], [8]. In [8], the authors employed a GMM-

based global color model to describe the foreground, and

the background was then described by a linear combination

of a GMM-based global color model and a per-pixel color

model. Instead of GMM, Criminisi et al. [6] introduced two
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(a) (b) (c)

(d) (e) (f)

Figure 3. Comparison using temporal difference alone and temporal
difference with SED. (a), (b) and (c) are results using temporal difference
alone. (d), (e) and (f) are corresponding results using temporal difference
with SED.

3D look-up tables to represent the histograms of foreground

and background color, respectively, to avoid issues in the

initialization of expectation maximization used to learn

GMM.

To decrease the effect of illumination changes, we use two

2D look-up tables to represent the histograms of foreground

and background color chromaticity. For each pixel s with
three color variables, R, G, and B, color chromaticity

coordinates r̂ = R/(R+G+B) and ĝ = G/(R+G+B)
are computed [19]. Using histogram of color chromaticity

has the advantage of being more insensitive to illumination

changes and decreasing the number of dimensions of his-

togram from 3 to 2, which is good for statistics of small

samples.

At time t ≥ 1 (t begins from 0), we have a foreground

color distribution Ft(r̂, ĝ) and a background color distri-

bution Bt(r̂, ĝ) . They are learned online according to the
previous segmentation. For a particular pixel s with color

chromaticity (r̂, ĝ), its probability being foreground based

on its color can be given by:

P c
t (s) =

Ft(r̂, ĝ)

Ft(r̂, ĝ) +Bt(r̂, ĝ) + ε
(8)

where ε is a small constant ( we set it to 0.0001) that prevents
division by zero. If both Ft(r̂, ĝ) and Bt(r̂, ĝ) are smaller
than 0.001, then we set P c

t (s) = 0.5. After segmentation
of each frame, we compute foreground and background

color chromaticity distribution Df
t (r̂, ĝ) and D

b
t (r̂, ĝ) of

this frame, respectively. Foreground and background color

chromaticity distributions of the video are then updated as

follows:{
Ft+1(r̂, ĝ) = (1− ρf )Ft(r̂, ĝ) + ρfD

f
t
(r̂, ĝ)

Bt+1(r̂, ĝ) = (1− ρb)Bt(r̂, ĝ) + ρbD
b
t
(r̂, ĝ)

(9)

where ρf and ρb (we set them to 0.1) are learning rate for

foreground and background respectively.

After computing P c
t (s), the probability of pixel s being

foreground can be given by:

Pt(s) = γP
m
t (s) + (1− γ)P c

t (s) (10)

where γ (γ ∈ (0, 1)) is introduced to balance the weights of
Pm

t (s) and P
c
t (s).

C. Foreground Rejection Scheme

Different from [8] where each background pixel is rep-

resented by a single isotopic color model. We do not fuse

per-pixel color model into the probability in (10) because

some regions of background can never be learned if they

are always covered by the foreground.

A robust foreground rejection scheme is proposed to

remove false alarms based on incomplete per-pixel color

models learned online, which form an incomplete back-

ground imageMt. To avoid accumulated error, we propose a

novel scheme to evaluate the reliability of learned per-pixel

background models.

Background imageMt at time t is updated after segment-
ing It, as following:

Mt+1(s) =

{
(1− ϕ)Mt + ϕIt(s) s /∈ F̂t

Mt(s) s ∈ F̂t

(11)

where ϕ (we set it to 0.5) is a learning rate.

The estimated background image can be used directly

to compute the probability of each pixel of the current

frame being a foreground. However, this would lead to

accumulated error since the background image learned is not

reliable. To address this problem, each pixel s is associated
with a counter Ψ(s) initialized to zero. The counter increases
by one if s is classified as background in each frame and
resets to zero otherwise. For the current frame, we compute

a difference image G(s) = |Mt − It(s)|. Based on this

difference image and the counters, we can refine foreground

likelihood computed by (10) as follows:

P̂t(s) =

{
ηPt(s) Ψ(s) ≥ τ ∧G(s) < ω
Pt(s) otherwise

(12)

where τ is a threshold (τ is set to 3). Ψ(s) ≥ τ indicates
the background model of s is reliable. G(s) < ω (ω = 10 in
our experiments) denotes s fits its corresponding background
model well. η is a decay parameter (it is set to be 0.5).
The intuition behind the foreground rejection scheme is

that if a particular pixel s is labeled as background in last τ
frames, the background model of s is reliable. Pixel s has a
high probability to be background if it fits its own reliable

background model well. Figure 4 illustrates the foreground

rejection scheme.

