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Logarithmic nonlinear Schrödinger equation and irrotational, compressible flows: An exact solution
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A class of irrotational, isentropic, and compressible flows is studied theoretically by formulating the density
and the velocity potential in a Madelung transformation. The resulting nonlinear Schrödinger equation is solved
in terms of similarity variables. One particular family of exact solutions, valid for any ratio of the specific heat
capacities of the gas, permits explicit expressions of the fluid properties and velocities in terms of time and spatial
coordinates. Analytically, the density is a Gaussian function of the similarity variable, while the temperature is
a function of time only. This method is applicable in one (1D), two, and three dimensional geometries. As a
simple example, a 1D gas column, with mass injection on one side and a steadily translating wall on the other,
can be formulated exactly. The connection with the evolution of an unsteady velocity potential will also be
examined.
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I. INTRODUCTION

The irrotational flow of an inviscid, incompressible fluid
is a classical subject, as the zero vorticity assumption auto-
matically satisfies the nonlinear equations of motion through
the Bernoulli equation. Conservation of mass then implies
the study of the Laplace equation [1]. Applications and flow
physics associated with such flows have been investigated
[2,3]. For a compressible fluid, the dynamics is more complex,
as the governing equations are highly nonlinear, even for
irrotational flows [1]. If compact or extended distributions
of vorticity are present in the compressible flow, the analysis
becomes exceedingly intriguing [4–7].

The objective here is to deduce a special class of exact
expressions of irrotational, compressible flows, by employing
a Madelung transformation of the density and the velocity po-
tential. The resulting nonlinear Schrödinger equation (NLSE),
with logarithmic as well as Bohm-type nonlinearities, are
solved by similarity variables. The intermediate calculations
involve a set of nonlinear ordinary differential equations,
which will reduce to the classical Ermakov system for the
integrable case of a monatomic gas.

The present algorithm is applicable to one (1D), two,
and three dimensional gas dynamics. As physical examples,
in three dimensions, this family of flows will represent an
expanding gas cloud. In 1D, a gas column, with mass injection
on one side and a steadily translating wall on the other, can
be described analytically. In two dimensional flows, the same
analytical formulation works, and the connection with classical
fluid mechanics will be highlighted. The capability of the
scheme will be vividly demonstrated by showing that the
velocity potential from this algorithm will satisfy a highly
nonlinear evolution equation for unsteady, irrotational, and
compressible flows.

The NLSE with logarithmic nonlinearity only, i.e., the one
without the Bohm type, has an established history. Localized
solutions in such logarithmic NLSEs, termed gaussons, have
been discovered [8]. Applications have been pursued actively,
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especially in the context of fluid dynamics [9], magma
transport [10], nuclear physics [11], and optics [12,13].

The structure of the paper can now be explained. The motion
of an irrotational, compressible fluid is first formulated in
terms of a NLSE with modulated logarithmic and Bohm-type
nonlinearities. The modulation is due to the time dependent
temperature of the gas. Requiring the flow to be devoid of
vorticity, the assumption of similarity variables will then
dictate the dynamics to be governed by a set of nonlinear,
ordinary differential equations (ODEs).

Many earlier works, perhaps through different formula-
tions, have focused on the integrable case, which applies
to a monatomic gas only (Sec. II). In such cases, these
autonomous ODEs reduce to Ermakov systems, where the
dependent variables occur in special rational expressions.
The distinguished feature is the admittance of an integral of
motion, namely, the Ray-Reid invariant [14–16]. If, in addition,
the system is Hamiltonian, then explicit integration will be
feasible.

The main contribution here is a special class of analytic
solutions, valid for any ratio of the specific heat capacities of
the gas and, thus, not necessarily restricted to the integrable
case of monatomic gas only [17]. Another merit of the present
solution is that the density will be a Gaussian function of the
similarity variable and appears to be different from all existing
results.

