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We prove that all the meromorphic solutions of the nonlinear differential equation
c0u�+6u4+c1u�+c2uu�+c3u3+c4u�+c5u2+c6u+c7=0 are elliptic or degenerate el-
liptic, and we build them explicitly. © 2010 American Institute of Physics.
�doi:10.1063/1.3319568�

I. INTRODUCTION

When a system is governed by an autonomous nonlinear algebraic partial differential equation
�PDE�, it frequently admits some permanent profile structures such as fronts, pulses, kinks, etc.,16

and usually these profiles are mathematically some single-valued solutions of the traveling wave
reduction �x , t�→x−ct of the PDE to an ordinary differential equation �ODE�. The physical
motivation of the present work is to find such solutions in closed form. Since this is a difficult
mathematical problem, we restrict here to a simple case �a third order nonlinear ODE� and solve
it completely. The method we used here is a refinement of Eremenko’s method used in Ref. 4 as
well as Refs. 5 and 6, which is based on the local singularity analysis of the meromorphic
solutions of the given differential equations as well as the zero distribution and growth rate of the
meromorphic solutions by using Nevanlinna theory. This is a very powerful method. For example,
it was used by Eremenko5 to characterize all meromorphic traveling wave solutions of the
Kuramoto–Sivashinsky �KS� equations. In fact, Eremenko showed that all the meromorphic trav-
eling wave solutions of the KS equations belong to the class W �such as Weierstrass�, which
consists of elliptic functions and their successive degeneracies, i.e., elliptic functions, rational
functions of one exponential exp�kz�, k�C, and rational functions of z.

In general, even if we know that the solutions belong to the class W, it is still difficult to find
their explicit form. To overcome this problem, we shall apply the subequation method introduced
in Ref. 13 and developed in Ref. 3. In order to emphasize the method, we will choose a test
equation according to the following criteria:

�1� to have a small differential order n;
�2� to have only nonrational Fuchs indices, apart from the ever present �1 index;
�3� to be of the form u�n�= P�u�n−1� , . . . ,u� ,u�, with P as a polynomial of its arguments;
�4� to have movable poles of the order 1; and
�5� to be complete in the classical sense15 �see details in Ref. 2, p. 122�, i.e., to include all

admissible nondominant terms.

The requirement for nonrational Fuchs indices sets n�3. Let us take the complete autono-
mous third order polynomial ODE with simple poles,
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d0u� + d1uu� + d2u�2 + d3u2u� + d4u4 + c1u� + c2uu� + c3u3 + c4u� + c5u2 + c6u + c7 = 0. �1�

This equation is indeed complete in the sense that it includes all polynomial terms having a
singularity degree at most equal to 4, as seen from the generating function

1

�1 − tu��1 − t2u���1 − t3u��
= 1 + ut + �u2 + u��t2 + �u3 + uu� + u��t3

+ �u4 + u2u� + u�2 + uu��t4 + O�t5� . �2�

Let us choose one particular set of dominant terms �the ones with coefficients dj, which have
quadruple poles� so as to enforce from the beginning the condition that the Fuchs indices be
nonrational. After setting c3=0, without loss of generality, our test equation will be normalized as

c0u� + 6u4 + c1u� + c2uu� + c4u� + c5u2 + c6u + c7 = 0, �3�

Let u be a meromorphic solution of the ODE �3�. We first check that if u has a movable pole
at z=z0, then u has only three distinct Laurent series expansions at z0. Note that if z0 is a pole of
u, it must be a simple pole. Therefore, in a neighborhood of z=z0, the Laurent series of the
meromorphic solution u is of the form

u�z� = u−1�z − z0�−1 + u0 + u1�z − z0� + ¯ , u−1 � 0. �4�

Denote a any one of the cubic roots of c0. Substituting the above Laurent series into the ODE �3�
and balancing the leading terms, we obtain u−1=a, and u0= �−2c1a+c2a2� / �24c0�. We are going to
prove that there are at most three distinct Laurent series expansions at z0. If one linearizes the
ODE �3� around the movable singularity z=z0 �Ref. 2, p. 114�, the resulting linear ODE has the
Fuchsian type at z0, and its three Fuchs indices r are defined by

�r + 1��r2 − 7r + 18� = 0. �5�

Hence, the Fuchs indices are equal to r=−1, �7��−23� /2. Because of the absence of any
positive integer in the set of values of r, all other coefficients ui are uniquely determined �Ref. 2,
p. 90� by the leading coefficient u−1. Hence, there are at most three meromorphic functions with
poles at z=z0 satisfying the ODE �3�.