D. Contrast Generation and Attenuation

B(s, r) in the energy function is employed to encourage
adjacent pixels being assigned with the same labels. [2], [8]

defined B(s, r) ∝ exp(−|It(r)− It(s)|) where (s, r) ∈ N .
Such a penalty term does not consider the consistence of
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(a) (b) (c)

(d) (e) (f)

Figure 4. Foreground rejection scheme. (a) Likelihood map based on
probability computed by (10). (b) Background model Mt learned online.

(c) P̂t computed by (12). (d) The region with unreliable background model
(Ψ(s) < τ) is marked in white; the foreground rejection region (Ψ(s) ≥
τ ∧ G(s) < ω) is marked in black; the region with reliable background
model but do not reject foreground hypothesis (Ψ(s) ≥ τ ∧ G(s) ≥ ω)
is marked by gray. (e) Segmentation result using (a). All the pixels in the
current image is segmented as foreground. (f) Segmentation result using
(c). We can see that foreground rejection schema can avoid false alarms.

different adjacent pixel pairs and is sensitive to noise in

the image. Instead, we use Canny edge detector to extract

image edges and then construct a contrast map. Hence, the

energy function can encourage segmentation along the edges

of images. To attenuate the edges of the background, we

propose a novel attenuate algorithm based on the previous

image and the temporal difference.

Let Et(s) be the edge image. Et(s) = 1 if s is an edge
pixel or 0 if otherwise. The penalty term B(s, r) is initially
defined as

B(s, r) = −Et(s) + Et(r)

2
(13)

Considering an edge image as a contrast map is sufficient

to segment foreground accurately in most of the time. How-

ever, when a background is cluttered, errors may happen.

Since there is no complete background image as given in

[8], we cannot use their method to attenuate edges in the

background. Instead, edges in background are attenuated

based on the previous image and the temporal difference.

The previous image It−1 and the temporal difference ΔIt
are convoluted with a Sobel mask [20] to extract their

differentiations (gradient), I
′
t−1 and ΔI

′
t , respectively. A

large value of I
′
t−1(s) denotes a large variance of It−1 at

pixel s, and so does ΔI
′
t . The attenuated contrast is given

by:

Ĉt(s) = κEt(s)
ΔI

′
t(s)

max{I ′t−1(s), σ}
(14)

where κ balances the effect of I
′
t−1 and ΔI

′
t and σ is a

small value (we set it to be 0.001) that prevents division by

zero.

Intuitively, most of the boundary between background and

foreground is changing from frame t − 1 to t. Therefore,
the large variance at pixel s in the previous frame is a

good cue to imply s in the current frame does not lie on

the boundary of the foreground with a high probability.

(a) (b) (c)

(d) (e) (f)

Figure 5. Contrast attenuation. (a) Current frame It. (b) Gradient of the
previous frame It−1. (c) Gradient of the temporal difference. (d) Negative
image of the contrast of It extracted by Canny edge detector. (e) Negative
image of the attenuated contrast obtained by Et(s)/max{I′t−1(s), σ}. (f)
Negative image of the attenuated contrast obtained by (14).

Figure 6. Comparison of segmentation results. The first column is obtained
without contrast attenuation; the second column is the results using contrast
attenuation based on the previous frame; the third column is obtained
with contrast attenuation based on the previous frame and the temporal
difference. We can see that contrast attenuation based only on the previous
frame can produce false negatives (see the image at center).

Et(s)/max{I ′t−1(s), σ} can greatly attenuate the edges in

background while preserving the boundary of the fore-

ground. However, when foreground is moving slowly, some

boundary of the foreground may remain unchanged, and

the simple attenuation may also attenuate the boundary of

foreground which is not desirable. Fortunately, the boundary

of the foreground is usually accompanied by a large variance

of ΔI
′
t . We can further augment the boundary of the

foreground by the multiplication of ΔI
′
t . After getting Ĉt,

we can compute B(s, r) according to (3). Figure 5 shows
the attenuation procedure. Figure 6 compares segmentation

results obtained without contrast attenuation, with simple

contrast attenuation and with contrast attenuation.

V. EXPERIMENTAL RESULTS

We validated our proposed algorithm on a number of

videos which were captured by a Logitech QuickCam Pro

4000 with default settings (auto gain control and auto

white balance) and from the benchmark data set [2]. Each
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Figure 7. Accuracy of segmentation.

segmentation was initialized by motion cue only or one

manually labeling frame at the beginning.