In terms of flow configuration, these solutions correspond to
a Gaussian function of density, a temperature field dependent
on time only, and a velocity linear in the spatial coordinates.
These analytical expressions permit a detailed analysis of
the fluid physics. The general three dimensional setting, in
terms of an expanding gas sphere, is explained first. The fluid
properties, e.g., mass flux and Mach number, are delineated
(Sec. III). Reductions to two and 1D geometries are outlined,
and solving a highly nonlinear partial differential equation for
the unsteady velocity potential by this formulation is discussed
(Sec. IV). The special case of an expanding, 1D gas column
with mass injection is derived (Sec. V). Precise comparisons
with, and differences from, earlier works in the literature are
given in Sec. IV.
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II. FORMULATION

The motion of a compressible fluid is governed by the
conservation laws of mass, momentum, and energy. The first
two principles, written with standard notations (q being the
velocity vector), are

∂ρ

∂t
+ div(ρq) = 0, (1)

∂q
∂t

+ (q · ∇)q = −∇p

ρ
. (2)

The energy balance is accounted for through a search for
flows with constant entropy. Nevertheless, the exact solutions
developed in this paper will be shown to satisfy a conventional
form of the energy equation to be discussed in further detail in
Sec. III.

The entropy S is calculated from (γ being the ratio of the
specific heat capacities)

S = − ln ρ + 1

γ − 1
ln T , γ �= 1. (3)

We now look for isentropic flows where S is conserved. The
material derivative of the entropy vanishes,

∂S

∂t
+ q · ∇S = 0. (4)

We also assume an ideal gas law and adopt scaled
coordinates such that the gas constant is unity, i.e.,

p = ρT . (5)

We will attempt to produce a special class of exact solutions
for compressible flows satisfying Eqs. (1)–(5).

To begin, the continuity equation can also be rewritten as

divq = − 1

γ − 1

D

Dt
ln T , γ �= 1, (6)

where the material derivative is

D

Dt
= ∂

∂t
+ (q · ∇).

Likewise, the momentum equation can be cast in two
equivalent forms

∂q
∂t

+ (q · ∇)q = T ∇S − γ

γ − 1
∇T ,

(7)

or
∂q
∂t

+ (q · ∇)q + T ∇ ln ρ + ∇T = 0.

One now looks for special configurations where the tem-
perature T is a function of time t only, i.e., independent of x,
y, and z. Furthermore, we seek irrotational flows where the
velocity vector is a gradient of a scalar potential �,

q = ∇�. (8)

The Madelung transformation,

� = ρ1/2 exp

[
i
�

2

]
, (9)

reduces the whole formulation to the nonlinear Schrödinger
equation,

i
∂�

∂t
+ ∇2� − T (t)(ln |�|)� −

(∇2 |�|
|�|

)
� = 0, (10)

a NLSE with both Bialynicki-Birula- (logarithmic) type and de
Broglie–Bohm-type potential terms for the complex envelope
�. Here, the logarithmic potential is being modulated in time,
since the temperature will fluctuate as the gas flows.

Motivated by the gausson of the logarithmic NLSE [8], one
searches for an irrotational velocity field (i, j, and k are unit
vectors in the x, y, and z directions),

q =
{

ȧ(t)

a(t)
[x − λ(t)] + λ̇(t)

}
i +

{
ḃ(t)

b(t)
[y − μ(t)] + μ̇(t)

}
j

+
{

ċ(t)

c(t)
[z − θ (t)] + θ̇ (t)

}
k, (11)

together with a density given by

ρ =σ (t) exp

{
+ [x − λ(t)]2

a2(t)
+ [y − μ(t)]2

b2(t)
+ [z − θ (t)]2

c2(t)

}
.

(12)

While an exponentially decreasing density field seems
more natural, the particular solution we study below will lead
to a negative temperature with such density. The increasing
exponential function of Eq. (12) will imply that this solution
will be restricted to a finite domain only to avoid the problem
of an infinite mass.

