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ABSTRACT 

In this paper, four transition element families which comprise five- to seven-node quadrilateral 

elements are developed based on the hybrid-stress and enhanced assumed strain (EAS) formulations 

for adaptive analyses of axisymmetric elasticity problems. For members in the first hybrid-stress 

family, a stress field with ten equilibrating stress modes is derived and employed by all members of 

the family. To study the effect of including more stress modes, another family with two additional 

stress modes is implemented. On the other hand, two EAS element families are constructed with 

respect to the incompatible displacement modes of two existing incompatible displacement 

transition element families. Several numerical examples are exercised. It can be seen that the first 

hybrid-stress family is the most accurate one among the proposed families. Moreover, the EAS 

families are close to the respective incompatible families in accuracy yet the former families are not 

only more efficient in computation but also more concise in formulation. 
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1. INTRODUCTION 

In adaptive analysis, the finite element mesh is locally refined according to estimated error through 

repeating the working cycle comprising finite element analysis, stress recovery, error estimation and 

mesh refinement until the estimated error is brought below a prescribed value. The basic adaptive 

refinement techniques can be categorized into h-refinement, p-refinement and r-refinement. For p- 

and r-refinement, interested readers may refer to reference [1] for a review. In h-refinement, an 

element whose error is larger than the prescribed value is subdivided into smaller elements. The 

subdivision creates transition elements in which some of their edges possess mid-side nodes, see 

Figure 1. Along these edges, the displacement must be piecewise linear in order to be compatible 

with the displacement in the subdivided elements. In this paper, ad hoc transition element families 

will be developed by hybrid-stress and enhanced assumed strain (EAS) methods for axisymmetric 

elasticity problems. 

 In recent decades, various advanced four-node axisymmetric elements have been developed. 

These include incompatible elements, enhanced assumed strain elements and hybrid-stress elements 

[2-11]. On the other hand, transition elements for h-refinement adaptive analysis are relative rare. It 

appears that the only advanced transition element family for axisymmetric analyses is the NQV 

family [12]. In NQV, different incompatible modes were developed for elements with different 

combinations of mid-side nodes. To pass the patch test, the incompatible B-matrix relating the 

element strains and incompatible displacement modes is modified by a B-bar method in which the 

incompatible B-matrix is shifted by its own pre-computed domain average.  

 For plane elasticity problems, the authors have recently developed three families of 

quadrilateral transition elements [13-14]. The first family is based on the hybrid-stress formulation 

and was developed by adopting a complete linear equilibrating stress field which is employed by all 

members in the family. The second and third element families were developed by devising EAS 

fields [5] based on the incompatible transition element families of Choi et al [12, 15]. Similar works 

have also undertaken for 3D elasticity problems [13-14].  

 The present paper can be considered as an extension of our previous effort on 2D and 3D 

elasticity analysis. New hybrid-stress and EAS transition element families are derived for 

axisymmetric elasticity problems. For the hybrid-stress element, it is first noted the equilibrium 



conditions can be expressed as linear differential equations with constant coefficients in terms of 

(rr, , rz, rrz). For the first hybrid-stress element family, the field for (rr, , rz, rrz) is 

equilibrating and complete linear in (r, z) with ten modes. Instead of devising different sets of stress 

modes for elements with different combinations of mid-side nodes, the idea proposed by Wan and 

his co-workers [16-17] who employ the same set of stress modes for all transition elements is 

adopted. To study the effect of additional stress modes, another family with two additional stress 

modes is implemented. On the other hand, two EAS transition element families are developed based 

on the incompatible displacement modes of the axisymmetric and 3D transition element families of 

Choi et al [12, 15]. Unlike the incompatible B-matrices in the element families of Choi et al, the 

domain integral of the EAS modes vanish identically and the B-bar method that computationally 

modifies the incompatible B-matrices can be exempted. Both EAS families pass the patch test and 

retain the accuracy of the incompatible families. Lastly, several examples are examined. The errors 

or estimated errors of various transition element families are compared. 