We shall study the third order nonlinear differential equation �3� and show that all meromor-
phic solutions of this differential equation belong to the class W. More specifically, our results are
the following.

Theorem 1: If the ODE (3) has a particular meromorphic solution u, then u belongs to the
class W. Moreover, a necessary and sufficient condition for the ODE (3) to admit a particular
meromorphic solution is to belong to the following list:

S3a: c1,c6 = arbitrary, c2 = 0, c5 = 0, c7 = 0, c4 =
c1

2

12c0
, �6�

S3b: c5,c6 = arbitrary, c1 = 0, c2 = 0, c4 = 0, c7 =
c5

2

128
, �7�

S2A: c1,c4 = arbitrary, c2 = 0, c5 =
c1

2 − 12a3c4

4a4 , c6 = −
c1�c1

2 + 36a3c4�
144a6 ,

c7 =
�12a3c4 − c1

2��36a3c4 − 11c1
2�

1536a8 , �8�
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S2B: c1,c2 = arbitrary, c4 =
44c1

2 + 8ac1c2 − a2c2
2

144a3 ,

c5 =
− 32c1

2 − 24ac1c2 − 7a2c2
2

48a4 , c6 = −
�c1 + ac2��12c1

2 + 6ac1c2 + a2c2
2�

144a6 ,

c7 = −
�4c1 + 3ac2��48c1

2 + 20ac1c2 + a2c2
2�

55296a7 , �9�

S1: c1,c2,c4,c5 = arbitrary,

1152a6c6 = − 56c1
3 + 60ac1

2c2 − 18a2c1c2
2 + a3c2

3 + 288a3c1c4 − 144a4c2c4 − 96a4c1c5 + 48a5c2c5,

21332a8c7 = − 176c1
4 + 128ac1

3c2 + 24a2c1
2c2

2 − 32a3c1c2
3 + 5a4c2

4 + 2688a3c1
2c4 − 1536a4c1c2c4

+ 96a5c2
2c4 − 6912a6c4

2 + 128a4c1
2c5 − 512a5c1c2c5 + 224a6c2

2c5 + 4608a7c4c5

+ 2304a8c5
2. �10�

We shall apply Eremenko’s method5 to prove the first part of Theorem 1. Here, we shall
assume that the readers are familiar with the standard terminology and results of Nevanlinna
theory. The standard references of this theory are Refs. 8, 12, and 14 �see also Ref. 5 for a quick
introduction�. Our argument is slightly different from that of Eremenko and it makes use of the
following version of Clunie’s lemma �see Ref. 12 �Lemma 2.4.2� and see also Ref. 17�.

Lemma 1: Let f be a transcendental meromorphic solution of

fnP�z, f� = Q�z, f� ,

where P�z , f� and Q�z , f� are polynomials in f and its derivatives with meromorphic coefficients
�a� ��� I� such that m�r ,a��=S�r , f� for all �� I. If the total degree of Q�z , f� as a polynomial in
f and its derivatives is less than or equal to n, then

m�r,P�r, f�� = S�r, f� .

Now let u be a function meromorphic in the complex plane that satisfies the above ODE �3�.
If u is rational, then we are done. So suppose u is a transcendental meromorphic solution of Eq.
�3�, then we have

− 6u4 = c0u� + c1u� + c2uu� + c4u� + c5u2 + c6u + c7, �11�

Take f =u, P=u, n=3, and apply Clunie’s lemma �Lemma 1� to the above equation, we conclude
that m�r ,u�=S�r ,u�, and hence �1−o�1��T�r ,u�=N�r ,u�. We claim that u must have infinitely
many poles. Assume it is not the case, then N�r ,u�=O�log r�. Therefore, T�r ,u�=O�log r�, which
is impossible as u is transcendental.

Second, we prove that if u is a transcendental meromorphic solution, then u is a periodic
function. Recall that there are at most three meromorphic functions with poles at z=z0 satisfying
the ODE �3�. Now let zj , j=1,2 ,3 , . . . be the poles of u�z�, then the functions wj�z�=u�z+zj −z0�
are meromorphic solutions of the ODE �3� with a pole at z0. Thus, some of them must be equal.
Consequently, u is a periodic function.

Without loss of generality, we may assume that u has a period of 2�i. Let D= �z :0� Im z
�2��. If u has more than three poles in D, then by the previous argument, we can conclude that
u is periodic in D, and hence it is indeed an elliptic function and we are done.