A. Insight from fluid mechanics

A remark on the justification and usage of a Gaussian profile
in Eq. (12), from the viewpoint of fluid mechanics, might
be helpful. From classical fluid dynamics, the mathematical
structures of gas dynamics equations and those of shallow
water waves are similar. Indeed, velocity profiles as linear
expressions of spatial coordinates multiplied by functions
of time have been used in shallow water waves a long time
ago [18]. The present paper attempts to extend this reasoning
to gas dynamics. The density must then be Gaussian, and the
algebra can vividly be demonstrated for the simple case of 1D
steady barotropic flow (G1,G2 = functions, csound = speed of
sound, and c2

sound = dp/dρ [19,20]),

uux = −c2
soundρx

ρ
.

If a linear expression in x,

u = G1(t)x

is assumed, then it follows immediately that
ρx

ρ
= G2(t)x,

if csound depends on time only, as in the present case, and thus,

ρ ∼ exp

[
G2(t)x2

2

]
.

In fact, a similar expansion format has also been used in
treating a harmonic oscillator [21].
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Returning now to the analytical formulation, mass conser-
vation (1) and Eqs. (11) and (12) now show that

σ = C1

abc
,

where Cn, n as an integer, will denote constants in this paper.
If the temperature field depends on time t only, Eq. (6) will
imply

(abc)γ−1 = C2

T
. (13)

The next step is the consideration of momentum, where
Eq. (7) will give

λ̈ = μ̈ = θ̈ = 0, (14)

and, thus, a system of order 6 (C0 = −2C2),

aä = C0

(abc)γ−1
, bb̈ = C0

(abc)γ−1
, cc̈ = C0

(abc)γ−1
. (15)

The general solution of Eq. (14) would be

λ = λ1t + λ0, μ = μ1t + μ0, θ = θ1t + θ0, (16a)

where λ0, λ1, μ0, μ1, θ0, and θ1 are constants. For most of the
analysis in Sec. III, in order to illustrate the flow physics in a
succinct manner, we will look at the degenerate case and will
just set, for simplicity,

λ = μ = θ = 0. (16b)

Spherically symmetric flow configurations are then ob-
tained, and precise comparisons with existing works are
tabulated in Sec. VI [22–28]. The advantage of the present
approach, in contrast to searching directly for spherically
symmetric solutions, is that slightly more general three
dimensional solutions are possible by taking λ, μ, and θ as
linear functions in time t, i.e., Eq. (16a).

The system (15) reduces to one form of Ermakov equations
for a special value of γ = 5/3, i.e., monatomic gas [17,27]. The
objective here is to identify a special class of exact solutions
of Eq. (15) valid for arbitrary values of γ , and, thus, new flow
configurations of a polyatomic gas will be revealed.

III. AN EXPANDING SPHERE OF GAS

Although the analysis for the integrable case of Eq. (15),
for γ = 5/3 or a monatomic gas, is highly elegant and
intriguing, the practical interests might be constrained by these
considerations:

(a) Many flows in science and engineering contexts involve
diatomic gases, e.g., air.

(b) In many studies of monatomic gas, the Lagrangian
formulations are employed for the velocities, which might
create an inconvenience in comparing results with a significant
portion of the existing literature in fluid mechanics.

A. An exact solution

The main contribution of the present paper is to recognize
a special solution of Eq. (15),

a = b = c = tm, (17)

0 < m = 2

3γ − 1

= 2

2γ + (γ − 1)
<

1

γ
< 1 if γ > 1,

(18)
C0 = m(m − 1).

Consequently, the fluid dynamics variables of velocity,
density, and temperature are given by (if λ, μ, and θ are all
zero)

q = mx

t
i + my

t
j + mz

t
k, (19)

ρ = ρ0

t3m
exp

[
+x2 + y2 + z2

t2m

]
, (20)

T = m(1 − m)

2t2(1−m)
, (21)

where ρ0 is a constant reference density. The pressure is given
by Eq. (5). Equations (19)–(21) constitute an exact solution
for the conservation laws of mass and momentum (1) and (2).