 

2. REVIEW OF STANDARD ISOPARAMETRIC DISPLACEMENT ELEMENT 

A transition element can possess 1, 2 or 3 mid-side nodes in addition to the four corner nodes as 

depicted in Figure 2. For the sake of assuring the compatibility, Gupta [18] introduced the 

piecewise linear displacement interpolation functions for the transition element which is compatible 

with its adjacent regular four-node quadrilateral elements. All transition elements which to be 

considered in this paper will adopt Gupta’s displacement interpolation functions. It should be 

remarked that the derivatives of the functions are discontinuous within the element. If derivatives 

appear in an integral, it is necessary to divide the integration domain into sub-domains as shown in 

Figure 2 along the lines of discontinuity. 

 

2.1 Gupta’s Shape Functions for 2D Transition Elements 

      Consider the quadrilateral transition element with at most three mid-side nodes as shown in 

Figure 2. Gupta’s shape functions of the mid-side nodes in terms of the element’s natural 

coordinates  and   [-1, +1] can be expressed as:  



5
5 (1 | |)(1 )

2
N  


   , 6

6 (1 )(1 | |)
2

N  


   , 7
7 (1 | |)(1 )

2
N  


   , 8

8 (1 )(1 | |)
2

N  


  

 (1) 

where | | returns the magnitude of embraced term and   

 
1 if the -th node exists
0 otherwise                  i

i  


. 

Owing to the magnitude operator, derivatives of these shape functions in (1) are discontinuous at  

= 0 and/or  = 0. The interpolation functions for the corner nodes are 
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2.2 Element Stiffness Matrix 

      With the aforementioned functions, the displacement for an m-node transition element can 

be interpolated as:  

 
1

1 2 2 2 2 2 2 2=r
m

z
m

u
N N N

u   

 
       
    

u
u I I I Nq

u
     (3) 

in which the displacement vector u, interpolation matrix N and element displacement vector q are 

self-defined whereas r and z denotes radial and longitudinal coordinates, respectively. The vectors 

of strain  and stress  can be derived to be: 
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where the strain-displacement operator matrix D and the strain-displacement matrix Bc are 

self-defined. On the other hand,  denotes the circumferential direction and C is the elasticity 

matrix. As Bc gives the strain from the compatible interpolated displacement, it will be termed as 

the compatible B-matrix.  

     The total potential of an element can be expressed as: 
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2 e

e T e e
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

    ε Cε  (5) 

where e  denotes the volume of an axisymmetric element and eW  is the elemental work 

potential. Introduce (4) into (5), we obtain 
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where the braced term in the first expression is the element stiffness matrix and  
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is the Jacobi matrix. As Bc is discontinuous across along  = 0 and/or  = 0, the integration domain 

  [-1,+1][-1,+1] has to be split into small domains along the lines of discontinuity, see Figure 

2.  

 

3. HYBRID-STRESS TRANSITION ELEMENT 

Displacement compatible elements are always too stiff. Hybrid-stress elements with an independent 

assumed stress field may provide more accurate predictions [3, 6-7, 9]. In this section, a new family 

of axisymmetric hybrid-stress transition elements will be developed by using Hellinger-Reissner 

principle in this section. 

 

3.1 Element Stiffness Formulation via the Hellinger-Reissner Variational Principle 

      The elemental Hellinger-Reissner functional can be written as: 

 11[ ( )]
2e

e T T e
HR d W
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      σ C σ σ uD  (8) 

where  is an independent assumed stress. All other terms have been defined in (3) and(4). The 

assumed stress can be expressed as: 

 σ Pβ  (9) 



in which P is the stress shape function matrix and  is the vector of coefficients. With the 

compatible displacement (3), substitution of (9) into (8) gives 
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in which 
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As the assumed stress of an element is independent of the others, the stationary condition of  e
HR  

with respect to  leads to 

 1β H Gq  (12) 

Back substitution of (12) into (10) results in 

 11 ( )
2

e T T e
HR W  q G H G q  (13) 

in which the embraced term is the element stiffness matrix of the hybrid-stress element. 

 

3.2 Same Set of Stress Modes for All Transition Elements 

      To design a hybrid-stress element, one should consider the number of stress modes in the 

stress field, or simply dim.(). For a rank-sufficient element, the following condition must be 

satisfied: 

 dim.()  dim.(q) – number of rigid body modes. (14) 

On the other hand, when dim.() is excessive, the element will be excessively stiff. Indeed, many 

successful hybrid-stress elements adopt dim.() = dim.(q) – number of rigid body modes [19-20]. In 

axisymmetric problems, there is only one rigid body mode which is the translation along the z 

direction.  