Now suppose u has at most three poles in D. Since u is a periodic function with period 2�i,
we have N�r ,u�=O�r�, as r→�. It follows from �1−o�1��T�r ,u�=N�r ,u� that T�r ,u�=O�r�. By
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Nevanlinna’s first fundamental theorem, we know that for any a�C, N�r ,1 / �u−a��=O�r� as r
→�. By the periodicity of u, we conclude that u takes each a finitely many times in D. Hence, the
function R�z�=u�ln z� is a single-valued analytic function in the punctured plane C \ �0� and takes
each a�C finitely many times. It follows that 0 is a removable singularity of R and R can then be
extended to a meromorphic function on C. Hence, R is a rational function as it takes each complex
number finitely many times. Therefore, u�z�=R�ez� belongs to the class W and this completes the
proof of the first part of Theorem 1.

Remark: From the above proof, we notice that if u is an elliptic solution, then u has at most
three �simple� poles in each fundamental polygon 	. Recall that the residue of u at any pole must
be one of a, 
a, and 
2a, where 
 is the cubic root of unity. Since the sum of the residues of all
the poles in any fundamental polygon 	 is zero, u must have three distinct simple poles in 	, and
hence we have three distinct Laurent series at z0.

Remark: If u�z�=R�ekz�, where R is some rational function, then R has at most three �simple�
poles in C \ �0�. We are going to show that R cannot have a pole at 0. Suppose we write u�z�
=R�Z�=r0 /Zn+	i=1

3 ri / �Z−Zi�+q�Z�, where q is a polynomial in Z=ekz. Substituting u�z�=R�Z�
into ODE �3� and letting Z tend to infinity, we can conclude that q equals to some constant C. Now
letting Z tend to 0, we can deduce that r0=0. Hence, u�z�=	i=1

3 ri / �ekz−Zi�+C, where Zi , C�C.
Finally, if u is rational, then u will have at most three �simple� poles in C. Similarly, we can show
that u must be of the form 	i=1

3 ri / �z−zi�+C, where ri , C�C.

II. EXPLICIT SOLUTIONS IN THE CLASS W

Let us determine the constraints on the coefficients cj of �3� for meromorphic solutions to
exist, and let us determine all these meromorphic solutions in closed form. According to Sec. I,
these solutions are necessarily elliptic or degenerate of elliptic �i.e., rational in one exponential
ekz , k�C or rational in z�, i.e., they belong to the class W.

If the meromorphic solution is elliptic, by a classical theorem, the sum of the residues of the
three Laurent series for u �Eq. �4�� must vanish, and similarly for any rational function of u, u�,
and u�. These necessary conditions10 are first established in Sec. II A.

If the solution is elliptic, one knows the elliptic orders of u and u�, they are, respectively,
equal to three �three simple poles� and six �three double poles�. Therefore, by a classical theorem
of Briot and Bouquet �see Ref. 1 �p. 277�, Ref. 7 �Pt. II, Chap. IX, p. 329�, and Ref. 9 �p. 424��,
the elliptic solution obeys a first order algebraic equation whose degree in u� is of the order of u
�three� and degree in u is of the order of u� �six�,

F�u,u�� 
 	
k=0

m

	
j=0

2m−2k

aj,ku
ju�k = 0, a0,m � 0, �12�

with m=3. The complex constants aj,k, with a0,m�0, are then determined by the algorithm pre-
sented in Ref. 13, i.e., by requiring each of the three Laurent series �4� to obey �12�. The search for
all third degree subequations �12� obeyed by the three Laurent series is performed in Sec. II B.

As to those solutions of �3�, which are degenerate of elliptic, they also obey a first order
equation �12�, whose degree m is at most 3. Because of the singularity structure of �3� �three
distinct Laurent series�, any mth degree subequation, 1�m�3, must have m distinct Laurent
series. The search for all second or first degree subequations �12� is performed in Secs. II C and
II D.

Let us first establish all these first order subequations. Their general solution may be either
single valued �and hence in class W� or multivalued. The explicit integration of the single-valued
subset will provide as a final output all the meromorphic solutions of �3� in closed form.