Physically, the fluid is flowing radially outward as m is
positive, but the speed is decreasing algebraically with respect
to time. Given any fixed spherical boundary, the density is an
increasing function of spatial coordinates but is a decreasing
function of time as a consequence of this outflow. Temperature
is uniform throughout space at any fixed instant but also
decays as time evolves. In fact, the flow can be regarded as an
explosion at time t = 0 and the subsequent spherical expansion.

B. Analysis of the flow physics

(a) Vorticity—The flow is devoid of vorticity as a result
of the irrotational flow assumption (8), i.e., curl (q) = 0, q =
gradient of the scalar potential �.

(b) Mass—The total mass of a gas contained in any volume
V is given by ∫∫∫

V

ρdx dy dz,

with ρ given by Eq. (20). This can be handled by simple
changes of variables,

ξ = x

tm
, η = y

tm
, ζ = z

tm
.

(c) Expansion of a spherical gas cloud—It is instructive to
consider a gaseous mass contained initially in the sphere of
radius R0 at the initial time t0,

x2 + y2 + z2 = R2
0 at t = t0. (22)

The mass within this sphere is given by

ρ0

∫∫∫
x2+y2+z2�R2

0

exp

[
+x2 + y2 + z2

t2m

]
dx dy dz

t3m

= ρ0

∫∫∫
t2m
0 (ξ 2+η2+ζ 2)�R2

0

exp[+ξ 2 + η2 + ζ 2]dξ dη dζ.

(23)

Due to the outward radial velocities, this gas cloud would
have expanded to a new radius R1 at time t1. The mass within
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this new sphere will be given by an expression similar to
Eq. (23) except that the integral is taken over

x2 + y2 + z2 = R2
1, or t2m

1 (ξ 2 + η2 + ζ 2) = R2
1 . (24)

Since all velocity vectors are pointing away from the origin,
no fluid particles exterior to this sphere will enter the sphere.
Thus, to conserve mass as given by Eq. (23), we must have

R0

tm0
= R1

tm1
, (25)

and this expression determines the new radius R1 in terms of
the new time t1. Consequently, for the mass of gas initially
contained in a sphere of R0, the radius R, at any subsequent
time t, must satisfy R ∼ tm.

(iv) Mass flow—The Mach number M, ratio of flow speed
to the local speed of sound, for the gas on the surface of a
sphere R0 at time t0, Eq. (22), is calculated from Eqs. (19)
and (21) as

M2 = 2mR2
0

γ (1 − m)t2m
0

. (26)

If Eq. (25) holds, when the gaseous particles expand to
a radius R1 at time t1, the Mach number remains constant.
This rather surprising conclusion comes from two curious
coincidences. First, in a Lagrangian description (following
the particle), the velocity decreases with distance. Second, the
temperature, related to the square of the sound speed, also
drops with time, causing this ratio of flow speed to local sound
speed to remain constant.

The mass flux over the surface of this sphere, obtained by
integrating the product of density and velocity over an area
integral, is

4πmR3
0

t3m+1
0

exp

(
+ R2

0

t2m
0

)
. (27)

For a fixed time t0, if one now considers Eq. (27) as a
function of the radius R0, the mass flux at the surface of a
larger sphere will be greater than that of a smaller sphere. This
is consistent with the fact that the density will be a decreasing
function of time as the outward flux is larger than the influx in
such an annular region.

(v) Energy equation—The internal energy E of a gas is
given by E = CvT, where Cp and Cv are the specific heat
capacities at constant pressure and volume, respectively. In a
normalized system where the gas constant is unity,

Cp − Cv = 1,
Cp

Cv

= γ,

and, thus, one finds

Cv = 1

γ − 1
, E = CvT . (28)

One very common form for the governing equation of E is

ρ

[
∂E

∂t
+ (q · ∇)E

]
= −p(∇ · q) + ∇ · (k∇T ) (29)

where k is the thermal conductivity. For a temperature field
dependent on time only, the spatial derivatives will vanish.