      With respect to (14), the 5-, 6- and 7-node transition elements require at least 9, 11 and 13 

stress modes for rank-sufficiency, respectively. While it is possible to devise stress field with the 

corresponding numbers of stress modes, a single stress field with a fixed number of stress modes 

will be employed for several reasons. Firstly, it is more convenient to use a single set of stress 

modes for computer implementation. Secondly, rank deficient-elements are more efficient than rank 



sufficient elements. Thirdly, all transition elements are connected with rank-sufficient four-node 

elements, the spurious zero energy modes of the transition elements would be suppressed by its 

neighbourhoods and the global stiffness matrix is always rank-sufficient. Lastly, rank sufficient 

elements do not necessary lead to higher accuracy as revealed in the previous work on 2D/3D 

hybrid-stress transition elements [13-14]. In this light, the idea of using the same set of stress modes 

for all transition elements will be adopted here. 

 

3.3 Hybrid-stress Transition Elements with Ten Stress Modes 

      In developing axisymmetric hybrid-stress elements, the stress modes can be designed in the 

natural coordinate system and the physical stress modes can be obtained by coordinate 

transformation [9, 21]. Alternatively, the stress modes can be designed directly in the physical 

cylindrical coordinate system [6, 22]. The latter approach will be employed for the obvious 

advantage that the stress modes can satisfy the stress equilibrium condition. The condition is 

commonly expressed as: 
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which are linear differential equation with non-constant coefficient 1/r.  

 In transition hybrid-stress elements for 2D/3D problems [13-14], it is noted that complete linear 

and equilibrating stress fields deliver the best accuracy. If one starts with 1, r and z terms for (r, , 

z, rz) in (15), 1/r terms must be included for fulfilling the equilibrium condition. However, when 

(15) is expressed in terms of (rr, , rz, rrz), the condition becomes 
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which posses only constant coefficients. We start with 1, r and z’ = z - z0 uncoupled modes for each 

of rr, , rz and rrz where z0 equals (z1 + z2 + z3 + z4)/4, i.e., the average of z-coordinate of the 

four element corner nodes. The practice avoids the potential numerical error induced by large 

z-value. By imposing the equilibrium condition on the twelve uncoupled modes, the following 

ten-modes equilibrating field can be devised: 
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or, equivalently, 
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In particular, the r2/2 and rz’ terms in rr are employed to balance the r and z’ terms in . The 

former terms can also be balanced by additional terms in rrz which, however, would adversely 

affect the accuracy of the elements in bending-dominated circular plate and cylinder problems.  

      It can be seen that some components in (18) possess the 1/r singularity but so do the 

circumferential strain derived from the interpolated displacement and other hybrid-stress finite 

element models [6, 22]. In practice, the singularity issue does not bother as element matrices are 

evaluated by numerical integrations and stress is constructed by using the value at the Gaussian 

points which are away from r = 0. The transition element family based on the above 10b field is 

denoted as AHS-10 and the 2×2 Gauss numerical integral will be employed to calculate the 

H-matrix. Due to the discontinuity of derivatives of the N-matrix, the integration area for 

calculating G-matrix is split into parts according to the existence of the mid-side nodes, see Figure 

2.  

      Returning to the issue on the number of stress modes, the stress field in (18) is only 

sufficient to secure the full rankness of the five-node transition elements. Hence, it is not rational to 

further reduce the number. To illustrate that the number of modes is practically optimal, the 

following two modes are augmented to (18): 
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to form a twelve-mode field. The number of stress modes is considerably above the optimized 

number indicated in (14) and leads to overly stiff five-node transition elements which are the 



dominating elements in number among the transition elements. The section on numerical study also 

reveals that the ten-mode stress field yields more accurate predictions than the twelve-mode field 

does.  

 

4. REVIEW OF INCOMPATIBLE MODES 

In this study, two EAS transition element families will be developed based on Choi’s incompatible 

modes of Choi et al[12, 15]. Here, the incompatible modes are briefly reviewed. In incompatible 

elements [22], the interpolated and compatible displacement uc is enriched by an incompatible 

displacement u. The displacement and strain become: 

 c    u u u Nq Mλ  ,  ( ) ( )c c       u u u N q M λ B q B λ D D D D D  (20) 

where M is the incompatible displacement shape function matrix and  is the vector of coefficients. 