A. Residue conditions

If �3� admits an elliptic solution, it is necessary that, for any rational function of u and its
derivatives, the sum of the residues inside a period parallelogram be zero,
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∀k � N ∀ n � N res	
i=1

3

�u�k��n = 0. �13�

The first conditions are

�
k = 0, n = 2: c2 = 0

k = 0, n = 3: c4 =
c1

3

12a3

k = 0, n = 5: c1c5 = 0

k = 0, n = 7: c1c7 = 0

k = 1, n = 4: �c6�c5
2 − 128c7� = 0 if c1 = 0�, �c7�c1

3 + 36a0
2c6� = 0 if c1 � 0� .

�
�14�

When the computation is limited to k�4, n�10, this defines three and only three distinct
sets of fixed coefficients for a possible elliptic solution,

c2 = 0, c1 = 0, c4 = 0, c6 � 0, c7 =
c5

2

128
, �15�

c2 = 0, c1 = 0, c4 = 0, c6 = 0, �16�

c2 = 0, c1 � 0, c4 =
c1

2

12a3 , c5 = 0, c7 = 0. �17�

B. Subequations of degree 3

Denoting 
k k=1,2 ,3, cubic roots of unity, each such subequation has the necessary form

F�u,u�� 
 − �
1au� + u2��
2au� + u2��
3au� + u2� + b1u�2u + b2u�u3 + b3u5 + b4u�2 + b5u�u2

+ b6u4 + b7u�u + b8u3 + b9u� + bbu2 + bau + bc + b0 = 0, �18�

with all 
 j distinct and the additional condition to be irreducible.
The first order third degree subequation is precisely defined as

F�u,u�� 
 − a3u�3 − u6 + b1u�2u + b2u�u3 + b3u5 + b4u�2 + b5u�u2 + b6u4 + b7u�u + b8u3 + b9u�

+ bbu2 + bau + bc + b0 = 0. �19�

The algorithm13 to compute the coefficients bk is to substitute u by one of the Laurent series �4�,
which makes the right hand side of �19� become a Laurent series

F�u,u�� 
 	
j=0

+�

Fj�z − z0� j−6, �20�

then to solve the infinite set of equations

∀a ∀ j: Fj = 0. �21�

The practical resolution is as follows. First, the 21 equations Fj =0, j=0, . . . ,6, define a linear
system for the bk, which admits a unique solution and generates six nonlinear constraints among
the six ck. By considering slightly more equations in �21� �in the present case, going to j=8 is
enough�, the set of nonlinear constraints among the ck’s admits exactly two solutions, and all the
remaining equations Fj =0 identically vanish. These two solutions are

033518-5 Meromorphic solutions of a 3rd order DE J. Math. Phys. 51, 033518 �2010�



�S3a: c1,c6 = arbitrary, c2 = 0, c5 = 0, c7 = 0, c4 =
c1

2

12a0
,

S3b: c5,c6 = arbitrary, c1 = 0, c2 = 0, c4 = 0, c7 =
c5

2

128
, � �22�

and they are identical to the two residue conditions �17� and �15�.
The corresponding subequations have genus one

�au� + 4k1u�2�au� − 2k1u� + �u3 + 20k1
3 + k6�2 = 0, c1 = 12a2k1, c6 = 4k6, �23�

�au��3 + �u3 − 3k5
2u + k6�2 = 0, c5 = − 16k5

2, c6 = 4k6. �24�

The method to integrate them �Ref. 1, Sec. 249, p. 393� is to build a birational transformation to
the canonical equation of Weierstrass,

��2 = 4�� − e1��� − e2��� − e3� = 4�3 − g2� − g3. �25�

To do that, it proves convenient to introduce one of the roots e0 of the cubic polynomial of u�x�
appearing as a square in �23� and �24�, i.e., to redefine k6 by the respective relations

e0
3 + 20k1

3 + k6 = 0 and e0
3 − 3k5

2e0 + k6 = 0. �26�

Subequation �24� is one of the five first order binomial equations of Briot and Bouquet �Ref.
2, p. 105�, its general solution is classical