Evaluation of efficiency. The proposed algorithm was

coded in C++ and implemented on a desktop PC with 3.00

GHz CPU and 2G RAM. It can segment 5-8 frames per

second for a 320×240 video. If multi-scale implementation
is employed as [8], the efficiency can be improved further.

Comparison with ground truth. Results of the proposed
approach were first compared with hand-labeled ground truth

to illustrate its accuracy. Three testing videos (“AY ”, “KZ”,

“ZH”) were labeled manually using photoshop’s magnetic

lasso tool to get an initial foreground and lasso tool to

refine the foreground. Performance was evaluated by error

rate which was defined as the percentage of misclassified

pixels with respect to the image area. Figure 7 provides both

objective and subjective measures of segmentation accuracy.

The top, middle and bottom rows correspond to testing

videos “AY ”, “KZ”, and “ZH” respectively. The first column

is error rate curves. It can be observed that all the three

segmentation errors are smaller than 2%. The mean of the

error rates for “AY ”, “KZ”, and “ZH” are 0.517%, 0.858%

and 0.563%, respectively. The second column shows the

segmentation results of our method at frame 50 for each of

the test videos. The third column is the difference between

our results with their corresponding ground truth at frame

50 for each of the test videos.

Comparison with other methods. We compared our pro-
posed method with two other state-of-the-art algorithms—

“Background cut” [8] and “Bi-layer segmentation” [2] on

“AC” video from the benchmark data set [2]. Only the left

view of the video was estimated. In figure 8, the red solid

curve and the green dot lines are the error rate curve and

error bar of our proposed method; the blue dashed lines

are the error bar of “Background cut”; the black dashed

dot lines are the error bar of “Bi-layer segmentation”; the

middle is an example segmentation for “AC”; the right

shows the corresponding difference image between our result

and ground truth. It can be seen that the accuracy of our
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Figure 9. Analysis of the effect of components.

method is comparable with “Background cut” and “Bi-layer

segmentation” without using any pre-learned background

models or stereo setups.

Analysis of the effect of components. Figure 9 analyzes
the effect of each component of our proposed method.

The left, the middle and the right show the error rates

for “AY ”, “KZ”, and “ZH”, respectively. Four cases are

compared with respect to error rates: (1) the proposed

method; (2) the proposed method without color information;

(3) the proposed method without motion information; (4)

the proposed method without foreground rejection scheme.

It has been shown that if we remove one of the three

components, namely color, motion, and foreground rejection

scheme, error rates increases considerably. For “AY”, the

color, motion and foreground rejection scheme almost have

the same contribution. For “KZ”, without color information

or foreground rejection scheme, large error would be re-

sulted. For “ZH”, color and motion information dominate

the contribution.

Robustness to illumination changes and cluttered
background. The test videos were captured by a web

camera with automatic gain control and automatic white

balance, resulting in large variation of illumination even

in static background. Our proposed method can segment

them accurately as figure 7 suggests. The underlying reasons

are that the motion cue (temporal difference) we use is

very adaptive to illumination changes and the foreground

rejection scheme can avoid false alarms.

Our method encourages foreground to be segmented along

the edges of images. Cluttered background with many edges

should be a challenge. However, the attenuation of contrast

will suppress this kind of effect in most of the cases.

Experiments show that our method can obtained accurate

foreground with cluttered background (see figure 10).
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Figure 10. Segmentation with cluttered background. The Left: current
frame. The middle: segmentation result of the proposed method. The right:
the difference between our result with ground truth.

VI. DISCUSSION AND CONCLUSION

In this paper, a robust segmentation approach is proposed

to extract foreground from videos accurately and efficiently.

This approach is developed based on the fusion of mo-

tion, color and contrast information. We employ several

mechanisms to avoid segmentation artifacts. Support edges

diffusion and foreground rejection scheme are proposed to

enhance the foreground likelihood. Novel attenuated contrast

cue is used to encourage segmentation along boundary of

the foreground. Our approach does not need pre-learned

models or complex setups. Experimental results show that

our method is comparable to other representative methods

and robust to illumination changes.

Our system still has some limitations. First, casual cam-

era shaking may disturb our motion cue, which may be

alleviated by detecting camera motion and aligning frames.

Second, stationary foreground produces little temporal dif-

ference. Magnitude of motion should be monitored and

temporal difference should be redefined as difference of

two frames with a long interval of time. Last, edges in the

constantly occluded background cannot be attenuated when

they become unoccluded. More boundary knowledge such

as boundary pattern may be used.
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