Bc and B are self-defined. The requirement for an incompatible element to pass the patch test is 

 0
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d
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  B  (21) 

To enable the incompatible element to pass the patch test, approximate strain-displacement 

operators had been used [23]. On the other hand, Choi et al [12] presented two families of 

incompatible modes for transition elements. With the B-bar method, the strain is modified as: 

 *
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in which  
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4.1 Nonconforming Axisymmetric Quadrilateral Variable-Node (NQV) Elements 

The incompatible displacement shape functions given by Choi et al for the NQV 

axisymmetric transition element family in [12] can be expressed as:  
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 2 27-node elements:  (1 )(1 )bM     . (25) 

For a transition element with m (= 1, 2) non-zero incompatible displacement shape functions, the 

incompatible displacement is: 

  1 2 2 2 2mM M   u Mλ I I λ . (26) 

 

4.2 Nonconforming Variable-Node (NCV) Elements 

Choi and Lee [15] also presented another family of incompatible transition elements for 3D 

elastic problems whose incompatible modes are different from those of NQV. These 3D 

incompatible modes can be degenerated as 

 2
1 5 7(1 ) ( )M N N     , 2

2 6 8(1 ) ( )M N N     (27) 

for plane and axisymmetric elements.  

 

5. ENHANCED ASSUMED STRAIN TRANSITION ELEMENTS 

Although an incompatible element satisfying (21) can be obtained by B-bar method as described in 

(22) and (23). However, it is computationally more efficient if B* is explicit. In this section, the 

task will be attained by using enhanced assumed strain method (EAS) [5]. The core idea of EAS 

method is that the compatible strain field cε  is enhanced by an assumed strain field ε  as 

 c c   ε ε ε B q Eλ  (28) 

where E is the EAS shape function matrix and  is the vector of coefficients. Similar to 

incompatible elements, the requirement for the element to pass the patch test is 
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The difference between the EAS and the incompatible displacement method is that the EAS modes 

need not to be derived from the incompatible displacement modes through either the exact or an 

approximate strain-displacement operator.  

 
 



5.1 EAS Formulation for Axisymmetric Problems 

      In this paper, however, the incompatible modes of Choi et al will be employed to derive the 

EAS modes. To this end, the M-matrices discussed in the last section are used as the shape function 

matrix of the covariant displacement {u, u}T which is related to the physical displacement as: 
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With the strain-displacement relation in (4) and the chain rule, the physical EAS field is: 
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With all terms but the differential operators / and / within the round brackets to be replaced 

by their counterparts at  =  = 0, the following approximation can be obtained: 
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where 
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The self-defined T-matrix is the transformation matrix between the vector of physical strain 

components and the vector of covariant strain components {, , , }T evaluated at  =  = 0. 

Following the practice of Simo & Rifai [5], the expression for the physical strain in (33) is modified 

to be 
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with which (29) becomes  
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or, simply,  

 
1 1

1 1

/ 0
0 /

 
/ /
/ /r r

d d

r r




 
 

 

 

 

  
    
    
 
 

  M 0  (37) 

Whilst the incompatible displacement shape function matrices of NQV and NCV families do not 

satisfy (37), the later can be fulfilled by simple modification of the shape functions. 

 

5.2 Axisymmetric EAS-NQV Element 

       The incompatible modes of NQV have been introduced in Section 4.1. To fulfill (37), M1 

an M2 are modified into 
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For the seven-node element, the modified bubble mode (1/3-2)(1/3-2) in (25) and the 

non-vanished mode among (38) are both attempted. The predictions yielded by two version of 

seven-node are practically similar. For convenience, the above M1 an M2 are employed for the 

whole element family which is denoted as EAS-NQV. 

 

5.3 Axisymmetric EAS-NCV Element 

      The incompatible modes of NQV have been introduced in Section 4.2. To fulfill (37), they 

are modified into 



 2 * *
1 5 7(1 / 3 ) ( )M N N     and 2 * *

2 6 8(1 / 3 ) ( )M N N    , (39) 

in which Ni
* is modified from Ni in (1) by replacing “1-||” with “1/2-||” for  =  or . This 

element family is denoted as EAS-NCV. 