1

u − e0
=

���z − z0,g2,g3� − A

N1
, g2 = 0, g3 =

�e0
2 − k5

2�2�e0
2 − 4k5

2�
243a6 ,

N1 =
2�e0

2 − k5
2�2

3a3 , A =
e0�e0

2 − k5
2�

3a3 . �27�

Subequation �23� has been integrated by Briot and Bouquet �Ref. 1, Sec. 250, p. 395� by
introducing a function w defined by

au� + 4k1u =
u3 − e0

3

u − e0
w , �28�

then by establishing the birational transformation

w =
au� + 4k1u

u2 + e0u + e0
2 , u =

− 3aww� − e0w3 + 6k1w2 + 2e0

2�w3 + 1�
, �29�

finally by integrating the ODE for w,

w =
2k1

e0
+

A

� − B
, g2 =

4k1�k1
3 − e0

3�
3a4 , g3 =

e0
6 − 20e0

3k1
3 − 8k1

6

17a6 ,

g2
3 − 27g3

2 = −
�8k1

3 + e0
3�3e0

3

27a12 , A = −
e0

3 + 8k1
3

3a2 , B = −
k1

2

a2 . �30�

More generally, birational transformations from �u ,u�� to �� ,��� are obtained with an algo-
rithm due to Poincaré, implemented, for instance, by the command Weierstrassform of the
computer algebra package algcurves.11
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C. Subequations of degree 2

Let us define the second degree subequation as

F�u,u�� 
 a2u�2 − au2u� + u4 + b4u�u + b3u3 + b5u� + b2u2 + b1u + b0 = 0, �31�

with the additional condition to be irreducible. Computations similar to those mentioned in Sec.
II B provide two solutions,

�
S2A: c1,c4 = arbitrary, c2 = 0, c5 =

c1
2 − 12a3c4

4a4

c6 = −
c1�c1

2 + 36a3c4�
144a6

c7 =
�12a3c4 − c1

2��36a3c4 − 11c1
2�

1536a8

u = v −
k1

2
, c1 = − 3a2k1, c4 = 2ab2 +

3

4
ak1

2


av� −
v2 − b2

2
�2

+
3

4
�v + b��v − b��v − k1�2 = 0, b � 0

� �32�

and

�
S2B: c1,c2 = arbitrary, c4 =

44c1
2 + 8ac1c2 − a2c2

2

144a3

c5 =
− 32c1

2 − 24ac1c2 − 7a2c2
2

48a4

c6 = −
�c1 + ac2��12c1

2 + 6ac1c2 + a2c2
2�

144a6

c7 = −
�4c1 + 3ac2��48c1

2 + 20ac1c2 + a2c2
2�

55 296a7

u = v +
b

4
+

c1

12a2 , c2 = − 2
c1

a
+ 6ab


av� −
v2 − b2

2
�2

+
3

4
�v + b�3�v − b� = 0, b � 0.

� �33�

For k1
2�b2, the point transformation

v = k1 +
1

w
, w = −

1

k1 + b
−

1

k1 − b
+ N
� −

1

�
�, N2 = −

b2

�k1
2 − b2�2 , �34�

maps the ODE �32� to the Riccati ODE

aN�� − M� −
b2

4�k1
2 − b2�

��2 + 1� = 0, M2 =
3b2

4�k1
2 − b2�

, �35�

whose general solution is a Möbius function of one exponential so that v is a rational function of
one exponential.

For k1
2=b2, i.e., for instance, for k1=−b, the ODE �33� integrates as

v = − b +
2b

w
, w = 1 + 3�1 + eb�z−z0�/�2a��2. �36�
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D. Subequations of degree 1

These first degree subequations

F�u,u�� 
 au� + u2 + b1u + b0 = 0 �37�

are determined by requiring their vanishing when u is the Laurent series �4�. This results in

�
S1: c1,c2,c4,c5 = arbitrary

b1 =
2c1 − ac2

12a2

b0 =
44c1

2 − 32ac1c2 + 5a2c2
2 − 144a3c4 + 144a4c5

1152a4

1152a6c6 = − 56c1
3 + 60ac1

2c2 − 18a2c1c2
2 + a3c2

3 + 288a3c1c4

− 144a4c2c4 − 96a4c1c5 + 48a5c2c5

21332a8c7 = − 176c1
4 + 128ac1

3c2 + 24a2c1
2c2

2 − 32a3c1c2
3

+ 5a4c2
4 + 2688a3c1

2c4 − 1536a4c1c2c4 + 96a5c2
2c4

− 6912a6c4
2 + 128a4c1

2c5 − 512a5c1c2c5 + 224a6c2
2c5

+ 4608a7c4c5 + 2304a8c5
2.

� �38�

The solution of this Riccati equation is either a rational function of one exponential or a
rational function,

u = �−
b1

2
+ a

k

2
coth

k

2
�z − z0�, k2 =

b1
2 − 4b0

2a2 � 0

−
b1

2
+

a

z − z0
, b1

2 − 4b0 = 0. � �39�
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