One can then readily verify that Eq. (29) is satisfied for
Eqs. (5), (19)–(21), and (28).

(vi) Drawback and deficiency—A drawback for the solu-
tions (19)–(21) is that, for any fixed time, the density and
velocities increase indefinitely at great distances from the
origin. Hence, consideration must be restricted to a finite
domain. Second, a temperature field independent of the
spatial coordinates will mean the absence of heat conduction.
Extension to a wider class of temperature profiles will be left
for future studies.

C. Connection with NLSE

As a by-product of the whole analysis, an exact solution can
be found for the following logarithmic NLSE with a Bohm-
type potential:

i�t + ∇2� − m(1 − m)

2t2(1−m)
(ln |�|)� −

(∇2|�|
|�|

)
� = 0.

(30)

This is given by

� =
√

ρ0

t3m/2
exp

[
+ x2 + y2 + z2

2t2m

+ im

4t
(x2 + y2 + z2) + iG(t)

]
. (31)

This solution is different from the gausson as there are
both algebraic and exponential components contributing to the
magnitude of the complex envelope �, resulting from a Bohm-
type nonlinearity �|� |/|� | in the governing equation (30)
in addition to the logarithmic potential. For system (30) and
solution (31), m is a free parameter. The function G(t) arises
from the time dependence of the velocity potential and has
no direct physical consequence in terms of fluid velocity and
density. It is determined by direct substitution into Eq. (30)
and equating terms involving only time.

IV. PERSPECTIVES FROM CLASSICAL GAS DYNAMICS

It will be instructive to study this class of exact solutions
from the perspective of classical fluid mechanics.

A. Density gradient and vorticity

In dynamic meteorology, it is not uncommon to have
vorticity generated from a density gradient. The general
vorticity equation for a fluid with variable density is (ω is
the vorticity vector)(

∂

∂t
+ q · ∇

)
ω

ρ
=

(
ω

ρ
· ∇

)
q + 1

ρ3
(∇ρ × ∇p).

In the present case of an ideal gas (p = ρT) with temperature
being a function of time t only, the spatial gradients of p and ρ

are parallel, and the vector product is zero. Hence, a flow with
zero vorticity initially will remain irrotational.

B. One dimensional gas dynamics

The 1D version of Sec. III deserves further study as the
algebraic complexity reduces considerably. In fact, the whole
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LOGARITHMIC NONLINEAR SCHRÖDINGER EQUATION . . . PHYSICAL REVIEW E 84, 016308 (2011)

expansion scheme still works, provided we neglect terms
associated with the higher dimensions. For the 1D case,
Eq. (15) degenerates to

aä = C0

aγ−1
, (32)

i.e., one equation for a(t) with b(t) and c(t) absent [or setting
b(t) and c(t) to be unity]. The other fluid properties are given
by [with Eq. (14), still holds]

ρ = ρ0

a
exp

[
(x − λ)2

a2

]
, (33)

u = ȧ

a
(x − λ) + λ̇. (34)

Along the line of reasoning of Eq. (17), a solution for
Eq. (32) is

a(t) = t2/(γ+1).

This set of solutions will be employed to study a 1D
expansion of a gas column in the next section.

C. Unsteady potential flow in two dimensions

A compressible irrotational flow will have a highly nonlin-
ear governing equation for the velocity potential [1,19,20]. It
will be illuminating to present an unsteady version first. The
solution scheme in the present paper will then be utilized to de-
rive an exact solution for this complicated evolution equation.

We first start with the x-momentum equation and Eq. (5) (a
similar situation will hold for the y direction, csound = speed
of sound),

γ

c2
sound

(ut + uux + vuy) = −ρx

ρ
.