 

6. ERROR ESTIMATION AND STRESS RECOVERY 

A key step in the adaptive analysis is the error estimation which identifies the parts of the mesh to 

be refined. Error is the difference between the exact value and the numerical solution. However, 

exact solution is not available for most engineering problems.  

 

6.1 ZZ Error Estimator 

      Zienkiewicz and Zhu [24] brought forward the famous ZZ error estimator. The essence of 

the error estimator is to use a recovered solution constructed from the finite element prediction in 

place of the exact solution in computing the error [25]. To quantify the error, various norms can be 

used and the energy norm is a commonly accepted one. In the case of evaluating the stress error, the 

error in energy norm for a single element and the whole system can be respectively written as 
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in which * is the recovered stress, h is the stress value directly obtained from FEM and NE is the 

total number of elements included in the whole system. Similarly, the estimated energy norm for an 

element and the system are respectively: 
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The estimated energy norm of the exact solution is often approximated as:  

  
1

* 2 * 2 2|| || || || || ||  u u e . (42) 

The estimated relative error is computed as  

 * *(|| || / || ||) 100%  e u  (43) 



Zienkiewicz & Zhu [24] have proven that if the recovered stress is asymptotically exact, the above 

estimated error always converges to the exact one when the mesh is continuously refined. The 

adaptive analysis cycle stops when the estimated relative error is smaller than a prescribed target 

value t . For an individual element, the estimated relative error can be expressed as 
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and the element will be refined if i t   . 

 

6.2 Stress Recovery 

      When Zienkiewicz and Zhu first brought forward their error estimator, recovery methods 

including simple nodal average, L2 projection and global stress smooth were used to obtain the 

recovered values. Later, Zienkiewicz and Zhu [26-27] introduced the superconvergent patch 

recovery (SPR) technique. The simplicity and the effectiveness of the recovery technique enable the 

wide application of ZZ error estimator.  

      In SPR, a patch composed of elements sharing a common non-boundary node which is 

termed as assembly node is formed first as shown in Figure 3. The stress distribution within the 

patch is least square fitted by a polynomial which is of the same order as the displacement 

interpolation of a regular element. With the four-node element as the regular element, each of the 

stress component * is taken to be 
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where a is the vector of coefficients to be determined and 0 0( , )r z  is the coordinate of the assembly 

node. By minimizing  
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with respect to a,  
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In the equations, n denotes the number of stress sampling points and h denotes the direct 

unprocessed finite element stress solution. The least-square fitted stresses at the assembly node can 

be obtained with the solved values of a and (45). Detailed implementation of SPR technique can be 

found in Ref. [13, 26-27]. 

 

 

7. NUMERICAL EXAMPLES 

To study the performance of the new transition element families developed in this paper, several 

numerical examples will be conducted. The error in energy norm yielded by different transition 

element families in adaptive analyses will be compared. In all analyses, the same regular four-node 

element will adopt the following EAS field:  
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which employs the modified incompatible modes of Wilson et al [28].  

      Abbreviations of the transitional element families to be compared in this section are 

summarized below: 

 FI : the fully integrated (with the 2nd order quadrature) compatible displacement elements, 

see section 2.  

 AHS-10 and AHS-12: The newly developed hybrid-stress transition element families with 

10 and 12 equilibrating stress modes, see  (18) and (19), respectively. 

 NQV: the incompatible transition element family of Choi et al [12], see Section 4.1. 

 NCV: the incompatible transition element family using the incompatible modes degenerated 

from 3D family of Choi and Lee [15], see Section 4.2. 

 EAS-NQV: the EAS counterpart of NQV devised in this paper, see Section 5.2. 



 EAS-NCV: the EAS counterpart of NCV devised in this paper, see Section 5.3. 

 

For all newly developed elements, a thick-walled cylinder modeled by five quadrilateral elements as 

shown in Figure 4 is considered. Mid-side nodes are randomly added to element edges to form 

transition elements in the mesh. On all geometry boundaries, ur = 2r and uz = 1+4z are prescribed [3]. 

Exact displacements and stress are reproduced by all element families. In other words, all the 

element families pass the patch test.  

      In the following sub-sections, five problems are analyzed by the transition element families. 

In each example, meshes will be generated and the total errors in the regular and transition elements 

will be compared. To keep this paper short, only the meshes generated by AHS-10 will be shown. 

As the number of transition elements is typically below 10% of the element population, the total 

error is dominated by the regular elements. To better illustrate the relative accuracy of different 

transition element families, the meshes generated by NQV are used by all families and the error 

sums in the transition elements, i.e. 
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where m refers to the number of transition elements in the mesh, are computed. As usual, exact and 

estimated errors are adopted for problems with and without analytical solutions, respectively. These 

errors are plotted against nDOF which denotes the total number of degree of freedom for the whole 

system. In case that the first and/or the second adaptive meshes do not contain any transition 

elements, the value of ||eTran.Err.|| is zero and will not be presented in the comparison of errors in 

transition elements. It should also be noted that ||e Tran.Err.|| can go up as the percentage of the total 

volume of the transition elements goes up. As a result, while the log-log plots for ||e|| versus nDOF 

are essentially straight lines, the ones for ||e Tran.Err.|| versus nDOF often exhibit “kinks” in the figures. 

In all examples, EAS-NQV and EAS-NCV always show similar accuracy as NQV and NCV 

respectively. For graphical clarity, results of EAS-NQV and NQV will be displayed by a single line 

and the same practice applies to EAS-NCV and NCV. 

 



7. 1 Thick Hollow Sphere  

     A thick hollow sphere with outer radius Ro = 20 and inner radius Ri = 5 subjected to internal 

pressure P is studied. Owing to symmetry, only half of the sphere in the r-z-plane is modeled as 

shown in Figure 5(a). The analytical strains are [29]:  
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Moreover,  and  are Lame’s constants. Exact stresses can be obtained through (4). In this 

problem, the exact error is evaluated. The target relative error t is set at 3% which is attained in six 

adaptive steps, see Figure 5(b) for the corresponding meshes. Comparison of the total errors when 

different transition element families are employed can be seen in Figure 5(c) whilst comparison of 

the errors in transition elements is given in Figure 5(d).  

 

7. 2 Cylinder with a Spherical Hole 

      This problem considers a 20 cylinder with a central 2 spherical cavity subjected to a 

uniform axial tension. Owing to symmetry, only half of the cylinder in the r-z-plane is modeled as 

shown in Figure 6(a). The target relative error t is set at 0.5% which is achieved in six adaptive 

steps. Pertinent adaptive meshes are given in Figure 6(b). Comparison of the total errors when 

different transition element families are employed is provided in Figure 6(c). On the other hand, 

comparison of the errors in transition elements can be noted in Figure 6(d). 

 

7. 3 Cylinder with a Penny Crack  

      A 4 cylinder with a 2 penny crack located at its centre subjected to a uniform tension 

along z-axis is studied. Owing to symmetry, only half of the problem domain in the r-z-plane is 

modeled as shown in Figure 7(a). The target relative error t is set at 4%. As a result of the stress 



singularity, dense meshes form around the crack-tip as shown in Figure 7(b). Eight adaptive steps 

are required to attain the specified t. Comparison of the total errors when different transition 

element families are employed is given in Figure 7(c). Figure 7(d) shows the errors in the transition 

elements. 

 

7. 4 Cylinder-Shaped Vessel 

      This problem studies a 4 cylinder-shaped vessel with a  cylindrical cavity subjected to a 

uniform axial tension as depicted in Figure 8(a). According to symmetry, only half of the vessel is 

modeled. The target relative error is set at 2% which is attained in seven steps, see Figure 8(b) for 

pertinent meshes. Comparison of the total errors when different transition element families are 

adopted can be seen in Figure 8(c). On the other hand, comparison of the errors in transition 

elements is given in Figure 8(d). 

 

7. 5 Machine Part  

      In this example, an axisymmetric machine part subjected to uniform tensile loading is 

studied as depicted in Figure 9(a). The target relative error is set at 2% which is achieved in four 

steps, see Figure 9(b) for adaptive meshes. One can obviously find more nodes and elements 

located around the areas where stress concentrations are expected. Comparisons of total errors 

between different transition element families can be found in Figure 9(c). And, comparisons of 

errors in transition elements can be found in Figure 9(d). 