With the assumption of irrotational flow (8), integration in
spatial coordinates will give

γ

c2
sound

(
�t + �2

x + �2
y

2

)
= − ln(ρ).

The arbitrary function of time in this integration will be
accounted for later by incorporating this arbitrary function in
the velocity potential.

Differentiation of this equation for ln(ρ) with respect to t,
x, and y and substitution into the continuity equation,

ρt + uρx + vρy + ρ(ux + vy) = 0,

will give (on canceling the common factor ρ)

1

γ
(�xx + �yy) =

[
1

c2
sound

(
�t + �2

x + �2
y

2

)]
t

+�x

[
1

c2
sound

(
�t + �2

x + �2
y

2

)]
x

+�y

[
1

c2
sound

(
�t + �2

x + �2
y

2

)]
y

. (35)

In the limit of an incompressible fluid (csound → ∞), the
Laplace equation is recovered.

To solve for a two dimensional flow along the theme of this
paper, the governing differential equations are still Eqs. (11)–
(13) and (15) but with the z direction terms involving c(t)
absent. The expression for a(t) is a(d2a/dt2) = C0a

2(γ−1), i.e.,

a = t1/γ .

The velocity vector is

q = [x/(γ t)]i + [y/(γ t)]j.

The potential easily is deduced to be

� = [(x2 + y2)/(2γ t)] + g(t), (36)

where g(t) measures the time dependence of the potential and
has no direct physical significance in terms of the velocity or
density. The speed of sound is given by (gas constant has been
normalized to unity)

c2
sound = γ T = (γ − 1)/Y, Y = 2γ t2(γ−1)/γ .

Substituting Eq. (36) into Eq. (35) shows that the (x2

+ y2) terms on both sides match exactly, while g(t) is
defined by the terms involving only time t. Thus, the present
family of solutions can provide a simple exact solution for
the unsteady potential Eq. (35), with extensions to other
dimensions conceptually straightforward.

V. ONE DIMENSIONAL GAS FLOW

The present formulation can be employed to produce an
exact description for a 1D, ideal gas flow in a finite domain.
Consider a gas, with γ again being the ratio of specific heat
capacities, confined between a fixed wall on the left (x = 0), and
a right boundary that is moving further to the right at a given,
but otherwise arbitrary, velocity. New fluid is being injected
at the fixed wall with a constant speed. Equations (32)–(34)
with λ = V0t , V0 constant, will give an exact description of
this scenario as

0 < x < V0t, t > 0,

ρ = ρ0

t2/(γ+1)
exp

[
(x − V0t)2

t4/(γ+1)

]
, (37)

T = (γ − 1)/[(γ + 1)2 Z], Z = t2(γ−1)(γ+1), p = ρT ,

u = 2

γ + 1

(
x − V0t

t

)
+ V0

= 2x

(γ + 1) t
+

(
γ − 1

γ + 1

)
V0. (38)

Obviously, the apparent singularity t = 0 must be excluded
from consideration, and this solution is only applicable for
t > 0. In physical terms, the two walls coincide or are at an
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FIG. 1. (Color online) A three dimensional plot for the density
ρ of Eq. (37) versus x and t, ρ0 = V0 = 1. The density field is well
defined for all values of x and t. However, if the gas column model of
Sec. V is adopted, the fluid is confined in the interval 0 < x < V0t .

infinitesimal distance apart at t = 0. Fluid is injected at a speed
of (γ − 1)V0/(γ + 1) (which is u at x = 0) into the domain
0 < x < V0t . The boundary on the right side is translated
uniformly further to the right starting at t = 0. The fluid speed
at x = V0t is V0 too, and, thus, the normal velocities of the
fluid and the wall are identical. The density, which is defined
for all x and t, is illustrated in Fig. 1. The minimum will occur
at x = V0t . Thus, in the domain 0 < x < V0t , the density is a
monotonically decreasing function with the highest density at
the left boundary, the site of fluid injection.