 

7. 6 Discussion for Adaptive Analyses 

      From the five examples, one can noted that the two newly developed hybrid-stress transition 

element families AHS-10 and AHS-12 deliver the highest accuracy. Among them, the former is not 

only marginally more accurate but also more efficient. For the EAS and incompatible element 

families, the accuracy of the EAS families is close to that of the respective incompatible families. 

However, the efficiency of the EAS elements surpasses that of the incompatible elements which, for 

the patch test fulfillment, requires a computed correction to the incompatible B-matrices. In most 

examples, NCV and EAS-NCV are slightly more accurate than NQV and EAS-NQV. 



 

8. CONCLUSION 

In this paper, existing displacement compatible and incompatible transition elements for adaptive 

analyses of axisymmetric elastic problems are briefly reviewed. Two hybrid-stress and two EAS 

transition element families are developed. Numerical examples are presented to compare the 

accuracy of various transition element families. 

      For the hybrid-stress transition element, the five-node elements are noted to be dominating 

in number among the five- to seven-node transition elements. In this light, a complete linear field in 

r and z for (rr, , rz, rrz) possessing ten modes which can marginally secure the proper rank of 

the five-node element are identified. Following our practice in plane and 3D problems, the stress 

field is employed by all members of the transition element family which is termed AHS-10. To 

study the effect of including additional stress modes, another less efficient family termed AHS-12 

with two extra stress modes is also implied. From the numerical results, AHS-10 marginally 

surpasses AHS-12 in accuracy.  

      The EAS transition element families are based on NQV and NCV incompatible element 

families of Choi et al [12, 15]. Through modifying the strain and the incompatible displacement 

defined with respect to the natural coordinates of the element, transition element families 

EAS-NQV and EAS-NCV are derived. Unlike the incompatible elements, the computational 

correction on incompatible B-matrix for the patch test fulfillment is exempted. On the other hand, 

the EAS families produce graphically undistinguishable accuracy with respect to the pertinent 

incompatible ones.  

      Among the four new families, AHS-10 delivers the highest accuracy which is marginally 

better than that of AHS-12. The EAS/incompatible families are more accurate than the fully 

integrated compatible displacement element family but less accurate than the hybrid-stress families. 

Among the EAS/incompatible families, EAS-NCV/NCV are slightly more accurate than 

EAS-NQV/NQV in accuracy. 
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Figure 1. A mesh containing the regular (blank) and transition (hatched) elements. 

 

 

 

 
 
Figure 2. (a) Regular element and (b)-(e) transition elements with different mid-side nodes. If exists, 

node 8 bisects nodes 1 and 4. Different integration zones are hatched differently.  
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Figure 3. A patch for superconvergent patch recovery. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Mesh for patch test. 
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Figure 5. Thick hollow sphere. (a) Problem specification, (b) meshes, (c) total errors comparison, (d) 

comparison of errors in transition elements. 
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Figure 6. Cylinder with a spherical hole problem. (a) Problem specification, (b) meshes, (c) total 

errors comparison, (d) comparison of errors in transition elements. 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 

 
 

(b) 
 

P 

P 1 1 

1 

r 

z 

E = 73 10  
  = 0.3 
 

P=1000 



  

 
 
 
 

1.0 1.5 2.0 2.5 3.0 3.5 4.0
-2.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

Lo
g(

||e
||)

Log(nDOF)

 FI
 NQV
 AHS-10

 
(c) 

 
 
 

2.4 2.6 2.8 3.0 3.2 3.4 3.6
-2.68
-2.66
-2.64
-2.62
-2.60
-2.58
-2.56
-2.54
-2.52
-2.50
-2.48
-2.46
-2.44
-2.42
-2.40
-2.38

Lo
g(

||e
Tr

an
. E

rr.
||)

Log(nDOF)

 FI
 NQV/EAS-NQV
 NCV/EAS-NCV
 AHS-10
 AHS-12

 
(d) 

 
Figure 7. Cylinder with a penny crack problem. (a) Problem specification, (b) meshes, (c) total 

errors comparison, (d) comparison of errors in transition elements. 
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Figure 8. The cylinder-shaped vessel problem. (a) Problem specification, (b) meshes, (c) total errors 

comparison, (d) comparison of errors in transition elements. 
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Figure 9. The machine part problem. (a) Problem specification, (b) meshes, (c) total errors 

comparison, (d) comparison of errors in transition elements. 