A particularly illuminating physical quantity to study is
the mass confined within this gaseous expansion. From first
principles, for a 1D gas flow, the mass in the domain 0 < x <

V0t is ∫
ρ(x,t)dx,

where the lower and upper limits should be 0 and V0t ,
respectively. Using Eq. (37) and defining z = x − V0t , this
mass is∫ V0t

0
ρdx =

∫ V0t

0

ρ0

t2/(γ+1)
exp

(
z2

t4/(γ+1)

)
dz.

On using a new variable,

ξ = z

t2/(γ+1)
,

this mass is∫ �

0
ρ0 exp(ξ 2)dξ, where � = V0t

(γ−1)/(γ+1). (39)

Next, we are going to show that this is exactly the same mass
resulting from the influx at the left wall. The density [ρ(x, t)]
and velocity [u(x, t)] are functions of x and t, Eqs. (37) and (38).
The mass flux generally is given by the density multiplied by
the velocity. Consequently, the total mass injection at the left
wall, from t = 0 up to time t, is∫ t

0
ρ(0,τ )u(0,τ )dτ .

From Eqs. (37) and (38), this expression is∫ t

0

ρ0

τ 2/(γ+1)
exp

[
V 2

0 τ 2(γ−1)/(γ+1)
] (

γ − 1

γ + 1

)
V0dτ.

By a simple change of variable,

V0τ
(γ−1)/(γ+1) = η,

this is the same as Eq. (39). Consequently, mass is conserved.
Thus, we can conclude that this theory can provide an exact

formulation of a gaseous expansion due to a constant mass
flux at a fixed wall, while the other wall is allowed to move at
a constant velocity.

VI. CONCLUSIONS AND DISCUSSIONS

A class of exact solutions for irrotational, isentropic, and
compressible flows is obtained by special expansion schemes
of the fluid properties. Physically, the density is Gaussian
in terms of a similarity variable, while the temperature is a
function of time only. The velocity depends linearly on the
spatial coordinates. The present class of solutions is valid
for any ratio of the specific heat capacities of the gas. Thus,
this extends many elegant and highly intriguing works in the
literature that treated the monatomic (i.e., integrable) case only.

The present algorithm is applicable to 1D, two, and three di-
mensions. As an illustrative example, an analytical description
of a 1D gas flow with mass injection through one boundary
is possible. From the perspective of classical fluid mechanics,
this approach, in terms of similarity variables, provides an
exact solution for the velocity potential in unsteady, inviscid,
irrotational, and compressible flows.

Employing the context of gas clouds in spherical geometry,
a remark on the quantitative comparisons between existing
works and this paper is in order. Earlier works usually made
one or more of these assumptions:

(1) polynomial [22–25] or exponential density distributions
[26],

(2) monatomic gas (γ = 5/3) [17,27], or
(3) slab geometry [23].
We also verify that our results are different from several

existing ones in the dynamics of a spherical gas cloud [28].
Consequently, the results here are different from those in the
literature.

Nevertheless, there are several points where this class of
exact solutions might need further refinement and improve-
ment. First, the velocity and density increase indefinitely with
distance from the origin, and, hence, a finite domain must be
considered. Indeed, exact solutions with an infinite amount of
energy do exist. A well known example is the Burgers vortex
in a straining flow [29–31], which models the dynamics of
vortex tubes in turbulence. Quantitative comparisons with the
present paper are difficult, as we deal with inviscid, irrotational,
and compressible flows here. None of these conditions are
applicable to the Burgers vortex.

Second, the lack of a spatial derivative for the temperature
for the present class of solutions implies that heat conduction
cannot be important in this model. Finally, another potential
application of the present formulation is in stellar dynamics
and astrophysics, where gravitational effects might have to be
restored. Extensions to other fields of physics would also be
valuable. In fact, a similar solution with a Gaussian density
has also been employed in laser and plasma studies [32,33].
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However, the physical contexts there are different, with the
focus on the energy equation and heat effects of the lasers.

Exact solutions are rare in compressible flows [34–36], and,
in fact, for fluid mechanics in general. Hence, results obtained
in this paper can provide valuable physical insight and may
serve as benchmarks for testing numerical codes.
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[30] K. Higgins, M. Rütten, A. Ooi, and M. S. Chong, Fluid Dyn.

Res. 41, 035502 (2009).
[31] T. Gallay and Y. Maekawa, Commun. Math. Phys. 302, 477

(2011).
[32] J. H. Hunter and R. A. London, Phys. Fluids 31, 3102 (1988).
[33] L. Ferrario, J. Plasma Phys. 64, 1 (2000).
[34] J. G. Wouchuk, C. Huete Ruiz de Lira, and A. L. Velikovich,

Phys. Rev. E 79, 066315 (2009).
[35] G. E. Crooks and C. Jarzynski, Phys. Rev. E 75, 021116 (2007).
[36] A. R. Manwell, Wave Motion 2, 83 (1980).

016308-7

http://dx.doi.org/10.1103/PhysRevE.82.036319
http://dx.doi.org/10.1103/PhysRevE.82.036319
http://dx.doi.org/10.1103/PhysRevE.80.036208
http://dx.doi.org/10.1098/rspa.2009.0579
http://dx.doi.org/10.1098/rspa.2009.0579
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.07.006
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.07.006
http://dx.doi.org/10.1017/S0022112098002675
http://dx.doi.org/10.1088/0031-8949/20/3-4/033
http://dx.doi.org/10.1080/03091920801956957
http://dx.doi.org/10.1209/epl/i2003-00547-6
http://dx.doi.org/10.1209/epl/i2003-00547-6
http://dx.doi.org/10.1103/PhysRevA.32.1201
http://dx.doi.org/10.1103/PhysRevE.61.3122
http://dx.doi.org/10.1103/PhysRevE.61.3122
http://dx.doi.org/10.1103/PhysRevA.80.033819
http://dx.doi.org/10.1103/PhysRevA.80.033819
http://dx.doi.org/10.1063/1.524625
http://dx.doi.org/10.1006/jmaa.1996.0076
http://dx.doi.org/10.1006/jmaa.1996.0076
http://dx.doi.org/10.1088/1751-8113/43/45/455214
http://dx.doi.org/10.1088/1751-8113/43/45/455214
http://dx.doi.org/10.1017/S0022112096008051
http://dx.doi.org/10.1017/S0022112081001882
http://dx.doi.org/10.1103/PhysRevA.33.3502
http://dx.doi.org/10.1007/s12036-009-0002-0
http://dx.doi.org/10.1007/s12036-009-0002-0
http://dx.doi.org/10.1017/S0022112008001043
http://dx.doi.org/10.1017/S0022112008001043
http://dx.doi.org/10.1063/1.869979
http://dx.doi.org/10.1063/1.869258
http://dx.doi.org/10.1006/jmaa.2000.7073
http://dx.doi.org/10.1111/j.0022-2526.2005.01552.x
http://dx.doi.org/10.1111/j.0022-2526.2005.01552.x
http://dx.doi.org/10.1088/0169-5983/41/3/035502
http://dx.doi.org/10.1088/0169-5983/41/3/035502
http://dx.doi.org/10.1007/s00220-010-1132-6
http://dx.doi.org/10.1007/s00220-010-1132-6
http://dx.doi.org/10.1063/1.866965
http://dx.doi.org/10.1017/S0022377800008382
http://dx.doi.org/10.1103/PhysRevE.79.066315
http://dx.doi.org/10.1103/PhysRevE.75.021116
http://dx.doi.org/10.1016/0165-2125(80)90036-0

